organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N′′-(2-chloro-2,2-di­fluoro­acet­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: pourayoubi@um.ac.ir

(Received 23 July 2012; accepted 18 September 2012; online 26 September 2012)

In the title mol­ecule, C16H17ClF2N3O2P, the N—H unit of the C(=O)NHP(=O) fragment adopts a syn orientation with respect to the P=O group. The two F atoms and the Cl atom of the ClF2C group are disordered over two sets of sites with refined occupancies of 0.605 (6) and 0.395 (6). In the crystal, mol­ecules are linked via N—H⋯O=C hydrogen bonds and the (N—H⋯)(N—H⋯)O=P group into chains along [010].

Related literature

For related structures with a P(=O)[NHC(=O)CClF2] fragment, and for reference values of P=O, C=O and P—N bond lengths and P—N—C bond angles, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]); Raissi Shabari et al. (2011[Raissi Shabari, A., Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o663-o664.]); Pourayoubi & Saneei (2011[Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o665.]). For the double hydrogen-bond acceptor capability of the phosphoryl O atom in phospho­ramidates, see: Pourayoubi et al. (2012[Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]). For the synthesis of the starting material, CClF2C(=O)NHP(=O)Cl2, see: Iriarte et al. (2008[Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66-71.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClF2N3O2P

  • Mr = 387.75

  • Monoclinic, P 21

  • a = 12.9734 (5) Å

  • b = 4.9900 (2) Å

  • c = 13.7750 (4) Å

  • β = 96.482 (3)°

  • V = 886.06 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 K

  • 0.35 × 0.22 × 0.12 mm

Data collection
  • Oxford Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.890, Tmax = 0.960

  • 9633 measured reflections

  • 5460 independent reflections

  • 4909 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.122

  • S = 1.09

  • 5460 reflections

  • 263 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2216 Friedel pairs

  • Flack parameter: 0.06 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.30 (3) 3.092 (3) 151 (3)
N2—H2N⋯O1i 0.86 (2) 2.05 (2) 2.867 (3) 158 (3)
N3—H3N⋯O2ii 0.86 (2) 2.01 (2) 2.854 (3) 166 (3)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In the previous studies, the structures of some compounds with a P(O)[NHC(O)CClF2] fragment have been investigated; for example, [4-CH3-C6H4NH]2P(O)[NHC(O)CClF2] (Pourayoubi, Tarahhomi et al., 2011), [(C6H5CH2)(CH3)N]2P(O)[NHC(O)CClF2] (Raissi Shabari et al., 2011) and [(CH3)2CHNH]2P(O)[NHC(O)CClF2] (Pourayoubi & Saneei, 2011). Here, the structure determination of the title compound (Fig. 1) is reported.

Atoms F1, F2 and Cl1 were refined as disordered over two sets of sites with occupancies of 0.605 (6) and 0.395 (6). The N—H unit of the C(O)NHP(O) fragment adopts a syn orientation with respect to the phosphoryl group. The P atom is bonded in a distorted tetrahedral environment as has been noted for other phosphoric triamides. The PO, CO and P—N bond lengths and P—N—C bond angles are within the expected values (Pourayoubi, Tarahhomi et al., 2011; Raissi Shabari et al., 2011; Pourayoubi & Saneei, 2011).

In the crystal, the O atom of PO group acts as a double-hydrogen bond acceptor (Pourayoubi et al., 2012) and molecules are linked by N—H···OC hydrogen bonds and (N—H···)2OP group, into a linear arrangement along the b axis (Fig. 2).

Related literature top

For related structures with a P(O)[NHC(O)CClF2] fragment, and for reference values of PO, CO and P—N bond lengths and P—N—C bond angles, see: Pourayoubi et al. (2011); Raissi Shabari et al. (2011); Pourayoubi & Saneei (2011). For the double hydrogen-bond acceptor capability of the phosphoryl O atom in phosphoramidates, see: Pourayoubi et al. (2012). For the synthesis of the starting material, CClF2C( O)NHP(O)Cl2, see: Iriarte et al. (2008).

Experimental top

ClF2CC(O)NHP(O)Cl2 was prepared according to the literature method reported by Iriarte et al. (2008).

To a solution of ClF2CC(O)NHP(O)Cl2 (0.473 g, 1.92 mmol) in dry chloroform (25 ml), a solution of benzylamine (0.823 g, 7.68 mmol) in the same solvent (5 ml) was added at 273 K. After 6 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from CH3CN at room temperature.

Refinement top

H atoms H1N, H2N and H3N were located in a difference Fourier map and were refined with Uiso(H) = 1.2Ueq(N), giving N—H distances of 0.88 (2) or 0.86 (2) Å. The other H atoms were placed in calculated positions with 0.95 Å for CH, 0.99 Å for CH2 and with Uiso(H) = 1.2Ueq(C). F atoms F1 and F2 and chlorine Cl1 are disordered over two sets of sites with occupancies of 0.605 (6) and 0.395 (6).

Structure description top

In the previous studies, the structures of some compounds with a P(O)[NHC(O)CClF2] fragment have been investigated; for example, [4-CH3-C6H4NH]2P(O)[NHC(O)CClF2] (Pourayoubi, Tarahhomi et al., 2011), [(C6H5CH2)(CH3)N]2P(O)[NHC(O)CClF2] (Raissi Shabari et al., 2011) and [(CH3)2CHNH]2P(O)[NHC(O)CClF2] (Pourayoubi & Saneei, 2011). Here, the structure determination of the title compound (Fig. 1) is reported.

Atoms F1, F2 and Cl1 were refined as disordered over two sets of sites with occupancies of 0.605 (6) and 0.395 (6). The N—H unit of the C(O)NHP(O) fragment adopts a syn orientation with respect to the phosphoryl group. The P atom is bonded in a distorted tetrahedral environment as has been noted for other phosphoric triamides. The PO, CO and P—N bond lengths and P—N—C bond angles are within the expected values (Pourayoubi, Tarahhomi et al., 2011; Raissi Shabari et al., 2011; Pourayoubi & Saneei, 2011).

In the crystal, the O atom of PO group acts as a double-hydrogen bond acceptor (Pourayoubi et al., 2012) and molecules are linked by N—H···OC hydrogen bonds and (N—H···)2OP group, into a linear arrangement along the b axis (Fig. 2).

For related structures with a P(O)[NHC(O)CClF2] fragment, and for reference values of PO, CO and P—N bond lengths and P—N—C bond angles, see: Pourayoubi et al. (2011); Raissi Shabari et al. (2011); Pourayoubi & Saneei (2011). For the double hydrogen-bond acceptor capability of the phosphoryl O atom in phosphoramidates, see: Pourayoubi et al. (2012). For the synthesis of the starting material, CClF2C( O)NHP(O)Cl2, see: Iriarte et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are given at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii. The atoms of the minor component of disorder are labeled with suffix 'A'.
[Figure 2] Fig. 2. Crystal packing of title compound viewed approximately along the a axis. The N—H···O hydrogen bonds are shown by dashed lines. H atoms not involved in hydrogen bonding have been removed for clarity.
N,N'-Dibenzyl-N''-(2-chloro-2,2-difluoroacetyl)phosphoric triamide top
Crystal data top
C16H17ClF2N3O2PF(000) = 400
Mr = 387.75Dx = 1.453 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3176 reflections
a = 12.9734 (5) Åθ = 3.3–32.2°
b = 4.9900 (2) ŵ = 0.34 mm1
c = 13.7750 (4) ÅT = 173 K
β = 96.482 (3)°Block, colourless
V = 886.06 (6) Å30.35 × 0.22 × 0.12 mm
Z = 2
Data collection top
Oxford Xcalibur (Eos, Gemini)
diffractometer
5460 independent reflections
Radiation source: Enhance (Mo) X-ray Source4909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1500 pixels mm-1θmax = 32.2°, θmin = 3.3°
ω scansh = 1819
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 76
Tmin = 0.890, Tmax = 0.960l = 920
9633 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3968P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5460 reflectionsΔρmax = 0.55 e Å3
263 parametersΔρmin = 0.71 e Å3
18 restraintsAbsolute structure: Flack (1983), with 2216 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (11)
Crystal data top
C16H17ClF2N3O2PV = 886.06 (6) Å3
Mr = 387.75Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.9734 (5) ŵ = 0.34 mm1
b = 4.9900 (2) ÅT = 173 K
c = 13.7750 (4) Å0.35 × 0.22 × 0.12 mm
β = 96.482 (3)°
Data collection top
Oxford Xcalibur (Eos, Gemini)
diffractometer
5460 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
4909 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.960Rint = 0.025
9633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.55 e Å3
S = 1.09Δρmin = 0.71 e Å3
5460 reflectionsAbsolute structure: Flack (1983), with 2216 Friedel pairs
263 parametersAbsolute structure parameter: 0.06 (11)
18 restraints
Special details top

Experimental. IR (KBr, ν, cm-1): 3253, 1718, 1457, 1419, 1282, 1215, 1139, 1073, 977, 873, 735 and 688.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.51645 (5)0.70594 (13)0.19236 (4)0.01939 (13)
Cl10.2161 (2)0.5360 (8)0.3959 (2)0.0795 (10)0.605 (6)
F10.3784 (5)0.5030 (15)0.4995 (4)0.086 (2)0.605 (6)
F20.3555 (5)0.8763 (7)0.4479 (3)0.073 (2)0.605 (6)
Cl1A0.3973 (4)0.6102 (13)0.5203 (3)0.0829 (18)0.395 (6)
F1A0.2518 (6)0.4471 (17)0.4089 (7)0.066 (3)0.395 (6)
F2A0.2775 (5)0.8461 (12)0.3861 (5)0.058 (2)0.395 (6)
O10.54403 (15)0.9827 (4)0.16821 (14)0.0261 (4)
O20.4173 (2)0.3092 (5)0.3189 (2)0.0528 (8)
N10.45241 (18)0.5364 (5)0.10546 (18)0.0266 (5)
H1N0.460 (3)0.362 (5)0.106 (3)0.032*
N20.61194 (18)0.5089 (5)0.22963 (16)0.0241 (4)
H2N0.601 (3)0.340 (5)0.226 (2)0.029*
N30.4401 (2)0.7487 (5)0.28612 (18)0.0288 (5)
H3N0.428 (3)0.909 (5)0.305 (2)0.035*
C10.3635 (2)0.6492 (6)0.0436 (2)0.0294 (6)
H1B0.37920.65160.02510.035*
H1A0.35270.83670.06370.035*
C20.2652 (2)0.4925 (6)0.04980 (19)0.0270 (5)
C30.2351 (2)0.2941 (6)0.0179 (2)0.0309 (6)
H3A0.27590.25980.06960.037*
C40.1463 (3)0.1456 (7)0.0111 (3)0.0391 (7)
H4A0.12670.00930.05770.047*
C50.0860 (2)0.1951 (9)0.0635 (2)0.0432 (7)
H5A0.02470.09370.06790.052*
C60.1150 (3)0.3920 (9)0.1315 (3)0.0457 (9)
H6A0.07420.42380.18350.055*
C70.2035 (2)0.5440 (8)0.1241 (2)0.0364 (7)
H7A0.22190.68320.16980.044*
C80.6884 (2)0.5876 (6)0.3112 (2)0.0286 (6)
H8A0.65770.56370.37330.034*
H8B0.70500.78000.30480.034*
C90.7871 (2)0.4274 (6)0.31541 (19)0.0263 (5)
C100.8070 (2)0.2410 (7)0.2450 (2)0.0303 (6)
H10A0.75740.21200.18990.036*
C110.8993 (3)0.0966 (8)0.2550 (3)0.0401 (7)
H11A0.91210.03110.20670.048*
C120.9720 (3)0.1367 (8)0.3341 (3)0.0453 (9)
H12A1.03450.03580.34090.054*
C130.9537 (3)0.3244 (9)0.4035 (3)0.0505 (10)
H13A1.00450.35610.45750.061*
C140.8624 (3)0.4658 (8)0.3949 (2)0.0403 (7)
H14A0.85020.59200.44390.048*
C150.4032 (3)0.5428 (6)0.3344 (3)0.0405 (8)
C160.3359 (2)0.6241 (6)0.4143 (2)0.0490 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0211 (3)0.0136 (2)0.0242 (3)0.0009 (3)0.00582 (19)0.0014 (2)
Cl10.0438 (12)0.139 (3)0.0597 (12)0.0070 (14)0.0255 (10)0.0081 (14)
F10.076 (4)0.169 (7)0.0121 (19)0.017 (4)0.0062 (19)0.016 (3)
F20.139 (5)0.036 (2)0.056 (3)0.013 (3)0.066 (3)0.0126 (18)
Cl1A0.076 (3)0.148 (5)0.0257 (15)0.005 (3)0.0091 (13)0.0213 (17)
F1A0.028 (3)0.079 (6)0.098 (6)0.017 (4)0.036 (4)0.007 (5)
F2A0.081 (5)0.043 (3)0.060 (4)0.032 (3)0.047 (4)0.012 (3)
O10.0319 (10)0.0160 (9)0.0322 (9)0.0018 (7)0.0107 (7)0.0004 (7)
O20.0767 (19)0.0144 (10)0.0769 (18)0.0017 (12)0.0504 (16)0.0025 (11)
N10.0229 (10)0.0199 (11)0.0361 (11)0.0025 (9)0.0006 (8)0.0079 (9)
N20.0240 (10)0.0158 (10)0.0316 (11)0.0011 (8)0.0008 (8)0.0015 (9)
N30.0405 (13)0.0129 (12)0.0366 (11)0.0009 (9)0.0198 (10)0.0012 (8)
C10.0263 (12)0.0335 (18)0.0281 (12)0.0024 (10)0.0009 (9)0.0050 (10)
C20.0218 (12)0.0308 (14)0.0281 (12)0.0024 (10)0.0014 (9)0.0067 (10)
C30.0275 (13)0.0332 (16)0.0321 (13)0.0026 (11)0.0033 (11)0.0008 (11)
C40.0366 (16)0.0320 (19)0.0477 (17)0.0011 (12)0.0000 (13)0.0013 (12)
C50.0271 (13)0.0458 (19)0.0568 (18)0.0050 (17)0.0047 (12)0.008 (2)
C60.0327 (17)0.064 (3)0.0427 (17)0.0004 (17)0.0129 (13)0.0049 (17)
C70.0287 (14)0.049 (2)0.0314 (13)0.0020 (14)0.0042 (11)0.0040 (13)
C80.0296 (13)0.0269 (14)0.0284 (12)0.0019 (11)0.0006 (10)0.0036 (10)
C90.0252 (12)0.0265 (13)0.0270 (12)0.0032 (10)0.0025 (9)0.0035 (10)
C100.0260 (12)0.0340 (17)0.0309 (12)0.0004 (12)0.0030 (9)0.0017 (11)
C110.0298 (15)0.0427 (19)0.0494 (18)0.0062 (14)0.0113 (13)0.0021 (15)
C120.0297 (15)0.052 (2)0.0533 (19)0.0088 (14)0.0011 (13)0.0121 (16)
C130.0378 (19)0.062 (3)0.0474 (19)0.0040 (17)0.0156 (15)0.0013 (18)
C140.0393 (17)0.0429 (19)0.0356 (15)0.0020 (15)0.0096 (12)0.0027 (14)
C150.060 (2)0.0165 (13)0.0516 (18)0.0013 (13)0.0366 (16)0.0015 (12)
C160.0641 (16)0.0245 (15)0.066 (2)0.0012 (15)0.0394 (15)0.0048 (15)
Geometric parameters (Å, º) top
P1—O11.474 (2)C3—H3A0.9500
P1—N11.617 (2)C4—C51.382 (5)
P1—N21.619 (2)C4—H4A0.9500
P1—N31.728 (2)C5—C61.381 (6)
Cl1—C161.607 (3)C5—H5A0.9500
F1—C161.379 (5)C6—C71.390 (5)
F2—C161.355 (4)C6—H6A0.9500
Cl1A—C161.585 (4)C7—H7A0.9500
F1A—C161.399 (5)C8—C91.505 (4)
F2A—C161.373 (4)C8—H8A0.9900
O2—C151.203 (4)C8—H8B0.9900
N1—C11.467 (4)C9—C101.388 (4)
N1—H1N0.88 (2)C9—C141.396 (4)
N2—C81.466 (3)C10—C111.391 (4)
N2—H2N0.86 (2)C10—H10A0.9500
N3—C151.341 (4)C11—C121.373 (5)
N3—H3N0.86 (2)C11—H11A0.9500
C1—C21.507 (4)C12—C131.378 (6)
C1—H1B0.9900C12—H12A0.9500
C1—H1A0.9900C13—C141.373 (5)
C2—C31.386 (4)C13—H13A0.9500
C2—C71.393 (4)C14—H14A0.9500
C3—C41.382 (4)C15—C161.534 (4)
O1—P1—N1116.13 (13)C9—C8—H8B109.0
O1—P1—N2116.36 (12)H8A—C8—H8B107.8
N1—P1—N2103.17 (12)C10—C9—C14118.1 (3)
O1—P1—N3103.15 (11)C10—C9—C8123.6 (2)
N1—P1—N3109.14 (13)C14—C9—C8118.3 (3)
N2—P1—N3108.72 (12)C9—C10—C11120.2 (3)
C1—N1—P1122.3 (2)C9—C10—H10A119.9
C1—N1—H1N118 (2)C11—C10—H10A119.9
P1—N1—H1N117 (2)C12—C11—C10120.7 (3)
C8—N2—P1120.50 (19)C12—C11—H11A119.7
C8—N2—H2N114 (2)C10—C11—H11A119.7
P1—N2—H2N118 (2)C11—C12—C13119.5 (3)
C15—N3—P1122.91 (19)C11—C12—H12A120.2
C15—N3—H3N119 (2)C13—C12—H12A120.2
P1—N3—H3N118 (2)C14—C13—C12120.3 (3)
N1—C1—C2112.5 (2)C14—C13—H13A119.9
N1—C1—H1B109.1C12—C13—H13A119.9
C2—C1—H1B109.1C13—C14—C9121.2 (3)
N1—C1—H1A109.1C13—C14—H14A119.4
C2—C1—H1A109.1C9—C14—H14A119.4
H1B—C1—H1A107.8O2—C15—N3125.7 (3)
C3—C2—C7118.9 (3)O2—C15—C16119.6 (3)
C3—C2—C1120.6 (2)N3—C15—C16114.6 (2)
C7—C2—C1120.5 (3)F2—C16—F2A54.8 (4)
C4—C3—C2120.8 (3)F2—C16—F194.3 (4)
C4—C3—H3A119.6F2A—C16—F1138.5 (4)
C2—C3—H3A119.6F2—C16—F1A136.0 (5)
C5—C4—C3120.1 (3)F2A—C16—F1A95.3 (5)
C5—C4—H4A120.0F1—C16—F1A90.2 (5)
C3—C4—H4A120.0F2—C16—C15113.0 (3)
C6—C5—C4119.9 (3)F2A—C16—C15110.6 (3)
C6—C5—H5A120.1F1—C16—C15106.8 (4)
C4—C5—H5A120.1F1A—C16—C15107.3 (5)
C5—C6—C7120.2 (3)F2—C16—Cl1A70.7 (4)
C5—C6—H6A119.9F2A—C16—Cl1A120.0 (4)
C7—C6—H6A119.9F1A—C16—Cl1A109.2 (5)
C6—C7—C2120.1 (3)C15—C16—Cl1A112.5 (3)
C6—C7—H7A119.9F2—C16—Cl1116.7 (4)
C2—C7—H7A119.9F2A—C16—Cl171.6 (4)
N2—C8—C9112.7 (2)F1—C16—Cl1107.5 (4)
N2—C8—H8A109.0C15—C16—Cl1115.7 (3)
C9—C8—H8A109.0Cl1A—C16—Cl1120.6 (3)
N2—C8—H8B109.0
O1—P1—N1—C145.6 (3)C14—C9—C10—C110.6 (5)
N2—P1—N1—C1174.1 (2)C8—C9—C10—C11178.7 (3)
N3—P1—N1—C170.4 (2)C9—C10—C11—C120.3 (5)
O1—P1—N2—C853.1 (2)C10—C11—C12—C130.8 (6)
N1—P1—N2—C8178.5 (2)C11—C12—C13—C141.5 (6)
N3—P1—N2—C862.8 (2)C12—C13—C14—C91.2 (6)
O1—P1—N3—C15175.7 (3)C10—C9—C14—C130.2 (5)
N1—P1—N3—C1560.2 (3)C8—C9—C14—C13179.5 (3)
N2—P1—N3—C1551.6 (3)P1—N3—C15—O20.6 (6)
P1—N1—C1—C2120.2 (2)P1—N3—C15—C16179.3 (2)
N1—C1—C2—C394.8 (3)O2—C15—C16—F2157.9 (5)
N1—C1—C2—C784.9 (3)N3—C15—C16—F223.3 (5)
C7—C2—C3—C41.2 (4)O2—C15—C16—F2A142.8 (5)
C1—C2—C3—C4178.4 (3)N3—C15—C16—F2A36.0 (6)
C2—C3—C4—C50.4 (5)O2—C15—C16—F155.6 (6)
C3—C4—C5—C60.4 (5)N3—C15—C16—F1125.6 (4)
C4—C5—C6—C71.2 (6)O2—C15—C16—F1A40.0 (6)
C5—C6—C7—C22.0 (6)N3—C15—C16—F1A138.8 (5)
C3—C2—C7—C62.0 (5)O2—C15—C16—Cl1A80.1 (5)
C1—C2—C7—C6177.6 (3)N3—C15—C16—Cl1A101.1 (4)
P1—N2—C8—C9162.00 (19)O2—C15—C16—Cl164.0 (5)
N2—C8—C9—C105.0 (4)N3—C15—C16—Cl1114.8 (4)
N2—C8—C9—C14174.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.30 (3)3.092 (3)151 (3)
N2—H2N···O1i0.86 (2)2.05 (2)2.867 (3)158 (3)
N3—H3N···O2ii0.86 (2)2.01 (2)2.854 (3)166 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H17ClF2N3O2P
Mr387.75
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)12.9734 (5), 4.9900 (2), 13.7750 (4)
β (°) 96.482 (3)
V3)886.06 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.35 × 0.22 × 0.12
Data collection
DiffractometerOxford Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.890, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
9633, 5460, 4909
Rint0.025
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.122, 1.09
No. of reflections5460
No. of parameters263
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.71
Absolute structureFlack (1983), with 2216 Friedel pairs
Absolute structure parameter0.06 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.30 (3)3.092 (3)151 (3)
N2—H2N···O1i0.86 (2)2.05 (2)2.867 (3)158 (3)
N3—H3N···O2ii0.86 (2)2.01 (2)2.854 (3)166 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

MP thanks Ferdowsi University of Mashhad for a Research University Grant (No. 15144/2). JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66–71.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaissi Shabari, A., Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o663–o664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds