organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(Piperazine-1,4-diium-1,4-di­yl)di­propionate dihydrate

aTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: shouwenjin@yahoo.cn

(Received 20 August 2012; accepted 29 August 2012; online 1 September 2012)

During the recrystallization of 3-[4-(2-carb­oxy­eth­yl)piperazin-1-yl]propionic acid, the carb­oxy­lic acid H atoms were transferred to the piperazine N atoms, forming the title compound, C10H18N2O4·2H2O, in which the zwitterion lies about an inversion center. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds connect the zwitterions into a two-dimensional framework parallel to (-102) forming R44(30) rings. O—H⋯O hydrogen bonds involving the solvent water mol­ecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H⋯O hydrogen bonds are observed.

Related literature

For general background and applications of carb­oxy­lic acids, see: Jin et al. (2012[Jin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51-59.]); Grossel et al. (2006[Grossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123-128.]); Rueff et al. (2001[Rueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843-2848.]); Strachan et al. (2007[Strachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261-269.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H18N2O4·2H2O

  • Mr = 266.30

  • Monoclinic, P 21 /c

  • a = 6.8028 (6) Å

  • b = 8.8925 (7) Å

  • c = 10.4301 (11) Å

  • β = 101.780 (1)°

  • V = 617.67 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.43 × 0.40 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.963

  • 2951 measured reflections

  • 1087 independent reflections

  • 895 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.06

  • 1087 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3F⋯O2i 0.85 1.93 2.776 (2) 177
O3—H3E⋯O1 0.85 2.11 2.964 (2) 177
N1—H1⋯O2ii 0.91 2.50 3.0577 (19) 120
N1—H1⋯O1ii 0.91 1.80 2.7011 (18) 172
C4—H4B⋯O3iii 0.97 2.58 3.419 (2) 145
C4—H4B⋯O2ii 0.97 2.53 3.137 (2) 120
C5—H5A⋯O1iv 0.97 2.51 3.477 (2) 172
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylic acids are important compounds, which have been widely used in various fields as coordination chemistry (Rueff et al., 2001), pharmaceutical chemistry (Strachan et al., 2007), and supramolecular chemistry (Desiraju, 2002). Recently the main focus for carboxylic acids has been in crystal engineering via hydrogen bonded assembly of organic acids and organic bases (Grossel et al., 2006). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2012), herein we report the crystal structure of the title compound (I).

During the recrystallization of 3-[4-(2-carboxy-ethyl)-piperazin-1-yl]-propionic acid the carboxylic acid H atoms were transferred to the piperazine N atoms forming (I) (Fig. 1) in which the zwitterion lies across an inversion center. In the crystal, bifurcated N—H···(O,O) hydrogen bonds connect the zwitterions a two-dimensional framework parallel to (102) forming R44(30) rings (Bernstein et al., 1995). Furthermore O—H···O hydrogen bonds involving sovent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H···O hydrogen bonds are observed (Fig. 2).

Related literature top

For general background and applications of carboxylic acids, see: Jin et al. (2012); Grossel et al. (2006); Rueff et al. (2001); Strachan et al. (2007); Desiraju (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3-[4-(2-Carboxy-ethyl)-piperazin-1-yl]-propionic acid (23.0 mg, 0.10 mmol) was dissolved in 6 ml of ethanol, and pyridine (15.8 mg, 0.2 mmol) was added to the ethanol solution. The solution was stirred for 1 h, and then filtered into a test tube. The solution was left standing at room temperature for about one week, colorless block crystals were obtained.

Refinement top

All H atoms were visible in difference Fourier maps. They were subsequently included in calculated positions with C—H = 0.97 Å, N—H = 0.91Å, O—H = 0.85Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Structure description top

Carboxylic acids are important compounds, which have been widely used in various fields as coordination chemistry (Rueff et al., 2001), pharmaceutical chemistry (Strachan et al., 2007), and supramolecular chemistry (Desiraju, 2002). Recently the main focus for carboxylic acids has been in crystal engineering via hydrogen bonded assembly of organic acids and organic bases (Grossel et al., 2006). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2012), herein we report the crystal structure of the title compound (I).

During the recrystallization of 3-[4-(2-carboxy-ethyl)-piperazin-1-yl]-propionic acid the carboxylic acid H atoms were transferred to the piperazine N atoms forming (I) (Fig. 1) in which the zwitterion lies across an inversion center. In the crystal, bifurcated N—H···(O,O) hydrogen bonds connect the zwitterions a two-dimensional framework parallel to (102) forming R44(30) rings (Bernstein et al., 1995). Furthermore O—H···O hydrogen bonds involving sovent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H···O hydrogen bonds are observed (Fig. 2).

For general background and applications of carboxylic acids, see: Jin et al. (2012); Grossel et al. (2006); Rueff et al. (2001); Strachan et al. (2007); Desiraju (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, -y, -z). Only the symmetry unique solvent water molecule is shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dotted lines.
3,3'-(Piperazine-1,4-diium-1,4-diyl)dipropionate dihydrate top
Crystal data top
C10H18N2O4·2H2OF(000) = 288
Mr = 266.30Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1525 reflections
a = 6.8028 (6) Åθ = 3.0–28.2°
b = 8.8925 (7) ŵ = 0.12 mm1
c = 10.4301 (11) ÅT = 298 K
β = 101.780 (1)°Block, colorless
V = 617.67 (10) Å30.43 × 0.40 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1087 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.951, Tmax = 0.963k = 105
2951 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3063P]
where P = (Fo2 + 2Fc2)/3
1087 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H18N2O4·2H2OV = 617.67 (10) Å3
Mr = 266.30Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.8028 (6) ŵ = 0.12 mm1
b = 8.8925 (7) ÅT = 298 K
c = 10.4301 (11) Å0.43 × 0.40 × 0.32 mm
β = 101.780 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
895 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.963Rint = 0.023
2951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
1087 reflectionsΔρmin = 0.23 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.15979 (19)0.08898 (15)0.08004 (12)0.0204 (3)
H10.24280.01210.11370.024*
O10.56844 (18)0.37957 (15)0.31249 (12)0.0340 (4)
O20.7046 (2)0.4517 (2)0.14744 (14)0.0551 (5)
O30.8070 (2)0.10838 (18)0.40824 (15)0.0541 (5)
H3E0.74050.18610.37810.065*
H3F0.77880.08700.48180.065*
C10.5838 (2)0.3752 (2)0.19346 (17)0.0288 (4)
C20.4531 (3)0.2636 (2)0.10320 (18)0.0335 (5)
H2A0.43020.30190.01430.040*
H2B0.52560.16940.10490.040*
C30.2521 (3)0.23274 (19)0.13874 (17)0.0276 (4)
H3A0.26970.22740.23330.033*
H3B0.16160.31540.10840.033*
C40.0379 (2)0.06441 (19)0.11862 (16)0.0236 (4)
H4A0.12830.14620.08510.028*
H4B0.01870.06480.21340.028*
C50.1314 (2)0.08320 (19)0.06607 (15)0.0230 (4)
H5A0.26040.09500.09100.028*
H5B0.04560.16560.10420.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0183 (7)0.0214 (7)0.0211 (7)0.0005 (5)0.0031 (5)0.0011 (6)
O10.0355 (7)0.0386 (8)0.0274 (7)0.0108 (6)0.0049 (5)0.0046 (6)
O20.0584 (9)0.0713 (11)0.0388 (8)0.0414 (9)0.0174 (7)0.0142 (8)
O30.0650 (10)0.0500 (10)0.0518 (10)0.0019 (8)0.0225 (8)0.0053 (8)
C10.0261 (9)0.0297 (9)0.0300 (10)0.0040 (7)0.0044 (7)0.0036 (8)
C20.0317 (10)0.0379 (11)0.0317 (10)0.0112 (8)0.0084 (8)0.0090 (8)
C30.0249 (9)0.0256 (9)0.0317 (9)0.0040 (7)0.0046 (7)0.0064 (7)
C40.0201 (8)0.0287 (9)0.0224 (8)0.0000 (7)0.0056 (6)0.0013 (7)
C50.0214 (8)0.0279 (9)0.0202 (8)0.0010 (7)0.0050 (6)0.0022 (7)
Geometric parameters (Å, º) top
N1—C41.4966 (19)C2—H2A0.9700
N1—C51.4975 (19)C2—H2B0.9700
N1—C31.499 (2)C3—H3A0.9700
N1—H10.9100C3—H3B0.9700
O1—C11.267 (2)C4—C5i1.512 (2)
O2—C11.237 (2)C4—H4A0.9700
O3—H3E0.8501C4—H4B0.9700
O3—H3F0.8500C5—C4i1.512 (2)
C1—C21.523 (2)C5—H5A0.9700
C2—C31.513 (2)C5—H5B0.9700
C4—N1—C5109.42 (12)N1—C3—H3A109.2
C4—N1—C3109.84 (12)C2—C3—H3A109.2
C5—N1—C3113.65 (13)N1—C3—H3B109.2
C4—N1—H1107.9C2—C3—H3B109.2
C5—N1—H1107.9H3A—C3—H3B107.9
C3—N1—H1107.9N1—C4—C5i111.35 (13)
H3E—O3—H3F108.3N1—C4—H4A109.4
O2—C1—O1123.88 (16)C5i—C4—H4A109.4
O2—C1—C2117.96 (16)N1—C4—H4B109.4
O1—C1—C2118.09 (15)C5i—C4—H4B109.4
C3—C2—C1114.16 (15)H4A—C4—H4B108.0
C3—C2—H2A108.7N1—C5—C4i110.85 (13)
C1—C2—H2A108.7N1—C5—H5A109.5
C3—C2—H2B108.7C4i—C5—H5A109.5
C1—C2—H2B108.7N1—C5—H5B109.5
H2A—C2—H2B107.6C4i—C5—H5B109.5
N1—C3—C2112.25 (14)H5A—C5—H5B108.1
O2—C1—C2—C3151.50 (18)C5—N1—C4—C5i57.11 (18)
O1—C1—C2—C331.5 (2)C3—N1—C4—C5i177.48 (13)
C4—N1—C3—C2179.91 (14)C4—N1—C5—C4i56.82 (18)
C5—N1—C3—C257.14 (19)C3—N1—C5—C4i179.99 (13)
C1—C2—C3—N1160.56 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3F···O2ii0.851.932.776 (2)177
O3—H3E···O10.852.112.964 (2)177
N1—H1···O2iii0.912.503.0577 (19)120
N1—H1···O1iii0.911.802.7011 (18)172
C4—H4B···O3iv0.972.583.419 (2)145
C4—H4B···O2iii0.972.533.137 (2)120
C5—H5A···O1v0.972.513.477 (2)172
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H18N2O4·2H2O
Mr266.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.8028 (6), 8.8925 (7), 10.4301 (11)
β (°) 101.780 (1)
V3)617.67 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.951, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
2951, 1087, 895
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections1087
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3F···O2i0.851.932.776 (2)177
O3—H3E···O10.852.112.964 (2)177
N1—H1···O2ii0.912.503.0577 (19)120
N1—H1···O1ii0.911.802.7011 (18)172
C4—H4B···O3iii0.972.583.419 (2)145
C4—H4B···O2ii0.972.533.137 (2)120
C5—H5A···O1iv0.972.513.477 (2)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A & F University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123–128.  Web of Science CrossRef CAS Google Scholar
First citationJin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843–2848.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261–269.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds