organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S-Phenyl benzo­thio­ate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 22 August 2012; accepted 28 August 2012; online 1 September 2012)

In the title compound, C13H10OS, the phenyl rings are inclined to one another by 51.12 (8)°. There is a short C—H⋯S contact in the molecule.In the crystal, molecules are linked via C—H⋯O hydrogen bonds forming chains along the a axis. Molecules are also linked by C—H⋯π and weak ππ interactions [centroid–centroid distance = 3.9543 (10) Å].

Related literature

The title compound was obtained by the reaction of thiophenolyate and benzoyl chloride in an alkaline medium. For background to the title compound, see: Reddy et al. (2010[Reddy, M. V. R., Pallela, V. R., Cosenza, S. C., Mallireddigari, M. R., Patti, R., Bonagura, M., Truongcao, M., Akula, B., Jatiani, S. S. & Reddy, E. P. (2010). Bioorg. Med. Chem. 18, Issue 6, 2317-2326.]); Katritzky et al. (2007[Katritzky, A. R., Shestopalov, A. A. & Suzuki, K. (2007). Synthesis, 11, 1806-1813.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10OS

  • Mr = 214.27

  • Monoclinic, P 21 /c

  • a = 5.7203 (1) Å

  • b = 15.1315 (3) Å

  • c = 12.0606 (3) Å

  • β = 96.867 (1)°

  • V = 1036.44 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.49 mm−1

  • T = 100 K

  • 0.25 × 0.12 × 0.12 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.575, Tmax = 0.754

  • 9164 measured reflections

  • 1759 independent reflections

  • 1702 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.04

  • 1759 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S1 0.95 2.52 2.9592 (16) 109
C13—H13⋯O1i 0.95 2.56 3.4889 (18) 167
C10—H10⋯Cg1ii 0.95 2.97 3.506 (2) 117
C5—H5⋯Cg2iii 0.95 2.73 3.5915 (19) 152
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. BrukerAXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Reaction of thiophenolyate and benzyol chloride in alkaline medium was described previously by Reddy et al., 2010. We have repeated the preparation of this compound to be used as starting material in some of our research. Benzoylation of thiophenol afforded colorless crystals of the title compound (see scheme and Figure 1) suitable for single crystal X-ray analysis of which the structure is reported herein. Molecules of the title compound crystalizes in the P21/c (Z=4) space group. All bond lengths are within their normal ranges (Allen, 2002). In the crystal packing several C—H···O/S/π interactions (see table 1, Fig. 2) as well as π-π stacking are observed (centroid to centroid distance = 3.9543 (10) Å, ring slippage = 1.366 Å).

Related literature top

For background to the title compound, see: Reddy et al. (2010); Katritzky et al. (2007). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of sodium hydroxide (344 mg, 8.61 mmol) and thiophenol (0.9 ml, 8.61 mmol) were dissolved in methanol (22 ml) for about 10 minutes. Benzoyl chloride (1 ml) was added to it. The reaction mixture was stirred overnight and then poured into ice-cold water. Afterwards it was filtered and dried to afford the title compound as white crystals in 63% yield.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å and were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. A discrepant reflection (1 3 2) was removed in the final stages of refinement

Structure description top

Reaction of thiophenolyate and benzyol chloride in alkaline medium was described previously by Reddy et al., 2010. We have repeated the preparation of this compound to be used as starting material in some of our research. Benzoylation of thiophenol afforded colorless crystals of the title compound (see scheme and Figure 1) suitable for single crystal X-ray analysis of which the structure is reported herein. Molecules of the title compound crystalizes in the P21/c (Z=4) space group. All bond lengths are within their normal ranges (Allen, 2002). In the crystal packing several C—H···O/S/π interactions (see table 1, Fig. 2) as well as π-π stacking are observed (centroid to centroid distance = 3.9543 (10) Å, ring slippage = 1.366 Å).

For background to the title compound, see: Reddy et al. (2010); Katritzky et al. (2007). For details of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (1) showing the C—H···O/S/π interactions as well as the π-π stacking.
S-Phenyl benzothioate top
Crystal data top
C13H10OSF(000) = 448
Mr = 214.27Dx = 1.373 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6683 reflections
a = 5.7203 (1) Åθ = 4.7–65.8°
b = 15.1315 (3) ŵ = 2.49 mm1
c = 12.0606 (3) ÅT = 100 K
β = 96.867 (1)°Rectangular, colourless
V = 1036.44 (4) Å30.25 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
1759 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source1702 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.022
Detector resolution: 8.4 pixels mm-1θmax = 66.4°, θmin = 4.7°
φ and ω scansh = 26
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.575, Tmax = 0.754l = 1413
9164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.7558P]
where P = (Fo2 + 2Fc2)/3
1759 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10OSV = 1036.44 (4) Å3
Mr = 214.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.7203 (1) ŵ = 2.49 mm1
b = 15.1315 (3) ÅT = 100 K
c = 12.0606 (3) Å0.25 × 0.12 × 0.12 mm
β = 96.867 (1)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
1759 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1702 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.754Rint = 0.022
9164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
1759 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 2274 frames were collected with a frame width of 1° covering up to θ = 66.38° with 96.3% completeness accomplished.

Analytical data: mp: 53–55 °C (Lit. 54–55 °C; Katritzky et al., 2007); 1H NMR (CDCl3, 400 MHz): d 8.03 (d, J = 0.8 Hz, 1H), 8.01(d, J = 1.2 Hz, 1H), 7.62–7.58 (m, 1H), 7.52–7.44 (m, 7H), 13C NMR (CDCl3, 400 MHz): d 190.1, 136.6, 135.1, 133.6, 129.5, 129.2, 128.7, 127.5, 127.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66521 (7)0.44609 (2)0.09450 (3)0.02499 (16)
O11.05856 (19)0.36323 (7)0.17500 (9)0.0242 (3)
C10.9304 (3)0.42516 (10)0.18525 (12)0.0180 (3)
C20.9751 (3)0.49420 (10)0.27395 (12)0.0174 (3)
C31.1950 (3)0.49605 (10)0.33797 (13)0.0210 (3)
H31.31060.45310.32620.025*
C41.2443 (3)0.56059 (11)0.41871 (14)0.0237 (4)
H41.39430.56190.4620.028*
C51.0767 (3)0.62332 (11)0.43703 (13)0.0234 (3)
H51.11170.66730.49280.028*
C60.8580 (3)0.62174 (11)0.37383 (13)0.0239 (4)
H60.74290.66470.38630.029*
C70.8067 (3)0.55781 (11)0.29258 (13)0.0214 (3)
H70.65660.55710.24930.026*
C80.6486 (3)0.35922 (10)0.00504 (12)0.0182 (3)
C90.8130 (3)0.35150 (10)0.08087 (13)0.0211 (3)
H90.94970.38770.07370.025*
C100.7749 (3)0.29047 (11)0.16688 (13)0.0231 (4)
H100.88710.28430.21840.028*
C110.5735 (3)0.23835 (10)0.17811 (13)0.0221 (3)
H110.54720.19720.23780.027*
C120.4107 (3)0.24634 (10)0.10217 (13)0.0210 (3)
H120.27340.21050.10970.025*
C130.4483 (3)0.30674 (10)0.01499 (12)0.0192 (3)
H130.33760.3120.03740.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0287 (3)0.0191 (2)0.0243 (2)0.00622 (15)0.00893 (16)0.00571 (15)
O10.0236 (6)0.0242 (6)0.0242 (6)0.0056 (5)0.0007 (4)0.0028 (5)
C10.0190 (7)0.0164 (7)0.0181 (8)0.0014 (6)0.0004 (6)0.0032 (6)
C20.0203 (7)0.0174 (8)0.0146 (7)0.0018 (6)0.0027 (6)0.0027 (6)
C30.0211 (8)0.0189 (8)0.0224 (8)0.0007 (6)0.0002 (6)0.0032 (6)
C40.0235 (8)0.0246 (8)0.0215 (8)0.0034 (6)0.0043 (6)0.0024 (6)
C50.0298 (8)0.0226 (8)0.0174 (7)0.0044 (6)0.0015 (6)0.0019 (6)
C60.0245 (8)0.0247 (8)0.0233 (8)0.0008 (6)0.0055 (6)0.0040 (7)
C70.0188 (8)0.0259 (9)0.0191 (8)0.0003 (6)0.0010 (6)0.0019 (6)
C80.0223 (8)0.0148 (7)0.0161 (7)0.0031 (6)0.0030 (6)0.0010 (6)
C90.0203 (8)0.0205 (8)0.0220 (8)0.0013 (6)0.0006 (6)0.0060 (6)
C100.0248 (8)0.0272 (9)0.0181 (8)0.0047 (6)0.0054 (6)0.0048 (6)
C110.0285 (8)0.0196 (8)0.0171 (8)0.0045 (6)0.0021 (6)0.0021 (6)
C120.0195 (7)0.0187 (8)0.0242 (8)0.0010 (6)0.0005 (6)0.0006 (6)
C130.0202 (8)0.0191 (8)0.0184 (7)0.0030 (6)0.0024 (6)0.0010 (6)
Geometric parameters (Å, º) top
S1—C81.7751 (15)C6—H60.95
S1—C11.7894 (15)C7—H70.95
O1—C11.2054 (19)C8—C131.387 (2)
C1—C21.495 (2)C8—C91.393 (2)
C2—C31.395 (2)C9—C101.386 (2)
C2—C71.399 (2)C9—H90.95
C3—C41.384 (2)C10—C111.390 (2)
C3—H30.95C10—H100.95
C4—C51.385 (2)C11—C121.387 (2)
C4—H40.95C11—H110.95
C5—C61.385 (2)C12—C131.390 (2)
C5—H50.95C12—H120.95
C6—C71.383 (2)C13—H130.95
C8—S1—C1104.81 (7)C6—C7—H7119.9
O1—C1—C2124.23 (13)C2—C7—H7119.9
O1—C1—S1123.81 (12)C13—C8—C9120.70 (14)
C2—C1—S1111.96 (10)C13—C8—S1117.35 (12)
C3—C2—C7119.34 (14)C9—C8—S1121.36 (12)
C3—C2—C1118.40 (13)C10—C9—C8119.29 (14)
C7—C2—C1122.24 (13)C10—C9—H9120.4
C4—C3—C2119.85 (15)C8—C9—H9120.4
C4—C3—H3120.1C9—C10—C11120.34 (14)
C2—C3—H3120.1C9—C10—H10119.8
C3—C4—C5120.60 (15)C11—C10—H10119.8
C3—C4—H4119.7C12—C11—C10120.02 (15)
C5—C4—H4119.7C12—C11—H11120
C6—C5—C4119.80 (15)C10—C11—H11120
C6—C5—H5120.1C11—C12—C13120.09 (14)
C4—C5—H5120.1C11—C12—H12120
C7—C6—C5120.21 (15)C13—C12—H12120
C7—C6—H6119.9C8—C13—C12119.54 (14)
C5—C6—H6119.9C8—C13—H13120.2
C6—C7—C2120.20 (14)C12—C13—H13120.2
C8—S1—C1—O10.46 (15)C3—C2—C7—C60.1 (2)
C8—S1—C1—C2178.75 (10)C1—C2—C7—C6178.42 (14)
O1—C1—C2—C310.8 (2)C1—S1—C8—C13122.78 (12)
S1—C1—C2—C3168.42 (11)C1—S1—C8—C966.00 (14)
O1—C1—C2—C7170.86 (15)C13—C8—C9—C100.1 (2)
S1—C1—C2—C79.93 (18)S1—C8—C9—C10171.00 (11)
C7—C2—C3—C40.1 (2)C8—C9—C10—C110.8 (2)
C1—C2—C3—C4178.26 (14)C9—C10—C11—C120.9 (2)
C2—C3—C4—C50.3 (2)C10—C11—C12—C130.3 (2)
C3—C4—C5—C60.2 (2)C9—C8—C13—C120.5 (2)
C4—C5—C6—C70.0 (2)S1—C8—C13—C12170.75 (11)
C5—C6—C7—C20.2 (2)C11—C12—C13—C80.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···S10.952.522.9592 (16)109
C13—H13···O1i0.952.563.4889 (18)167
C10—H10···Cg1ii0.952.973.506 (2)117
C5—H5···Cg2iii0.952.733.5915 (19)152
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10OS
Mr214.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7203 (1), 15.1315 (3), 12.0606 (3)
β (°) 96.867 (1)
V3)1036.44 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.49
Crystal size (mm)0.25 × 0.12 × 0.12
Data collection
DiffractometerBruker APEX DUO 4K-CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.575, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
9164, 1759, 1702
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.04
No. of reflections1759
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···S10.952.522.9592 (16)108.6
C13—H13···O1i0.952.563.4889 (18)167.2
C10—H10···Cg1ii0.952.973.506 (2)117
C5—H5···Cg2iii0.952.733.5915 (19)152
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mrs Z. H. Phasha is thanked for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. BrukerAXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Shestopalov, A. A. & Suzuki, K. (2007). Synthesis, 11, 1806–1813.  Google Scholar
First citationReddy, M. V. R., Pallela, V. R., Cosenza, S. C., Mallireddigari, M. R., Patti, R., Bonagura, M., Truongcao, M., Akula, B., Jatiani, S. S. & Reddy, E. P. (2010). Bioorg. Med. Chem. 18, Issue 6, 2317–2326.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds