organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyrimidin-1-ium) sulfate

aDepartment of Chemical and Material Engineering, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan
*Correspondence e-mail: cwyeh@cycu.org.tw

(Received 21 August 2012; accepted 2 September 2012; online 12 September 2012)

In the title compound, 2C4H6N3+·SO42−, the cations are each essentially planar with r.m.s. deviations of the fitted atoms of 0.008 and 0.002 Å. In the crystal, adjacent ions are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the crystal structures of 2-amino­pyrimidinium salts with other anions, see: Cheng et al. (2010[Cheng, X.-L., Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, o127.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H6N3+·SO42−

  • Mr = 288.30

  • Monoclinic, P 21 /n

  • a = 8.1215 (8) Å

  • b = 11.4853 (12) Å

  • c = 13.0407 (14) Å

  • β = 97.206 (2)°

  • V = 1206.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.45 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.955

  • 6656 measured reflections

  • 2377 independent reflections

  • 1976 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.05

  • 2377 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1 0.86 (2) 1.99 (2) 2.853 (2) 175.5 (17)
N1—H1NB⋯O3i 0.91 (2) 1.97 (2) 2.882 (2) 176.9 (2)
N2—H2N⋯O2 0.86 (2) 1.79 (2) 2.640 (2) 174.7 (18)
N4—H4NA⋯O1 0.81 (2) 2.10 (2) 2.902 (2) 167.6 (19)
N4—H4NB⋯O3ii 0.78 (2) 2.19 (2) 2.962 (2) 171.0 (2)
N5—H5N⋯O4ii 0.80 (2) 1.84 (2) 2.631 (2) 172.6 (2)
C2—H2A⋯O4iii 0.93 2.50 3.295 (2) 144
C3—H3A⋯N6iv 0.93 2.58 3.382 (2) 145
C4—H4A⋯O1v 0.93 2.57 3.231 (2) 128
C7—H7A⋯O2vi 0.93 2.51 3.101 (2) 121
C8—H8A⋯O4vii 0.93 2.59 3.237 (2) 127
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) -x+1, -y+1, -z+2; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There are several supramolecular structures containing 2-aminopyrimidinium cations with other anions constructed by hydrogen bonds (Cheng, et al. 2010; Eshtiagh-Hosseini, et al., 2010). The asymmetric unit of the title compound, consists of two independent 2-aminopyrimidinium cations and a sulfate anion (Fig. 1). These two protonated pyrimidine rings are not co-planar but twisted with each other by an interplanar angle of 84.3 (1)°. The cations and anions are interlinked through N—H···O, C—H···O and C—H···N hydrogen bonds resulting in a three-dimensional net work (Fig. 2, Tab. 1).

Related literature top

For the crystal structures of 2-aminopyrimidinium salts with other anions, see: Cheng et al. (2010); Eshtiagh-Hosseini et al. (2010).

Experimental top

An aqueous solution (5.0 ml) of zinc sulfate (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 2-aminopyrimidine (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 85.8% yield.

Refinement top

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The amine hydrogen atoms and the pyrimidinium hydrogen atoms were located in diffrernce Fourier maps and were allowed to refine with isotropic displacement parameters Uiso.

Structure description top

There are several supramolecular structures containing 2-aminopyrimidinium cations with other anions constructed by hydrogen bonds (Cheng, et al. 2010; Eshtiagh-Hosseini, et al., 2010). The asymmetric unit of the title compound, consists of two independent 2-aminopyrimidinium cations and a sulfate anion (Fig. 1). These two protonated pyrimidine rings are not co-planar but twisted with each other by an interplanar angle of 84.3 (1)°. The cations and anions are interlinked through N—H···O, C—H···O and C—H···N hydrogen bonds resulting in a three-dimensional net work (Fig. 2, Tab. 1).

For the crystal structures of 2-aminopyrimidinium salts with other anions, see: Cheng et al. (2010); Eshtiagh-Hosseini et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O, C—H···O and C—H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound.
Bis(2-aminopyrimidin-1-ium) sulfate top
Crystal data top
2C4H6N3+·SO42F(000) = 600
Mr = 288.30Dx = 1.587 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3511 reflections
a = 8.1215 (8) Åθ = 2.5–26.0°
b = 11.4853 (12) ŵ = 0.29 mm1
c = 13.0407 (14) ÅT = 293 K
β = 97.206 (2)°Plate, colourless
V = 1206.8 (2) Å30.45 × 0.29 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2377 independent reflections
Radiation source: fine-focus sealed tube1976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ & ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.880, Tmax = 0.955k = 148
6656 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1486P]
where P = (Fo2 + 2Fc2)/3
2377 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
2C4H6N3+·SO42V = 1206.8 (2) Å3
Mr = 288.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1215 (8) ŵ = 0.29 mm1
b = 11.4853 (12) ÅT = 293 K
c = 13.0407 (14) Å0.45 × 0.29 × 0.16 mm
β = 97.206 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1976 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.955Rint = 0.032
6656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2377 reflectionsΔρmin = 0.40 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.01967 (5)0.48062 (3)0.75579 (3)0.03308 (15)
C10.4028 (2)0.33089 (14)0.95900 (13)0.0353 (4)
C20.3254 (2)0.46070 (16)1.08388 (13)0.0422 (4)
H2A0.25770.52071.10190.051*
C30.4431 (2)0.41520 (16)1.15527 (15)0.0498 (5)
H3A0.46020.44311.22270.060*
C40.5372 (2)0.32455 (17)1.12244 (15)0.0507 (5)
H4A0.61830.29191.17060.061*
C50.32224 (19)0.58057 (14)0.50457 (12)0.0328 (4)
C60.4389 (2)0.72057 (15)0.40373 (14)0.0435 (4)
H6A0.44030.75830.34080.052*
C70.5485 (2)0.75007 (17)0.48542 (16)0.0514 (5)
H7A0.62710.80810.48080.062*
C80.5392 (2)0.69007 (16)0.57723 (15)0.0483 (5)
H8A0.61500.70920.63420.058*
N10.3820 (2)0.29315 (15)0.86293 (12)0.0455 (4)
H1NA0.312 (2)0.3295 (18)0.8188 (16)0.050 (6)*
H1NB0.435 (3)0.227 (2)0.8471 (16)0.065 (6)*
N20.30658 (17)0.41906 (12)0.98686 (11)0.0362 (3)
H2N0.230 (2)0.4489 (17)0.9436 (15)0.042 (5)*
N30.51952 (18)0.28162 (13)1.02800 (12)0.0458 (4)
N40.2118 (2)0.49912 (14)0.51195 (14)0.0425 (4)
H4NA0.207 (2)0.4694 (18)0.5680 (17)0.047 (6)*
H4NB0.157 (2)0.4774 (17)0.4623 (17)0.044 (6)*
N50.32700 (18)0.63601 (13)0.41351 (11)0.0365 (3)
H5N0.258 (3)0.6232 (18)0.3654 (17)0.055 (6)*
N60.43008 (17)0.60804 (13)0.58842 (11)0.0407 (4)
O10.16275 (15)0.42397 (11)0.71839 (9)0.0458 (3)
O20.06654 (16)0.51991 (11)0.86283 (9)0.0481 (3)
O30.03729 (15)0.57920 (10)0.68927 (9)0.0455 (3)
O40.11722 (15)0.39661 (11)0.75484 (9)0.0470 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0389 (2)0.0320 (2)0.0269 (2)0.00002 (16)0.00122 (16)0.00050 (15)
C10.0331 (8)0.0321 (8)0.0402 (9)0.0035 (6)0.0027 (7)0.0042 (7)
C20.0478 (10)0.0425 (10)0.0379 (10)0.0031 (8)0.0115 (8)0.0015 (7)
C30.0645 (12)0.0507 (12)0.0324 (9)0.0060 (9)0.0003 (8)0.0056 (8)
C40.0527 (11)0.0497 (11)0.0454 (11)0.0019 (9)0.0103 (9)0.0149 (8)
C50.0334 (8)0.0348 (9)0.0300 (8)0.0057 (7)0.0039 (6)0.0010 (6)
C60.0446 (10)0.0397 (10)0.0475 (10)0.0027 (8)0.0106 (8)0.0083 (8)
C70.0492 (11)0.0425 (11)0.0611 (12)0.0085 (9)0.0010 (9)0.0039 (9)
C80.0470 (10)0.0452 (11)0.0496 (11)0.0040 (9)0.0064 (8)0.0052 (9)
N10.0529 (10)0.0413 (9)0.0402 (9)0.0099 (7)0.0023 (7)0.0033 (7)
N20.0327 (7)0.0390 (8)0.0359 (8)0.0016 (6)0.0011 (6)0.0042 (6)
N30.0454 (8)0.0429 (9)0.0468 (9)0.0057 (7)0.0030 (7)0.0083 (7)
N40.0437 (9)0.0510 (10)0.0318 (8)0.0089 (7)0.0005 (7)0.0033 (7)
N50.0367 (8)0.0414 (8)0.0306 (8)0.0012 (6)0.0013 (6)0.0015 (6)
N60.0427 (8)0.0446 (9)0.0334 (7)0.0002 (6)0.0012 (6)0.0012 (6)
O10.0516 (7)0.0509 (8)0.0354 (7)0.0103 (6)0.0074 (5)0.0021 (5)
O20.0541 (8)0.0532 (8)0.0334 (7)0.0134 (6)0.0093 (5)0.0125 (5)
O30.0528 (7)0.0358 (7)0.0451 (7)0.0001 (5)0.0055 (6)0.0084 (5)
O40.0518 (8)0.0488 (8)0.0387 (7)0.0128 (6)0.0012 (5)0.0086 (5)
Geometric parameters (Å, º) top
S—O31.4656 (12)C5—N61.350 (2)
S—O11.4675 (13)C5—N51.352 (2)
S—O41.4709 (12)C6—C71.343 (3)
S—O21.4710 (12)C6—N51.347 (2)
C1—N11.316 (2)C6—H6A0.9300
C1—N31.347 (2)C7—C81.392 (3)
C1—N21.356 (2)C7—H7A0.9300
C2—N21.343 (2)C8—N61.314 (2)
C2—C31.353 (3)C8—H8A0.9300
C2—H2A0.9300N1—H1NA0.86 (2)
C3—C41.390 (3)N1—H1NB0.91 (2)
C3—H3A0.9300N2—H2N0.86 (2)
C4—N31.318 (2)N4—H4NA0.81 (2)
C4—H4A0.9300N4—H4NB0.78 (2)
C5—N41.308 (2)N5—H5N0.80 (2)
O3—S—O1110.49 (8)C7—C6—H6A120.2
O3—S—O4108.64 (7)N5—C6—H6A120.2
O1—S—O4109.60 (8)C6—C7—C8117.11 (17)
O3—S—O2110.46 (7)C6—C7—H7A121.4
O1—S—O2109.27 (7)C8—C7—H7A121.4
O4—S—O2108.34 (8)N6—C8—C7124.08 (17)
N1—C1—N3119.53 (16)N6—C8—H8A118.0
N1—C1—N2119.43 (16)C7—C8—H8A118.0
N3—C1—N2121.03 (16)C1—N1—H1NA118.1 (14)
N2—C2—C3119.86 (17)C1—N1—H1NB119.0 (14)
N2—C2—H2A120.1H1NA—N1—H1NB122.7 (19)
C3—C2—H2A120.1C2—N2—C1121.12 (15)
C2—C3—C4116.45 (18)C2—N2—H2N117.7 (13)
C2—C3—H3A121.8C1—N2—H2N121.2 (13)
C4—C3—H3A121.8C4—N3—C1116.88 (16)
N3—C4—C3124.65 (16)C5—N4—H4NA118.6 (14)
N3—C4—H4A117.7C5—N4—H4NB119.6 (15)
C3—C4—H4A117.7H4NA—N4—H4NB122 (2)
N4—C5—N6119.26 (15)C6—N5—C5121.10 (16)
N4—C5—N5119.79 (15)C6—N5—H5N118.3 (15)
N6—C5—N5120.95 (15)C5—N5—H5N120.4 (15)
C7—C6—N5119.64 (17)C8—N6—C5117.11 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O10.86 (2)1.99 (2)2.853 (2)175.5 (17)
N1—H1NB···O3i0.91 (2)1.97 (2)2.882 (2)176.9 (2)
N2—H2N···O20.86 (2)1.79 (2)2.640 (2)174.7 (18)
N4—H4NA···O10.81 (2)2.10 (2)2.902 (2)167.6 (19)
N4—H4NB···O3ii0.78 (2)2.19 (2)2.962 (2)171.0 (2)
N5—H5N···O4ii0.80 (2)1.84 (2)2.631 (2)172.6 (2)
C2—H2A···O4iii0.932.503.295 (2)144
C3—H3A···N6iv0.932.583.382 (2)145
C4—H4A···O1v0.932.573.231 (2)128
C7—H7A···O2vi0.932.513.101 (2)121
C8—H8A···O4vii0.932.593.237 (2)127
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C4H6N3+·SO42
Mr288.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1215 (8), 11.4853 (12), 13.0407 (14)
β (°) 97.206 (2)
V3)1206.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.45 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.880, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
6656, 2377, 1976
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.05
No. of reflections2377
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.40

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O10.86 (2)1.99 (2)2.853 (2)175.5 (17)
N1—H1NB···O3i0.91 (2)1.97 (2)2.882 (2)176.9 (2)
N2—H2N···O20.86 (2)1.79 (2)2.640 (2)174.7 (18)
N4—H4NA···O10.81 (2)2.10 (2)2.902 (2)167.6 (19)
N4—H4NB···O3ii0.78 (2)2.19 (2)2.962 (2)171.0 (2)
N5—H5N···O4ii0.80 (2)1.84 (2)2.631 (2)172.6 (2)
C2—H2A···O4iii0.932.503.295 (2)144.2
C3—H3A···N6iv0.932.583.382 (2)144.8
C4—H4A···O1v0.932.573.231 (2)128.2
C7—H7A···O2vi0.932.513.101 (2)121.3
C8—H8A···O4vii0.932.593.237 (2)126.9
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1/2, y+1/2, z+3/2.
 

Footnotes

Current address: Department of Hospitality Management, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan.

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-L., Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds