organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(3-Bromo­phen­yl)-1′-methyl­di­spiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 29 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C27H20BrNO3, two intra­molecular C—H⋯O hydrogen bonds both form S(6) rings. The pyrrolidine ring adopts a twisted conformation about the C—C bond bearing the indane ring systems. The other two five-membered rings within the indane systems are in shallow envelope conformations, with the spiro C atoms as the flap atoms. The mean plane of the pyrrolidine ring [maximum deviation = 0.275 (1) Å] makes dihedral angles of 65.25 (7), 78.33 (6) and 75.25 (6)° with the bromo-substituted benzene ring and the mean planes of the mono- and dioxo-substituted indane rings, respectively. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. In addition, C—H⋯π inter­actions are observed.

Related literature

For related structures and medicinal background, see: Wei et al. (2011[Wei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3274.], 2012a[Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o1340-o1341.],b[Wei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012b). Acta Cryst. E68, o560-o561.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20BrNO3

  • Mr = 486.35

  • Triclinic, [P \overline 1]

  • a = 8.3998 (1) Å

  • b = 11.2082 (2) Å

  • c = 12.4816 (2) Å

  • α = 112.004 (1)°

  • β = 96.850 (1)°

  • γ = 93.191 (1)°

  • V = 1075.28 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100 K

  • 0.51 × 0.31 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.436, Tmax = 0.599

  • 23814 measured reflections

  • 6318 independent reflections

  • 5810 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.04

  • 6318 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O2 0.99 2.39 3.0787 (17) 126
C19—H19A⋯O1 1.00 2.53 3.1649 (17) 121
C4—H4A⋯O3i 0.95 2.53 3.4056 (18) 153
C16—H16A⋯N1ii 0.95 2.58 3.4912 (16) 161
C20—H20B⋯O1iii 0.99 2.44 3.3586 (18) 153
C23—H23A⋯O1iv 0.95 2.48 3.3847 (18) 160
C5—H5ACg1v 0.95 2.65 3.3386 (17) 130
C15—H15ACg1vi 0.95 2.82 3.6623 (15) 149
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) -x+1, -y+1, -z+2; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tuberculosis (TB) remains a global health problem and has infected about one third of the world population. No new drugs have been discovered for the past 40 years and therefore new anti-TB agents are desperately needed. As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei et al., 2011;, 2012a,b), our group has synthesized the title compound as described below.

The molecular structure of the title compound is shown in Fig. 1. The intramolecular C18—H18B···O2 and C19—H19A···O1 hydrogen bonds (Table 1) form two S(6) ring motifs (Bernstein et al., 1995). The pyrrolidine ring (N1/C9/C10/C19/C20) is twisted about C9–C10 bond [puckering parameters, Q= 0.4492 (14) Å and φ= 242.64 (18)°], thereby adopting half-chair comformation (Cremer & Pople, 1975). Meanwhile, the other two five-membered rings within the indane moiety (C1/C2/C7–C9 & C10–C12/C17/C18) are in envelope conformation with puckering parameters, Q = 0.1825 (14) Å and φ= 148.5 (4)° in which C9 at the flap and Q = 0.1694 (14) Å and φ= 172.8 (5)° in which C10 at the flap, respectively. The mean plane of the pyrrolidine ring [N1/C9/C10/C19/C20, with maximum deviation of 0.275 (1) Å at atom C10] makes dihedral angles of 65.25 (7), 78.33 (6) and 75.25 (6)° with the bromo-substituted benzene ring (C21–C26) and the mean planes of the mono-oxo substituted [C10–C18; maximum deviation of 0.145 (1) Å at atom C10] and di-oxo substituted [C1–C9; maximum deviation of 0.180 (1) Å at atom C9] indane rings, respectively. The bond lengths and angles are within normal ranges and comparable to the related structure (Wei, Ali, Yoon et al., 2011; Wei, Ali, Choon et al., 2012a,b).

In the crystal (Fig. 2), C4—H4A···O3, C20—H20B···O1, C16—H16A···N1 and C23—H23A···O1 hydrogen bonds (Table 1) connect the molecules into a three-dimensional network. The crystal structure are further stabilized by the intermolecular C5—H5A···Cg1 and C15—H15A···Cg1 (Table 1) interactions (Cg1 is the centroid of C21–C26).

Related literature top

For related structures and medicinal background, see: Wei et al. (2011, 2012a,b). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-2-(3-bromobenzylidene)-2,3-dihydro-1H-indene-1 -one (0.001 mol), ninhydrin (0.001 mol) and sarcosine (0.002 mol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the excess solvent was evaporated slowly and the product was separated and recrystallized from methanol to reveal the title compound as yellow blocks.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating group model was applied to the methyl group. One outliner -9 -1 2 was omitted in the final refinement.

Structure description top

Tuberculosis (TB) remains a global health problem and has infected about one third of the world population. No new drugs have been discovered for the past 40 years and therefore new anti-TB agents are desperately needed. As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei et al., 2011;, 2012a,b), our group has synthesized the title compound as described below.

The molecular structure of the title compound is shown in Fig. 1. The intramolecular C18—H18B···O2 and C19—H19A···O1 hydrogen bonds (Table 1) form two S(6) ring motifs (Bernstein et al., 1995). The pyrrolidine ring (N1/C9/C10/C19/C20) is twisted about C9–C10 bond [puckering parameters, Q= 0.4492 (14) Å and φ= 242.64 (18)°], thereby adopting half-chair comformation (Cremer & Pople, 1975). Meanwhile, the other two five-membered rings within the indane moiety (C1/C2/C7–C9 & C10–C12/C17/C18) are in envelope conformation with puckering parameters, Q = 0.1825 (14) Å and φ= 148.5 (4)° in which C9 at the flap and Q = 0.1694 (14) Å and φ= 172.8 (5)° in which C10 at the flap, respectively. The mean plane of the pyrrolidine ring [N1/C9/C10/C19/C20, with maximum deviation of 0.275 (1) Å at atom C10] makes dihedral angles of 65.25 (7), 78.33 (6) and 75.25 (6)° with the bromo-substituted benzene ring (C21–C26) and the mean planes of the mono-oxo substituted [C10–C18; maximum deviation of 0.145 (1) Å at atom C10] and di-oxo substituted [C1–C9; maximum deviation of 0.180 (1) Å at atom C9] indane rings, respectively. The bond lengths and angles are within normal ranges and comparable to the related structure (Wei, Ali, Yoon et al., 2011; Wei, Ali, Choon et al., 2012a,b).

In the crystal (Fig. 2), C4—H4A···O3, C20—H20B···O1, C16—H16A···N1 and C23—H23A···O1 hydrogen bonds (Table 1) connect the molecules into a three-dimensional network. The crystal structure are further stabilized by the intermolecular C5—H5A···Cg1 and C15—H15A···Cg1 (Table 1) interactions (Cg1 is the centroid of C21–C26).

For related structures and medicinal background, see: Wei et al. (2011, 2012a,b). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4'-(3-Bromophenyl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',2''-indan]- 1,3,1''-trione top
Crystal data top
C27H20BrNO3Z = 2
Mr = 486.35F(000) = 496
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3998 (1) ÅCell parameters from 9917 reflections
b = 11.2082 (2) Åθ = 3.0–30.1°
c = 12.4816 (2) ŵ = 1.94 mm1
α = 112.004 (1)°T = 100 K
β = 96.850 (1)°Block, yellow
γ = 93.191 (1)°0.51 × 0.31 × 0.29 mm
V = 1075.28 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6318 independent reflections
Radiation source: fine-focus sealed tube5810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.436, Tmax = 0.599k = 1515
23814 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.5548P]
where P = (Fo2 + 2Fc2)/3
6318 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C27H20BrNO3γ = 93.191 (1)°
Mr = 486.35V = 1075.28 (3) Å3
Triclinic, P1Z = 2
a = 8.3998 (1) ÅMo Kα radiation
b = 11.2082 (2) ŵ = 1.94 mm1
c = 12.4816 (2) ÅT = 100 K
α = 112.004 (1)°0.51 × 0.31 × 0.29 mm
β = 96.850 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5810 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 0.599Rint = 0.023
23814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
6318 reflectionsΔρmin = 0.53 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.225327 (19)0.034338 (13)0.491671 (13)0.02629 (5)
O10.13721 (12)0.70139 (9)1.01601 (8)0.01768 (18)
O20.06941 (12)0.68997 (9)0.64765 (8)0.01841 (18)
O30.45101 (11)0.66808 (9)0.88616 (8)0.01675 (18)
N10.05884 (13)0.52853 (10)0.78612 (9)0.01380 (19)
C10.12730 (14)0.72671 (12)0.92921 (10)0.0133 (2)
C20.15991 (15)0.85606 (12)0.92485 (11)0.0147 (2)
C30.24222 (17)0.96921 (13)1.01069 (12)0.0197 (3)
H3A0.28790.97141.08490.024*
C40.25502 (19)1.07871 (13)0.98385 (12)0.0233 (3)
H4A0.31331.15651.03980.028*
C50.18338 (19)1.07629 (13)0.87559 (13)0.0226 (3)
H5A0.19071.15340.86060.027*
C60.10196 (17)0.96343 (13)0.78980 (12)0.0188 (2)
H6A0.05340.96170.71640.023*
C70.09426 (15)0.85257 (12)0.81561 (11)0.0144 (2)
C80.01860 (14)0.72063 (12)0.73996 (11)0.0134 (2)
C90.06749 (14)0.62884 (11)0.80214 (10)0.0118 (2)
C100.20794 (14)0.54710 (11)0.75111 (10)0.0117 (2)
C110.37225 (14)0.63118 (11)0.78907 (11)0.0128 (2)
C120.41207 (14)0.65657 (12)0.68743 (10)0.0128 (2)
C130.53931 (15)0.73898 (12)0.68183 (11)0.0152 (2)
H13A0.61380.78910.74970.018*
C140.55375 (16)0.74547 (13)0.57472 (12)0.0172 (2)
H14A0.63950.80020.56830.021*
C150.44190 (16)0.67141 (13)0.47562 (11)0.0172 (2)
H15A0.45250.67780.40300.021*
C160.31575 (15)0.58883 (12)0.48106 (11)0.0152 (2)
H16A0.24120.53880.41320.018*
C170.30179 (14)0.58155 (11)0.58869 (10)0.0126 (2)
C180.18261 (15)0.49507 (12)0.61636 (10)0.0129 (2)
H18A0.20520.40370.58290.016*
H18B0.07070.50130.58520.016*
C190.19356 (15)0.44614 (12)0.80828 (11)0.0137 (2)
H19A0.23820.49240.89300.016*
C200.01072 (16)0.41788 (13)0.80165 (13)0.0186 (2)
H20A0.03170.33630.73480.022*
H20B0.01470.41040.87450.022*
C210.28456 (15)0.32899 (12)0.76277 (11)0.0141 (2)
C220.43223 (16)0.32640 (13)0.82660 (12)0.0183 (2)
H22A0.47530.39950.89520.022*
C230.51708 (17)0.21825 (15)0.79110 (14)0.0230 (3)
H23A0.61750.21860.83530.028*
C240.45598 (17)0.11009 (14)0.69174 (14)0.0224 (3)
H24A0.51240.03560.66780.027*
C250.31020 (17)0.11346 (12)0.62810 (12)0.0182 (2)
C260.22394 (15)0.22029 (12)0.66123 (11)0.0156 (2)
H26A0.12480.21980.61560.019*
C270.19926 (16)0.56775 (13)0.84332 (12)0.0185 (2)
H27A0.24160.63790.82360.028*
H27B0.16820.59800.92820.028*
H27C0.28250.49380.81670.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03101 (9)0.01684 (7)0.02711 (8)0.00156 (5)0.01300 (6)0.00162 (5)
O10.0203 (4)0.0199 (4)0.0145 (4)0.0010 (4)0.0044 (3)0.0082 (4)
O20.0171 (4)0.0200 (4)0.0177 (4)0.0007 (3)0.0005 (3)0.0080 (4)
O30.0142 (4)0.0212 (4)0.0140 (4)0.0012 (3)0.0008 (3)0.0067 (3)
N10.0116 (4)0.0132 (4)0.0174 (5)0.0003 (4)0.0051 (4)0.0062 (4)
C10.0120 (5)0.0145 (5)0.0135 (5)0.0006 (4)0.0039 (4)0.0052 (4)
C20.0161 (5)0.0141 (5)0.0140 (5)0.0001 (4)0.0048 (4)0.0051 (4)
C30.0250 (7)0.0161 (6)0.0157 (6)0.0022 (5)0.0023 (5)0.0045 (5)
C40.0316 (7)0.0152 (6)0.0200 (6)0.0049 (5)0.0047 (5)0.0041 (5)
C50.0326 (7)0.0151 (6)0.0222 (6)0.0016 (5)0.0081 (5)0.0088 (5)
C60.0236 (6)0.0172 (6)0.0179 (6)0.0008 (5)0.0059 (5)0.0088 (5)
C70.0145 (5)0.0141 (5)0.0150 (5)0.0004 (4)0.0044 (4)0.0057 (4)
C80.0121 (5)0.0149 (5)0.0148 (5)0.0016 (4)0.0044 (4)0.0069 (4)
C90.0119 (5)0.0124 (5)0.0117 (5)0.0003 (4)0.0030 (4)0.0051 (4)
C100.0110 (5)0.0126 (5)0.0118 (5)0.0006 (4)0.0029 (4)0.0050 (4)
C110.0115 (5)0.0129 (5)0.0143 (5)0.0011 (4)0.0039 (4)0.0050 (4)
C120.0120 (5)0.0141 (5)0.0135 (5)0.0014 (4)0.0034 (4)0.0062 (4)
C130.0130 (5)0.0160 (5)0.0168 (5)0.0006 (4)0.0026 (4)0.0066 (4)
C140.0160 (6)0.0177 (5)0.0203 (6)0.0007 (4)0.0060 (5)0.0094 (5)
C150.0186 (6)0.0201 (6)0.0166 (5)0.0023 (5)0.0065 (4)0.0102 (5)
C160.0154 (5)0.0169 (5)0.0138 (5)0.0003 (4)0.0035 (4)0.0063 (4)
C170.0125 (5)0.0129 (5)0.0137 (5)0.0014 (4)0.0042 (4)0.0058 (4)
C180.0133 (5)0.0140 (5)0.0112 (5)0.0018 (4)0.0026 (4)0.0048 (4)
C190.0157 (5)0.0136 (5)0.0140 (5)0.0011 (4)0.0048 (4)0.0069 (4)
C200.0171 (6)0.0155 (5)0.0280 (7)0.0027 (4)0.0109 (5)0.0114 (5)
C210.0150 (5)0.0147 (5)0.0157 (5)0.0014 (4)0.0053 (4)0.0084 (4)
C220.0161 (6)0.0201 (6)0.0205 (6)0.0007 (5)0.0022 (5)0.0101 (5)
C230.0160 (6)0.0273 (7)0.0309 (7)0.0049 (5)0.0034 (5)0.0167 (6)
C240.0211 (6)0.0215 (6)0.0313 (7)0.0083 (5)0.0116 (5)0.0148 (6)
C250.0204 (6)0.0148 (5)0.0208 (6)0.0015 (5)0.0092 (5)0.0067 (5)
C260.0163 (5)0.0160 (5)0.0168 (5)0.0020 (4)0.0052 (4)0.0081 (5)
C270.0138 (5)0.0205 (6)0.0226 (6)0.0018 (4)0.0074 (5)0.0084 (5)
Geometric parameters (Å, º) top
Br1—C251.9019 (14)C13—H13A0.9500
O1—C11.2135 (15)C14—C151.4030 (18)
O2—C81.2100 (15)C14—H14A0.9500
O3—C111.2165 (15)C15—C161.3925 (17)
N1—C91.4416 (15)C15—H15A0.9500
N1—C271.4553 (16)C16—C171.3943 (16)
N1—C201.4665 (16)C16—H16A0.9500
C1—C21.4827 (17)C17—C181.5120 (16)
C1—C91.5544 (17)C18—H18A0.9900
C2—C31.3935 (17)C18—H18B0.9900
C2—C71.3939 (17)C19—C211.5123 (17)
C3—C41.3900 (19)C19—C201.5369 (18)
C3—H3A0.9500C19—H19A1.0000
C4—C51.402 (2)C20—H20A0.9900
C4—H4A0.9500C20—H20B0.9900
C5—C61.3887 (19)C21—C221.4000 (18)
C5—H5A0.9500C21—C261.4035 (18)
C6—C71.3956 (17)C22—C231.3938 (19)
C6—H6A0.9500C22—H22A0.9500
C7—C81.4793 (17)C23—C241.387 (2)
C8—C91.5488 (16)C23—H23A0.9500
C9—C101.5809 (17)C24—C251.388 (2)
C10—C181.5427 (16)C24—H24A0.9500
C10—C111.5434 (16)C25—C261.3881 (18)
C10—C191.5540 (16)C26—H26A0.9500
C11—C121.4708 (16)C27—H27A0.9800
C12—C171.3959 (17)C27—H27B0.9800
C12—C131.3988 (16)C27—H27C0.9800
C13—C141.3849 (17)
C9—N1—C27117.31 (10)C16—C15—C14121.67 (11)
C9—N1—C20110.09 (10)C16—C15—H15A119.2
C27—N1—C20115.37 (10)C14—C15—H15A119.2
O1—C1—C2126.85 (11)C15—C16—C17118.25 (11)
O1—C1—C9125.46 (11)C15—C16—H16A120.9
C2—C1—C9107.59 (10)C17—C16—H16A120.9
C3—C2—C7121.15 (11)C16—C17—C12119.94 (11)
C3—C2—C1129.27 (11)C16—C17—C18128.53 (11)
C7—C2—C1109.57 (11)C12—C17—C18111.46 (10)
C4—C3—C2117.60 (13)C17—C18—C10104.24 (9)
C4—C3—H3A121.2C17—C18—H18A110.9
C2—C3—H3A121.2C10—C18—H18A110.9
C3—C4—C5121.12 (13)C17—C18—H18B110.9
C3—C4—H4A119.4C10—C18—H18B110.9
C5—C4—H4A119.4H18A—C18—H18B108.9
C6—C5—C4121.28 (12)C21—C19—C20115.88 (10)
C6—C5—H5A119.4C21—C19—C10116.93 (10)
C4—C5—H5A119.4C20—C19—C10103.69 (10)
C5—C6—C7117.38 (12)C21—C19—H19A106.5
C5—C6—H6A121.3C20—C19—H19A106.5
C7—C6—H6A121.3C10—C19—H19A106.5
C2—C7—C6121.37 (12)N1—C20—C19105.19 (10)
C2—C7—C8110.26 (10)N1—C20—H20A110.7
C6—C7—C8128.36 (11)C19—C20—H20A110.7
O2—C8—C7126.41 (11)N1—C20—H20B110.7
O2—C8—C9125.88 (11)C19—C20—H20B110.7
C7—C8—C9107.69 (10)H20A—C20—H20B108.8
N1—C9—C8113.45 (10)C22—C21—C26118.48 (12)
N1—C9—C1117.20 (10)C22—C21—C19118.89 (11)
C8—C9—C1101.52 (9)C26—C21—C19122.59 (11)
N1—C9—C10101.75 (9)C23—C22—C21121.04 (13)
C8—C9—C10113.18 (9)C23—C22—H22A119.5
C1—C9—C10110.18 (9)C21—C22—H22A119.5
C18—C10—C11104.54 (9)C24—C23—C22120.48 (13)
C18—C10—C19117.18 (10)C24—C23—H23A119.8
C11—C10—C19113.68 (10)C22—C23—H23A119.8
C18—C10—C9111.30 (9)C23—C24—C25118.31 (13)
C11—C10—C9111.58 (9)C23—C24—H24A120.8
C19—C10—C998.74 (9)C25—C24—H24A120.8
O3—C11—C12127.83 (11)C26—C25—C24122.29 (13)
O3—C11—C10124.83 (11)C26—C25—Br1119.05 (10)
C12—C11—C10107.34 (10)C24—C25—Br1118.66 (10)
C17—C12—C13121.81 (11)C25—C26—C21119.40 (12)
C17—C12—C11109.50 (10)C25—C26—H26A120.3
C13—C12—C11128.68 (11)C21—C26—H26A120.3
C14—C13—C12118.21 (11)N1—C27—H27A109.5
C14—C13—H13A120.9N1—C27—H27B109.5
C12—C13—H13A120.9H27A—C27—H27B109.5
C13—C14—C15120.12 (12)N1—C27—H27C109.5
C13—C14—H14A119.9H27A—C27—H27C109.5
C15—C14—H14A119.9H27B—C27—H27C109.5
O1—C1—C2—C316.5 (2)C9—C10—C11—O375.27 (15)
C9—C1—C2—C3166.90 (13)C18—C10—C11—C1215.76 (12)
O1—C1—C2—C7163.84 (13)C19—C10—C11—C12144.75 (10)
C9—C1—C2—C712.81 (14)C9—C10—C11—C12104.65 (11)
C7—C2—C3—C40.6 (2)O3—C11—C12—C17171.44 (12)
C1—C2—C3—C4179.67 (13)C10—C11—C12—C178.65 (13)
C2—C3—C4—C51.9 (2)O3—C11—C12—C137.4 (2)
C3—C4—C5—C62.3 (2)C10—C11—C12—C13172.53 (12)
C4—C5—C6—C70.0 (2)C17—C12—C13—C140.34 (19)
C3—C2—C7—C63.0 (2)C11—C12—C13—C14179.03 (12)
C1—C2—C7—C6177.30 (12)C12—C13—C14—C150.47 (19)
C3—C2—C7—C8178.12 (12)C13—C14—C15—C160.9 (2)
C1—C2—C7—C81.62 (14)C14—C15—C16—C170.40 (19)
C5—C6—C7—C22.6 (2)C15—C16—C17—C120.41 (18)
C5—C6—C7—C8178.72 (13)C15—C16—C17—C18176.36 (12)
C2—C7—C8—O2167.84 (13)C13—C12—C17—C160.79 (18)
C6—C7—C8—O211.0 (2)C11—C12—C17—C16179.71 (11)
C2—C7—C8—C910.25 (14)C13—C12—C17—C18176.50 (11)
C6—C7—C8—C9170.92 (13)C11—C12—C17—C182.42 (14)
C27—N1—C9—C869.28 (14)C16—C17—C18—C10170.69 (12)
C20—N1—C9—C8156.11 (10)C12—C17—C18—C1012.31 (13)
C27—N1—C9—C148.61 (15)C11—C10—C18—C1716.54 (12)
C20—N1—C9—C186.00 (13)C19—C10—C18—C17143.39 (10)
C27—N1—C9—C10168.82 (10)C9—C10—C18—C17104.06 (11)
C20—N1—C9—C1034.20 (12)C18—C10—C19—C2148.01 (15)
O2—C8—C9—N134.63 (17)C11—C10—C19—C2174.23 (13)
C7—C8—C9—N1143.47 (10)C9—C10—C19—C21167.49 (10)
O2—C8—C9—C1161.28 (12)C18—C10—C19—C2080.86 (12)
C7—C8—C9—C116.82 (12)C11—C10—C19—C20156.90 (10)
O2—C8—C9—C1080.66 (15)C9—C10—C19—C2038.62 (11)
C7—C8—C9—C10101.24 (11)C9—N1—C20—C199.38 (14)
O1—C1—C9—N134.79 (18)C27—N1—C20—C19144.95 (11)
C2—C1—C9—N1141.92 (11)C21—C19—C20—N1149.54 (10)
O1—C1—C9—C8158.94 (12)C10—C19—C20—N120.02 (13)
C2—C1—C9—C817.76 (12)C20—C19—C21—C22136.87 (12)
O1—C1—C9—C1080.86 (15)C10—C19—C21—C22100.35 (13)
C2—C1—C9—C10102.43 (11)C20—C19—C21—C2640.61 (16)
N1—C9—C10—C1879.65 (11)C10—C19—C21—C2682.17 (15)
C8—C9—C10—C1842.44 (13)C26—C21—C22—C230.50 (19)
C1—C9—C10—C18155.32 (9)C19—C21—C22—C23177.08 (12)
N1—C9—C10—C11163.99 (9)C21—C22—C23—C240.5 (2)
C8—C9—C10—C1173.92 (12)C22—C23—C24—C251.0 (2)
C1—C9—C10—C1138.96 (12)C23—C24—C25—C260.6 (2)
N1—C9—C10—C1944.13 (10)C23—C24—C25—Br1179.99 (10)
C8—C9—C10—C19166.22 (10)C24—C25—C26—C210.34 (19)
C1—C9—C10—C1980.89 (11)Br1—C25—C26—C21179.05 (9)
C18—C10—C11—O3164.32 (12)C22—C21—C26—C250.89 (18)
C19—C10—C11—O335.33 (17)C19—C21—C26—C25176.60 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···O20.992.393.0787 (17)126
C19—H19A···O11.002.533.1649 (17)121
C4—H4A···O3i0.952.533.4056 (18)153
C16—H16A···N1ii0.952.583.4912 (16)161
C20—H20B···O1iii0.992.443.3586 (18)153
C23—H23A···O1iv0.952.483.3847 (18)160
C5—H5A···Cg1v0.952.653.3386 (17)130
C15—H15A···Cg1vi0.952.823.6623 (15)149
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H20BrNO3
Mr486.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3998 (1), 11.2082 (2), 12.4816 (2)
α, β, γ (°)112.004 (1), 96.850 (1), 93.191 (1)
V3)1075.28 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.51 × 0.31 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.436, 0.599
No. of measured, independent and
observed [I > 2σ(I)] reflections
23814, 6318, 5810
Rint0.023
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.04
No. of reflections6318
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···O20.992.393.0787 (17)126
C19—H19A···O11.002.533.1649 (17)121
C4—H4A···O3i0.952.533.4056 (18)153
C16—H16A···N1ii0.952.583.4912 (16)161
C20—H20B···O1iii0.992.443.3586 (18)153
C23—H23A···O1iv0.952.483.3847 (18)160
C5—H5A···Cg1v0.952.653.3386 (17)130
C15—H15A···Cg1vi0.952.823.6623 (15)149
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: F-9119-2012.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grants (Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012) and HiCoE research grant (No. 311.CIPPM.4401005). The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia, for supporting this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme (ASTS) fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o1340–o1341.  CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012b). Acta Cryst. E68, o560–o561.  CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3274.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds