organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Acetamido­eth­yl)-1H-indol-5-yl 4-nitro­phenyl carbonate

aNational Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland, bNationalCentre for Nuclear Research, 05-400 Otwock-Świerk, Poland, and cFaculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
*Correspondence e-mail: maurin@il.waw.pl

(Received 21 August 2012; accepted 6 September 2012; online 12 September 2012)

In the title mol­ecule, C19H17N3O6, the indole ring system is essentially planar (r.m.s. deviation = 0.009 Å) and forms a dihedral angle of 31.96 (9)° with the nitro-substituted benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which are connected by further N—H⋯O hydrogen bonds into a two-dimensional network parallel to (102).

Related literature

For background to and potential applications of the title compound, see: Freer & McKillop (1996[Freer, R. & McKillop, A. (1996). Synth. Commun. 26, 331-350.]); Um et al. (2006[Um, I.-H., Kim, E. Y., Park, H.-R. & Jeon, S.-E. (2006). J. Org. Chem. 71, 2302-2306.], 2008[Um, I.-H., Yoon, S., Park, H.-R. & Han, H.-J. (2008). Org. Biomol. Chem. 6, 1618-1624.]); Gray et al. (1977[Gray, C. J., Ireson, J. C. & Parker, R. C. (1977). Tetrahedron, 33, 739-743.]); Zawadzka et al. (2012[Zawadzka, A., Łozińska, I., Molęda, Z., Panasiewicz, M. & Czarnocki, Z. (2012). J. Pineal Res. doi:10.1111/jpi.12006.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O6

  • Mr = 383.36

  • Monoclinic, P 21 /c

  • a = 12.3678 (3) Å

  • b = 5.0537 (1) Å

  • c = 29.1554 (6) Å

  • β = 92.071 (2)°

  • V = 1821.11 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.802, Tmax = 0.956

  • 16657 measured reflections

  • 3397 independent reflections

  • 2413 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.06

  • 3397 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.01 (2) 2.882 (2) 177 (2)
N12—H12⋯O6ii 0.77 (3) 2.54 (3) 3.207 (3) 147 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x, y-{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is one of the aromatic carbonates, which constitute an important class of esters which facilitate the synthesis of a carbamate bond in the nucleofilic substitution reaction of carbonate derivatives with amines (Freer & McKillop, 1996; Um et al., 2006;2008). It is also a derivative which has potential use in peptide synthesis (Gray et al., 1977). We have used the title compound in the synthesis of novel tacrine-melatonine heterodimers (Zawadzka, et al., 2012).

The title compound consists of three major planar fragments and a large flexible substituent having several degrees of freedom. The planar fragments are the p-nitrophenyl fragment, carbonate group and indole group. The r.m.s. deviations of in-plane atoms for the respective planes are 0.006, 0.009 and 0.009 Å, respectively. The carbonate group forms a dihedral angle of 80.54 (8)° with the nitro-substituted benzene ring and forms a dihedral angle of 73.23 (6)° with the indole ring system. The nitro group is slightly rotated from the plane of the attached benzene ring with a dihedral angle of 8.0 (4)°. In general the bond lengths and angles have expected values. The benzene ring may affected by anistropic displacement causing slightly shorter than expected bond lengths to be observed. In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds to forms inversion dimers which are connected by further N—H···O hydrogen bonds to form a two-dimensional network parallel to (102) (Table 1 and Fig. 2).

Related literature top

For background to and potential applications of the title compound, see: Freer & McKillop (1996); Um et al. (2006, 2008); Gray et al. (1977); Zawadzka et al. (2012).

Experimental top

To a solution of N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]acetamide (0.9 g, 4 mmol) in N-methylomorfoline (0.92 ml, 8 mmol) 4-nitrophenyl chloroformate (1.61 g, 8 mmol) dissolved in 1 ml of tetrahydrofuran was added. The reaction mixture was stirred under argon for 1 h at room temperature. Evaporation of the solvents gave a residue that was purified by silica gel chromatography using a mixture of methylene chloride/methanol 95:5 as eluent to produce the title compound (0.92 g, 60%) as a yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in a methylene chloride/methanol/diethyl ether mixture.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with distances in the range 0.93-0.97Å and inlcuded in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The positional parameters of the H atoms bonded to N atoms were refined independently with Uiso(H) = 1.2Ueq(N).

Structure description top

The title compound is one of the aromatic carbonates, which constitute an important class of esters which facilitate the synthesis of a carbamate bond in the nucleofilic substitution reaction of carbonate derivatives with amines (Freer & McKillop, 1996; Um et al., 2006;2008). It is also a derivative which has potential use in peptide synthesis (Gray et al., 1977). We have used the title compound in the synthesis of novel tacrine-melatonine heterodimers (Zawadzka, et al., 2012).

The title compound consists of three major planar fragments and a large flexible substituent having several degrees of freedom. The planar fragments are the p-nitrophenyl fragment, carbonate group and indole group. The r.m.s. deviations of in-plane atoms for the respective planes are 0.006, 0.009 and 0.009 Å, respectively. The carbonate group forms a dihedral angle of 80.54 (8)° with the nitro-substituted benzene ring and forms a dihedral angle of 73.23 (6)° with the indole ring system. The nitro group is slightly rotated from the plane of the attached benzene ring with a dihedral angle of 8.0 (4)°. In general the bond lengths and angles have expected values. The benzene ring may affected by anistropic displacement causing slightly shorter than expected bond lengths to be observed. In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds to forms inversion dimers which are connected by further N—H···O hydrogen bonds to form a two-dimensional network parallel to (102) (Table 1 and Fig. 2).

For background to and potential applications of the title compound, see: Freer & McKillop (1996); Um et al. (2006, 2008); Gray et al. (1977); Zawadzka et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% dispalcement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dshed lines.
3-(2-Acetamidoethyl)-1H-indol-5-yl 4-nitrophenyl carbonate top
Crystal data top
C19H17N3O6F(000) = 800
Mr = 383.36Dx = 1.398 Mg m3
Monoclinic, P21/cMelting point: 426 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 12.3678 (3) ÅCell parameters from 5868 reflections
b = 5.0537 (1) Åθ = 3.0–70.0°
c = 29.1554 (6) ŵ = 0.89 mm1
β = 92.071 (2)°T = 293 K
V = 1821.11 (7) Å3Parallelepiped, colourless
Z = 40.40 × 0.10 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3397 independent reflections
Radiation source: Enhance (Cu) X-ray Source2413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.4922 pixels mm-1θmax = 70.2°, θmin = 3.0°
φ and ω scansh = 1514
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 65
Tmin = 0.802, Tmax = 0.956l = 3535
16657 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.0677P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3397 reflectionsΔρmax = 0.22 e Å3
260 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
C19H17N3O6V = 1821.11 (7) Å3
Mr = 383.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.3678 (3) ŵ = 0.89 mm1
b = 5.0537 (1) ÅT = 293 K
c = 29.1554 (6) Å0.40 × 0.10 × 0.07 mm
β = 92.071 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3397 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
2413 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.956Rint = 0.034
16657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
3397 reflectionsΔρmin = 0.18 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23003 (13)0.0684 (3)0.05411 (5)0.0836 (5)
O20.33006 (13)0.5304 (3)0.23175 (5)0.0741 (4)
O30.22723 (14)0.8918 (4)0.21929 (6)0.0915 (5)
O40.20616 (14)0.6121 (3)0.27802 (5)0.0842 (5)
O50.16478 (18)1.1179 (6)0.38600 (9)0.1471 (10)
O60.0422 (2)1.3762 (6)0.40406 (10)0.1530 (11)
N10.59607 (13)0.6072 (4)0.08575 (6)0.0646 (5)
H10.6490 (19)0.708 (5)0.0772 (8)0.078*
C20.55303 (17)0.4095 (4)0.05894 (7)0.0639 (5)
H20.57880.36030.03060.077*
C30.46756 (15)0.2941 (4)0.07904 (6)0.0567 (5)
C40.38506 (14)0.4030 (4)0.15764 (6)0.0548 (4)
H40.33200.27250.15700.066*
C50.39637 (15)0.5732 (4)0.19355 (6)0.0589 (5)
C60.47530 (17)0.7688 (4)0.19661 (6)0.0664 (5)
H60.47950.88030.22200.080*
C70.54735 (16)0.7973 (4)0.16196 (7)0.0651 (5)
H70.60100.92640.16350.078*
C80.53720 (14)0.6267 (4)0.12471 (6)0.0545 (4)
C90.45587 (14)0.4308 (3)0.12168 (6)0.0516 (4)
C100.39484 (17)0.0829 (4)0.05951 (7)0.0687 (5)
H10A0.43370.01810.03710.082*
H10B0.37560.03690.08390.082*
C110.2944 (2)0.1911 (5)0.03725 (8)0.0799 (6)
H11A0.25840.30230.05910.096*
H11B0.31370.30180.01160.096*
N120.21938 (17)0.0102 (4)0.02072 (6)0.0786 (6)
H120.193 (2)0.092 (6)0.0395 (9)0.094*
C130.19251 (15)0.0581 (4)0.02296 (7)0.0610 (5)
C140.1130 (2)0.2769 (5)0.03169 (8)0.0854 (7)
H14A0.09310.35260.00300.128*
H14B0.14510.41070.05020.128*
H14C0.04970.20790.04750.128*
C150.25425 (16)0.7027 (4)0.24022 (6)0.0622 (5)
C160.13438 (17)0.7780 (4)0.30026 (6)0.0651 (5)
C190.00262 (16)1.0523 (4)0.35211 (6)0.0634 (5)
C170.17387 (18)0.9802 (5)0.32675 (8)0.0799 (6)
H170.24711.02240.32680.096*
C180.10491 (17)1.1217 (5)0.35341 (8)0.0755 (6)
H180.13031.26040.37180.091*
C200.04309 (17)0.8522 (5)0.32501 (7)0.0733 (6)
H200.11640.81120.32460.088*
C210.02650 (19)0.7129 (5)0.29846 (7)0.0746 (6)
H210.00100.57670.27960.090*
N220.07505 (16)1.1922 (5)0.38248 (7)0.0800 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0793 (10)0.0984 (12)0.0736 (9)0.0193 (9)0.0110 (8)0.0123 (8)
O20.0842 (10)0.0792 (10)0.0602 (8)0.0241 (8)0.0195 (7)0.0118 (7)
O30.0920 (12)0.0983 (12)0.0861 (10)0.0374 (10)0.0293 (9)0.0307 (9)
O40.1024 (12)0.0781 (10)0.0746 (9)0.0228 (9)0.0374 (8)0.0140 (8)
O50.0776 (13)0.193 (3)0.174 (2)0.0145 (15)0.0503 (14)0.065 (2)
O60.1153 (18)0.178 (2)0.168 (2)0.0113 (17)0.0420 (15)0.102 (2)
N10.0525 (9)0.0721 (11)0.0699 (10)0.0088 (8)0.0111 (8)0.0046 (8)
C20.0630 (11)0.0703 (12)0.0592 (10)0.0014 (10)0.0122 (9)0.0020 (9)
C30.0562 (10)0.0567 (10)0.0576 (10)0.0025 (8)0.0050 (8)0.0009 (8)
C40.0488 (9)0.0544 (10)0.0612 (10)0.0031 (8)0.0038 (8)0.0063 (8)
C50.0579 (11)0.0652 (12)0.0540 (9)0.0131 (9)0.0062 (8)0.0061 (9)
C60.0728 (13)0.0678 (13)0.0580 (10)0.0089 (10)0.0057 (10)0.0093 (9)
C70.0572 (11)0.0632 (12)0.0740 (12)0.0049 (9)0.0084 (9)0.0039 (10)
C80.0457 (9)0.0583 (11)0.0595 (10)0.0013 (8)0.0006 (8)0.0045 (8)
C90.0481 (9)0.0506 (10)0.0561 (9)0.0035 (7)0.0009 (7)0.0053 (8)
C100.0713 (13)0.0622 (12)0.0725 (12)0.0021 (10)0.0037 (10)0.0093 (10)
C110.0842 (15)0.0723 (14)0.0817 (13)0.0159 (12)0.0164 (12)0.0089 (12)
N120.0816 (13)0.0863 (13)0.0676 (11)0.0300 (10)0.0025 (9)0.0143 (10)
C130.0520 (10)0.0632 (12)0.0683 (12)0.0015 (9)0.0056 (9)0.0048 (9)
C140.0823 (15)0.0786 (15)0.0941 (16)0.0193 (12)0.0118 (13)0.0035 (13)
C150.0627 (12)0.0681 (12)0.0561 (10)0.0062 (10)0.0077 (9)0.0027 (10)
C160.0730 (13)0.0677 (12)0.0556 (10)0.0080 (10)0.0150 (9)0.0057 (9)
C190.0586 (11)0.0780 (13)0.0541 (10)0.0041 (10)0.0086 (8)0.0017 (9)
C170.0549 (12)0.0915 (16)0.0941 (15)0.0066 (11)0.0153 (11)0.0101 (14)
C180.0642 (13)0.0838 (15)0.0788 (13)0.0071 (11)0.0077 (10)0.0170 (12)
C200.0568 (12)0.0888 (15)0.0744 (12)0.0066 (11)0.0018 (10)0.0064 (12)
C210.0761 (14)0.0806 (14)0.0668 (12)0.0041 (12)0.0020 (11)0.0101 (11)
N220.0657 (12)0.1020 (15)0.0731 (11)0.0047 (10)0.0143 (9)0.0058 (11)
Geometric parameters (Å, º) top
O1—C131.216 (2)C10—C111.485 (3)
O2—C151.309 (2)C10—H10A0.9700
O2—C51.423 (2)C10—H10B0.9700
O3—C151.176 (2)C11—N121.447 (3)
O4—C151.351 (2)C11—H11A0.9700
O4—C161.397 (2)C11—H11B0.9700
O5—N221.180 (3)N12—C131.327 (3)
O6—N221.186 (3)N12—H120.77 (3)
N1—C21.365 (3)C13—C141.496 (3)
N1—C81.375 (2)C14—H14A0.9600
N1—H10.87 (2)C14—H14B0.9600
C2—C31.359 (3)C14—H14C0.9600
C2—H20.9300C16—C171.361 (3)
C3—C91.434 (3)C16—C211.373 (3)
C3—C101.495 (3)C19—C201.367 (3)
C4—C51.358 (3)C19—C181.375 (3)
C4—C91.397 (3)C19—N221.464 (3)
C4—H40.9300C17—C181.375 (3)
C5—C61.390 (3)C17—H170.9300
C6—C71.378 (3)C18—H180.9300
C6—H60.9300C20—C211.372 (3)
C7—C81.389 (3)C20—H200.9300
C7—H70.9300C21—H210.9300
C8—C91.412 (3)
C15—O2—C5118.89 (15)C10—C11—H11B108.8
C15—O4—C16118.74 (16)H11A—C11—H11B107.7
C2—N1—C8108.58 (16)C13—N12—C11125.66 (19)
C2—N1—H1122.9 (15)C13—N12—H12119 (2)
C8—N1—H1128.3 (15)C11—N12—H12115 (2)
C3—C2—N1111.14 (17)O1—C13—N12122.12 (19)
C3—C2—H2124.4O1—C13—C14121.85 (19)
N1—C2—H2124.4N12—C13—C14116.02 (19)
C2—C3—C9105.76 (16)C13—C14—H14A109.5
C2—C3—C10127.51 (18)C13—C14—H14B109.5
C9—C3—C10126.58 (17)H14A—C14—H14B109.5
C5—C4—C9117.69 (17)C13—C14—H14C109.5
C5—C4—H4121.2H14A—C14—H14C109.5
C9—C4—H4121.2H14B—C14—H14C109.5
C4—C5—C6123.53 (18)O3—C15—O2129.37 (19)
C4—C5—O2117.43 (18)O3—C15—O4125.00 (19)
C6—C5—O2118.76 (17)O2—C15—O4105.54 (17)
C7—C6—C5119.90 (18)C17—C16—C21122.0 (2)
C7—C6—H6120.0C17—C16—O4119.5 (2)
C5—C6—H6120.0C21—C16—O4118.1 (2)
C6—C7—C8117.76 (18)C20—C19—C18122.57 (19)
C6—C7—H7121.1C20—C19—N22119.18 (19)
C8—C7—H7121.1C18—C19—N22118.21 (19)
N1—C8—C7130.94 (18)C16—C17—C18119.6 (2)
N1—C8—C9107.17 (16)C16—C17—H17120.2
C7—C8—C9121.89 (17)C18—C17—H17120.2
C4—C9—C8119.21 (16)C19—C18—C17118.1 (2)
C4—C9—C3133.44 (17)C19—C18—H18121.0
C8—C9—C3107.35 (16)C17—C18—H18121.0
C11—C10—C3112.69 (18)C19—C20—C21118.8 (2)
C11—C10—H10A109.1C19—C20—H20120.6
C3—C10—H10A109.1C21—C20—H20120.6
C11—C10—H10B109.1C20—C21—C16119.0 (2)
C3—C10—H10B109.1C20—C21—H21120.5
H10A—C10—H10B107.8C16—C21—H21120.5
N12—C11—C10113.74 (19)O5—N22—O6120.6 (2)
N12—C11—H11A108.8O5—N22—C19119.8 (2)
C10—C11—H11A108.8O6—N22—C19119.6 (2)
N12—C11—H11B108.8
C8—N1—C2—C30.6 (2)C9—C3—C10—C1179.3 (3)
N1—C2—C3—C90.2 (2)C3—C10—C11—N12176.18 (19)
N1—C2—C3—C10175.94 (18)C10—C11—N12—C13113.3 (3)
C9—C4—C5—C61.1 (3)C11—N12—C13—O10.1 (4)
C9—C4—C5—O2174.95 (15)C11—N12—C13—C14180.0 (2)
C15—O2—C5—C4111.9 (2)C5—O2—C15—O33.7 (3)
C15—O2—C5—C674.0 (2)C5—O2—C15—O4179.55 (17)
C4—C5—C6—C70.0 (3)C16—O4—C15—O314.3 (3)
O2—C5—C6—C7173.75 (17)C16—O4—C15—O2168.83 (18)
C5—C6—C7—C80.4 (3)C15—O4—C16—C1775.7 (3)
C2—N1—C8—C7179.0 (2)C15—O4—C16—C21111.2 (2)
C2—N1—C8—C90.7 (2)C21—C16—C17—C181.4 (4)
C6—C7—C8—N1179.87 (19)O4—C16—C17—C18171.5 (2)
C6—C7—C8—C90.4 (3)C20—C19—C18—C171.0 (4)
C5—C4—C9—C81.8 (2)N22—C19—C18—C17176.4 (2)
C5—C4—C9—C3179.15 (19)C16—C17—C18—C190.1 (4)
N1—C8—C9—C4178.68 (16)C18—C19—C20—C210.8 (3)
C7—C8—C9—C41.6 (3)N22—C19—C20—C21176.6 (2)
N1—C8—C9—C30.6 (2)C19—C20—C21—C160.5 (3)
C7—C8—C9—C3179.20 (17)C17—C16—C21—C201.5 (3)
C2—C3—C9—C4178.88 (19)O4—C16—C21—C20171.38 (19)
C10—C3—C9—C45.4 (3)C20—C19—N22—O56.0 (4)
C2—C3—C9—C80.2 (2)C18—C19—N22—O5171.5 (3)
C10—C3—C9—C8175.54 (18)C20—C19—N22—O6175.5 (3)
C2—C3—C10—C1195.5 (3)C18—C19—N22—O67.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.01 (2)2.882 (2)177 (2)
N12—H12···O6ii0.77 (3)2.54 (3)3.207 (3)147 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17N3O6
Mr383.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.3678 (3), 5.0537 (1), 29.1554 (6)
β (°) 92.071 (2)
V3)1821.11 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.89
Crystal size (mm)0.40 × 0.10 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.802, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
16657, 3397, 2413
Rint0.034
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.06
No. of reflections3397
No. of parameters260
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.01 (2)2.882 (2)177 (2)
N12—H12···O6ii0.77 (3)2.54 (3)3.207 (3)147 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y3/2, z+1/2.
 

Acknowledgements

This work was in part supported by the National Science Center (grant 2011/03/B/ST5/01593).

References

First citationFreer, R. & McKillop, A. (1996). Synth. Commun. 26, 331–350.  CrossRef CAS Web of Science Google Scholar
First citationGray, C. J., Ireson, J. C. & Parker, R. C. (1977). Tetrahedron, 33, 739–743.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUm, I.-H., Kim, E. Y., Park, H.-R. & Jeon, S.-E. (2006). J. Org. Chem. 71, 2302–2306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUm, I.-H., Yoon, S., Park, H.-R. & Han, H.-J. (2008). Org. Biomol. Chem. 6, 1618–1624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZawadzka, A., Łozińska, I., Molęda, Z., Panasiewicz, M. & Czarnocki, Z. (2012). J. Pineal Res. doi:10.1111/jpi.12006.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds