organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy­benzohydrazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: farman@qau.edu.pk

(Received 10 August 2012; accepted 12 September 2012; online 19 September 2012)

The title compound, C9H12N2O2, is approximately planar (r.m.s. deviation = 0.13 Å for all non-H atoms). The carbonyl O atom is involved as acceptor in three different hydrogen-bond inter­actions. One N—H⋯O and the C—H⋯O(carbonyl) contact together with a weak C—H⋯O(eth­oxy) interaction link the mol­ecules into sheets parallel to (102). These are further linked into a three-dimensional network via the remaining C—H⋯O(carbon­yl) hydrogen bond and a C(methyl­ene)—H⋯π inter­action

Related literature

For the meth­oxy analogue of the title compound, see: Ashiq et al. (2009[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.]). For biological properties of hydrazides, see: Gohil et al. (2010[Gohil, M. V., Agrawal, S. K., Saxena, A. K., Garg, D., Gopimohan, C. & Bhutani, K. K. (2010). Indian J. Exp. Biol. 48, 265-268.]); Bordoloi et al. (2009[Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754-2757.]); Kumar et al. (2009[Kumar, P., Naarasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem. 44, 1853-1863.]). For the use of hydrazides as precursors for the syntheses of heterocyclic compounds, see: Akhtar et al. (2010[Akhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enzyme Inhib. Med. Chem. 25, 572-576.]); Akhtar, Hameed, Al-Masoudi et al. (2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & Colla, P. L. (2008). Acta Pharm. 58, 135-149.]); Akhtar, Hameed, Khan et al. (2008[Akhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2008). Med. Chem. 4, 539-543.]); Khan, Akhtar et al. (2010[Khan, M. H., Akhtar, T., Yasin, K. A., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2010). Z. Naturforsch. Teil B, 65, 178-184.]); Khan, Hameed et al. (2010[Khan, M. H., Hameed, S., Yasin, K. A., Akhtar, T. & Khan, K. M. (2010). Monatsh. Chem. 141, 479-484.]); Serwar et al. (2009[Serwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, vii, 210-221.]); Syed et al. (2011[Syed, T., Akhtar, T., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2011). J. Enzyme Inhib. Med. Chem. 25, 668-680.]); Zahid et al. (2009[Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al-Masoudi, N. A., Loddo, R. & Colla, P. L. (2009). ARKIVOC, vii, 85-93.]); Zia et al. (2012[Zia, M., Akhtar, T., Hameed, S. & Al-Masoudi, N. A. (2012). Z. Naturforsch. Teil B, 67, 747-758.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); For details of the preparation, see: Furniss et al. (1989[Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1989). Vogel's Text Book of Practical Organic Chemistry, 5th ed, p. 1269. New York: Longman Scientific and Technical, John Wiley and Sons Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2

  • Mr = 180.21

  • Monoclinic, P 21 /c

  • a = 10.8848 (3) Å

  • b = 10.0453 (2) Å

  • c = 8.4420 (3) Å

  • β = 110.669 (4)°

  • V = 863.64 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 42766 measured reflections

  • 2874 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.106

  • S = 1.10

  • 2874 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H03⋯O1i 0.865 (13) 2.083 (13) 2.9290 (9) 165.6 (11)
C6—H6⋯O1i 0.95 2.39 3.3149 (9) 165
C3—H3⋯O2ii 0.95 2.61 3.5428 (9) 168
N1—H01⋯O1iii 0.933 (13) 2.212 (14) 3.1207 (9) 164.1 (12)
C8—H8BCgiv 0.99 2.65 3.499 (1) 145
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides represent one of the most biologically active classes of compounds reported in the chemical literature; they display a wide variety of biological activities such as antimicrobial (Kumar et al., 2009) anticancer (Gohil et al., 2010) and antigenotoxic (Bordoloi et al., 2009). They have been employed as synthetic precursors for a number of hetero-cyclic compounds such as oxadiazoles, triazoles and thiadiazoles (Zia et al., 2012; Syed et al., 2011; Akhtar et al., 2010; Akhtar, Hameed, Al-Masoudi et al., 2008; Akhtar, Hameed, Khan et al., 2008; Khan, Akhtar et al. , 2010; Khan, Hameed et al. , 2010; Serwar et al., 2009; Zahid et al., 2009). The title compound (1) was synthesized as an intermediate for its subsequent conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles in order to explore their potential as antibacterial or antifungal agents or urease inhibitors.

The structure of (1) is shown in Fig. 1. Molecular dimensions may be regarded as normal, e.g. the N—N bond length of 1.4117 (9) Å; a search of the Cambridge Structural Database (CSD, CONQUEST Version 1.14; Allen, 2002) for the benzohydrazine fragment gave 37 hits (41 molecules) with an average N—N bond length of 1.415 (5) Å. The molecule is approximately planar, with an r.m.s. deviation of 0.13 Å for all non-H atoms. The angle between the phenyl and CON2 planes is 14.65 (6)°. The hydrogen atoms of the NH2 group lie to either side of the CON2 plane, with torsion angles C7—N2—N1—H01 61.8 (9)° and C7—N2—N1—H02 - 53.1 (8)°.

The carbonyl oxygen is involved as acceptor in three different hydrogen bond interactions. Two of them form a bifurcated N2—H03···O1(i) , C6—H6···O1(i) system, these interactions together with a very weak C3—H3···O2(ii) (ethoxy) hydrogen bond link the molecules into sheets parallel to (102). These layers are further linked into a three-dimensional network via the remaining N1—H01···O1(iii) (carbonyl) hydrogen bond and a C8—H8B···Cg(iv) π interaction, where Cg is the centroid of the C1-C6 benzene ring [symmetry codes: (i) -x, y+1/2,-z+3/2;(ii) -x+1,-y+1,-z+1; (iii)-x, -y+1,-z+2 and (iv) x, -y+3/2, z-1/2]. The hydrogen H02 is not involved in hydrogen bonding interactions.

Compound (1) is not isotypic to its methoxy analogue (Ashiq et al., 2009), which crystallizes in P212121.

Related literature top

For the methoxy analogue of the title compound, see: Ashiq et al. (2009). For biological properties of hydrazides, see: Gohil et al. (2010); Bordoloi et al. (2009); Kumar et al. (2009). For the use of hydrazides as precursors for the syntheses of heterocyclic compounds, see: Akhtar et al. (2010); Akhtar, Hameed, Al-Masoudi et al. (2008); Akhtar, Hameed, Khan et al. (2008); Khan, Akhtar et al. (2010); Khan, Hameed et al. (2010); Serwar et al. (2009); Syed et al. (2011); Zahid et al. (2009); Zia et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002); For details of the preparation, see: Furniss et al. (1989).

Experimental top

3.6 g of methyl p-ethoxybenzoate was added to 40 ml freshly distilled methanol in a round-bottomed flask. The content was stirred until completely dissolved and the flask was fitted with a reflux condenser bearing a calcium chloride guard tube. Then 2.0 g of 80% hydrazine hydrate was added slowly. The reaction was monitored by thin layer chromatography. Upon completion of the reaction, the content was concentrated in vacuo (Furniss et al., 1989). The resulting crude solid was filtered, washed with water and agitated with freshly distilled acetone for 1 h. The product was then recrystallized from aqueous ethanol.

Refinement top

The NH hydrogen atoms were refined freely. Methyl H atoms were identified in difference syntheses, idealized and refined corresponding to a rigid group with C—H 0.98 Å and H—C—H angles 109.5°, allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with C—Harom= 0.95 and C—Hmethylene =0.99 Å; the hydrogen U values were fixed at 1.5 (methyl) or 1.2 × U(eq) of the parent atom.

Structure description top

Hydrazides represent one of the most biologically active classes of compounds reported in the chemical literature; they display a wide variety of biological activities such as antimicrobial (Kumar et al., 2009) anticancer (Gohil et al., 2010) and antigenotoxic (Bordoloi et al., 2009). They have been employed as synthetic precursors for a number of hetero-cyclic compounds such as oxadiazoles, triazoles and thiadiazoles (Zia et al., 2012; Syed et al., 2011; Akhtar et al., 2010; Akhtar, Hameed, Al-Masoudi et al., 2008; Akhtar, Hameed, Khan et al., 2008; Khan, Akhtar et al. , 2010; Khan, Hameed et al. , 2010; Serwar et al., 2009; Zahid et al., 2009). The title compound (1) was synthesized as an intermediate for its subsequent conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles in order to explore their potential as antibacterial or antifungal agents or urease inhibitors.

The structure of (1) is shown in Fig. 1. Molecular dimensions may be regarded as normal, e.g. the N—N bond length of 1.4117 (9) Å; a search of the Cambridge Structural Database (CSD, CONQUEST Version 1.14; Allen, 2002) for the benzohydrazine fragment gave 37 hits (41 molecules) with an average N—N bond length of 1.415 (5) Å. The molecule is approximately planar, with an r.m.s. deviation of 0.13 Å for all non-H atoms. The angle between the phenyl and CON2 planes is 14.65 (6)°. The hydrogen atoms of the NH2 group lie to either side of the CON2 plane, with torsion angles C7—N2—N1—H01 61.8 (9)° and C7—N2—N1—H02 - 53.1 (8)°.

The carbonyl oxygen is involved as acceptor in three different hydrogen bond interactions. Two of them form a bifurcated N2—H03···O1(i) , C6—H6···O1(i) system, these interactions together with a very weak C3—H3···O2(ii) (ethoxy) hydrogen bond link the molecules into sheets parallel to (102). These layers are further linked into a three-dimensional network via the remaining N1—H01···O1(iii) (carbonyl) hydrogen bond and a C8—H8B···Cg(iv) π interaction, where Cg is the centroid of the C1-C6 benzene ring [symmetry codes: (i) -x, y+1/2,-z+3/2;(ii) -x+1,-y+1,-z+1; (iii)-x, -y+1,-z+2 and (iv) x, -y+3/2, z-1/2]. The hydrogen H02 is not involved in hydrogen bonding interactions.

Compound (1) is not isotypic to its methoxy analogue (Ashiq et al., 2009), which crystallizes in P212121.

For the methoxy analogue of the title compound, see: Ashiq et al. (2009). For biological properties of hydrazides, see: Gohil et al. (2010); Bordoloi et al. (2009); Kumar et al. (2009). For the use of hydrazides as precursors for the syntheses of heterocyclic compounds, see: Akhtar et al. (2010); Akhtar, Hameed, Al-Masoudi et al. (2008); Akhtar, Hameed, Khan et al. (2008); Khan, Akhtar et al. (2010); Khan, Hameed et al. (2010); Serwar et al. (2009); Syed et al. (2011); Zahid et al. (2009); Zia et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002); For details of the preparation, see: Furniss et al. (1989).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. A view of the packing scheme, showing the layers parallel to (102). Thick dashed bonds represent classical H bonds and thin dashed bonds represent weak hydrogen bonds.
4-Ethoxybenzohydrazide top
Crystal data top
C9H12N2O2F(000) = 384
Mr = 180.21Dx = 1.386 Mg m3
Monoclinic, P21/cMelting point: 403 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8848 (3) ÅCell parameters from 23790 reflections
b = 10.0453 (2) Åθ = 2.6–32.6°
c = 8.4420 (3) ŵ = 0.10 mm1
β = 110.669 (4)°T = 100 K
V = 863.64 (4) Å3Block, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2478 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.024
Graphite monochromatorθmax = 31.5°, θmin = 2.9°
Detector resolution: 16.1419 pixels mm-1h = 1515
ω scank = 1414
42766 measured reflectionsl = 1212
2874 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.0351P]
where P = (Fo2 + 2Fc2)/3
2874 reflections(Δ/σ)max = 0.002
131 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H12N2O2V = 863.64 (4) Å3
Mr = 180.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8848 (3) ŵ = 0.10 mm1
b = 10.0453 (2) ÅT = 100 K
c = 8.4420 (3) Å0.3 × 0.2 × 0.2 mm
β = 110.669 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2478 reflections with I > 2σ(I)
42766 measured reflectionsRint = 0.024
2874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.48 e Å3
2874 reflectionsΔρmin = 0.22 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.5814 (0.0029) x - 0.3102 (0.0031) y + 6.4744 (0.0016) z = 4.7086 (0.0021)

* 0.0107 (0.0005) C1 * -0.0025 (0.0005) C2 * -0.0096 (0.0005) C3 * 0.0135 (0.0005) C4 * -0.0052 (0.0005) C5 * -0.0070 (0.0005) C6 0.1090 (0.0011) C7 0.1528 (0.0013) C8 0.3370 (0.0017) C9 0.4145 (0.0012) O1 0.0757 (0.0010) O2 - 0.0498 (0.0016) N1 - 0.1309 (0.0013) N2

Rms deviation of fitted atoms = 0.0089

3.5873 (0.0049) x + 2.2383 (0.0045) y + 6.2646 (0.0032) z = 6.0909 (0.0020)

Angle to previous plane (with approximate e.s.d.) = 14.65 (0.06)

* 0.0002 (0.0004) C7 * -0.0001 (0.0002) O1 * 0.0001 (0.0002) N1 * -0.0002 (0.0004) N2

Rms deviation of fitted atoms = 0.0001

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14875 (7)0.60114 (7)0.67544 (8)0.01178 (14)
C20.21991 (7)0.50128 (7)0.62925 (9)0.01315 (14)
H20.19820.41040.63630.016*
C30.32166 (7)0.53422 (7)0.57344 (9)0.01377 (14)
H30.36850.46600.54110.017*
C40.35534 (7)0.66779 (7)0.56479 (9)0.01238 (14)
C50.28323 (7)0.76797 (7)0.60658 (9)0.01476 (15)
H50.30400.85890.59770.018*
C60.18082 (7)0.73392 (7)0.66132 (9)0.01406 (15)
H60.13190.80230.68960.017*
C70.04616 (7)0.56096 (7)0.74544 (9)0.01238 (14)
C80.50091 (7)0.82661 (7)0.51338 (10)0.01446 (15)
H8A0.51700.86940.62450.017*
H8B0.43150.87710.42590.017*
C90.62551 (8)0.82519 (8)0.47285 (10)0.01797 (16)
H9A0.69250.77250.55820.027*
H9B0.65720.91650.47330.027*
H9C0.60760.78560.36080.027*
N10.13631 (7)0.63025 (7)0.82516 (9)0.01874 (15)
H010.0919 (13)0.6029 (13)0.9364 (17)0.039 (3)*
H020.1806 (12)0.5584 (13)0.7605 (16)0.033 (3)*
N20.03653 (6)0.65623 (6)0.75869 (8)0.01518 (14)
H030.0305 (11)0.7382 (13)0.7308 (14)0.026 (3)*
O10.03801 (5)0.44481 (5)0.79156 (7)0.01735 (13)
O20.46083 (5)0.69025 (5)0.51711 (7)0.01480 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0120 (3)0.0097 (3)0.0148 (3)0.0001 (2)0.0061 (2)0.0006 (2)
C20.0147 (3)0.0096 (3)0.0165 (3)0.0004 (2)0.0072 (2)0.0006 (2)
C30.0156 (3)0.0104 (3)0.0175 (3)0.0008 (2)0.0086 (3)0.0006 (2)
C40.0129 (3)0.0112 (3)0.0149 (3)0.0005 (2)0.0073 (2)0.0006 (2)
C50.0167 (3)0.0095 (3)0.0216 (3)0.0006 (2)0.0112 (3)0.0012 (2)
C60.0151 (3)0.0103 (3)0.0198 (3)0.0012 (2)0.0100 (3)0.0008 (2)
C70.0122 (3)0.0109 (3)0.0147 (3)0.0008 (2)0.0057 (2)0.0002 (2)
C80.0163 (3)0.0102 (3)0.0197 (3)0.0009 (2)0.0099 (3)0.0001 (2)
C90.0170 (3)0.0150 (3)0.0261 (4)0.0019 (2)0.0128 (3)0.0007 (3)
N10.0168 (3)0.0200 (3)0.0247 (3)0.0005 (2)0.0139 (3)0.0032 (3)
N20.0152 (3)0.0117 (3)0.0232 (3)0.0008 (2)0.0125 (2)0.0025 (2)
O10.0196 (3)0.0106 (3)0.0260 (3)0.00006 (19)0.0133 (2)0.0031 (2)
O20.0159 (3)0.0105 (2)0.0229 (3)0.00056 (18)0.0128 (2)0.00054 (19)
Geometric parameters (Å, º) top
C1—C61.3944 (10)C2—H20.9500
C1—C21.4041 (10)C3—H30.9500
C1—C71.4916 (10)C5—H50.9500
C2—C31.3879 (10)C6—H60.9500
C3—C41.3997 (10)C8—H8A0.9900
C4—O21.3630 (8)C8—H8B0.9900
C4—C51.3959 (10)C9—H9A0.9800
C5—C61.3917 (10)C9—H9B0.9800
C7—O11.2431 (8)C9—H9C0.9800
C7—N21.3452 (9)N1—H010.933 (13)
C8—O21.4413 (9)N1—H020.931 (13)
C8—C91.5114 (10)N2—H030.865 (13)
N1—N21.4117 (9)
C6—C1—C2118.70 (6)C6—C5—H5120.2
C6—C1—C7122.53 (6)C4—C5—H5120.2
C2—C1—C7118.70 (6)C5—C6—H6119.4
C3—C2—C1120.56 (6)C1—C6—H6119.4
C2—C3—C4120.09 (6)O2—C8—H8A110.2
O2—C4—C5124.25 (6)C9—C8—H8A110.2
O2—C4—C3115.95 (6)O2—C8—H8B110.2
C5—C4—C3119.79 (6)C9—C8—H8B110.2
C6—C5—C4119.63 (7)H8A—C8—H8B108.5
C5—C6—C1121.17 (6)C8—C9—H9A109.5
O1—C7—N2121.19 (6)C8—C9—H9B109.5
O1—C7—C1121.62 (6)H9A—C9—H9B109.5
N2—C7—C1117.19 (6)C8—C9—H9C109.5
O2—C8—C9107.38 (6)H9A—C9—H9C109.5
C7—N2—N1122.19 (6)H9B—C9—H9C109.5
C4—O2—C8117.18 (5)N2—N1—H01104.9 (8)
C3—C2—H2119.7N2—N1—H02102.9 (7)
C1—C2—H2119.7H01—N1—H02109.8 (11)
C2—C3—H3120.0C7—N2—H03122.5 (8)
C4—C3—H3120.0N1—N2—H03115.3 (8)
C6—C1—C2—C31.10 (10)C6—C1—C7—O1164.06 (7)
C7—C1—C2—C3176.01 (6)C2—C1—C7—O112.93 (10)
C1—C2—C3—C40.82 (11)C6—C1—C7—N215.13 (10)
C2—C3—C4—O2176.66 (6)C2—C1—C7—N2167.88 (6)
C2—C3—C4—C52.32 (11)O1—C7—N2—N10.05 (11)
O2—C4—C5—C6177.01 (6)C1—C7—N2—N1179.15 (6)
C3—C4—C5—C61.89 (11)C5—C4—O2—C81.26 (10)
C4—C5—C6—C10.05 (11)C3—C4—O2—C8177.68 (6)
C2—C1—C6—C51.54 (11)C9—C8—O2—C4174.98 (6)
C7—C1—C6—C5175.46 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring
D—H···AD—HH···AD···AD—H···A
N2—H03···O1i0.865 (13)2.083 (13)2.9290 (9)165.6 (11)
C6—H6···O1i0.952.393.3149 (9)165
C3—H3···O2ii0.952.613.5428 (9)168
N1—H01···O1iii0.933 (13)2.212 (14)3.1207 (9)164.1 (12)
C8—H8B···Cgiv0.992.653.499 (1)145
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H12N2O2
Mr180.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8848 (3), 10.0453 (2), 8.4420 (3)
β (°) 110.669 (4)
V3)863.64 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
42766, 2874, 2478
Rint0.024
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.106, 1.10
No. of reflections2874
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring
D—H···AD—HH···AD···AD—H···A
N2—H03···O1i0.865 (13)2.083 (13)2.9290 (9)165.6 (11)
C6—H6···O1i0.952.393.3149 (9)165.1
C3—H3···O2ii0.952.613.5428 (9)168.1
N1—H01···O1iii0.933 (13)2.212 (14)3.1207 (9)164.1 (12)
C8—H8B···Cgiv0.992.653.499 (1)145
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x, y+3/2, z1/2.
 

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & Colla, P. L. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2008). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enzyme Inhib. Med. Chem. 25, 572–576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1989). Vogel's Text Book of Practical Organic Chemistry, 5th ed, p. 1269. New York: Longman Scientific and Technical, John Wiley and Sons Inc.  Google Scholar
First citationGohil, M. V., Agrawal, S. K., Saxena, A. K., Garg, D., Gopimohan, C. & Bhutani, K. K. (2010). Indian J. Exp. Biol. 48, 265–268.  Web of Science CAS PubMed Google Scholar
First citationKhan, M. H., Akhtar, T., Yasin, K. A., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2010). Z. Naturforsch. Teil B, 65, 178–184.  CAS Google Scholar
First citationKhan, M. H., Hameed, S., Yasin, K. A., Akhtar, T. & Khan, K. M. (2010). Monatsh. Chem. 141, 479–484.  Web of Science CrossRef CAS Google Scholar
First citationKumar, P., Naarasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem. 44, 1853–1863.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSerwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, vii, 210–221.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed, T., Akhtar, T., Al-Masoudi, N. A., Jones, P. G. & Hameed, S. (2011). J. Enzyme Inhib. Med. Chem. 25, 668–680.  Web of Science CrossRef Google Scholar
First citationZahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al-Masoudi, N. A., Loddo, R. & Colla, P. L. (2009). ARKIVOC, vii, 85–93.  CrossRef Google Scholar
First citationZia, M., Akhtar, T., Hameed, S. & Al-Masoudi, N. A. (2012). Z. Naturforsch. Teil B, 67, 747–758.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds