organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-4-oxo-4H-chromene-3-carbaldehyde

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 28 August 2012; accepted 31 August 2012; online 12 September 2012)

In the title compound, C11H8O3, the benzopyran-4-one or chromone ring system is almost planar, with a maximum deviation of 0.045 (2) Å. The crystal structure is stablized by ππ inter­actions between the benzene and pyran rings of inversion-related mol­ecules stacked along the b axis, with a centroid–centroid distance of 3.5463 (12) Å

Related literature

For the biological activity of chromone, see: Patel et al. (2011[Patel, M. C., Nilesh, N. G. & Rajani, D. P. (2011). Der Pharma Chem. 3, 422-432.]); Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2987.], 2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Gautam et al. (2010[Gautam, R., Srivastava, A., Jachak, S. M. & Saklani, A. (2010). Fitoterapia, 81, 45-49.]); Ishar et al. (2006[Ishar, M. P. S., Singh, G., Singh, S., Sreenivasan, K. K. & Singh, G. (2006). Bioorg. Med. Chem. Lett. 16, 1366-1370.]); Hassan (1992[Hassan, A. M. A. (1992). J. Chem. Soc. Pak. 14, 108-110.]); Nohara et al. (1974[Nohara, A., Umetani, T., Ukawa, K. & Sanno, Y. (1974). Chem. Pharm. Bull. 22, 2959-2965.]). For a related structure, see: Wang & Kong (2007[Wang, X.-B. & Kong, L.-Y. (2007). Acta Cryst. E63, o4340.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8O3

  • Mr = 188.17

  • Triclinic, [P \overline 1]

  • a = 6.6945 (7) Å

  • b = 7.1079 (7) Å

  • c = 10.3032 (11) Å

  • α = 71.593 (2)°

  • β = 84.962 (2)°

  • γ = 69.843 (2)°

  • V = 436.57 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.26 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.989

  • 4974 measured reflections

  • 1629 independent reflections

  • 1300 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.07

  • 1629 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromone is a heterocyclic compound containing a benzene ring fused with a pyran ring, so it is also called as benzopyran-4-one. Chromone moieties are associated with various physiological and biological properties such as antibacterial (Patel et al., 2011), antioxidant (Gautam et al., 2010; Hassan et al., 1992), antianaphylactic (Nohara et al., 1974), antiinflammatory (Khan et al., 2010), anticancer (Ishar et al., 2006), and thymidine phosphorylase inhibitor (Khan et al., 2009) activities. The title compound is a chromone derivative synthesized as a part of our ongoing research to study different biological activities of this medicinally important class of organic compounds and establish their structure–activity relationship.

The structure of title compound (Fig. 1) is composed of a planar chromone moiety (O1/C1–C9) with maximum deviation of 0.045 (2) Å for atom C8. Bond lengths and angles are similar to those observed in a structurally related compound (Wang & Kong, 2007). In the crystal (Fig. 2), inversion-related molecules are linked along the b axis by significant ππ stacking interactions occurring between benzene and pyran rings of chromone moeities, with centroid-centroid distances of 3.5463 (12) Å.

Related literature top

For the biological activity of chromone, see: Patel et al. (2011); Khan et al. (2010); (2009); Gautam et al. (2010); Ishar et al. (2006); Hassan (1992); Nohara et al. (1974). For a related structure, see: Wang & Kong (2007).

Experimental top

The title compound was synthesized by taking dry dimethylformamide (12.32 ml) into a three necked flask followed by slow addition of POCl3 (49 mmol) with intensive stirring at 50°C. Heating and stirring was continued for 2 h at 45–55°C. A solution of 5-methyl-2-hydroxyacetophenone (10 mmol) in DMF was then slowly added under stirring at 50°C. The stirring was continued for additional 2 h at 55–60°C. After cooling, the mixture was kept over night at room temperature and diluted slowly by adding crushed ice (300 g) and stirred again for 6 h to obtain the crude product. Recrystallization from ethanol afforded crystals in 78.7% yield (1.48 g) which were found suitable for single-crystal X-ray diffraction studies. All chemicals were purchased by sigma Aldrich Germany.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.95 Å and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3) or 1.2Ueq(CH).

Structure description top

Chromone is a heterocyclic compound containing a benzene ring fused with a pyran ring, so it is also called as benzopyran-4-one. Chromone moieties are associated with various physiological and biological properties such as antibacterial (Patel et al., 2011), antioxidant (Gautam et al., 2010; Hassan et al., 1992), antianaphylactic (Nohara et al., 1974), antiinflammatory (Khan et al., 2010), anticancer (Ishar et al., 2006), and thymidine phosphorylase inhibitor (Khan et al., 2009) activities. The title compound is a chromone derivative synthesized as a part of our ongoing research to study different biological activities of this medicinally important class of organic compounds and establish their structure–activity relationship.

The structure of title compound (Fig. 1) is composed of a planar chromone moiety (O1/C1–C9) with maximum deviation of 0.045 (2) Å for atom C8. Bond lengths and angles are similar to those observed in a structurally related compound (Wang & Kong, 2007). In the crystal (Fig. 2), inversion-related molecules are linked along the b axis by significant ππ stacking interactions occurring between benzene and pyran rings of chromone moeities, with centroid-centroid distances of 3.5463 (12) Å.

For the biological activity of chromone, see: Patel et al. (2011); Khan et al. (2010); (2009); Gautam et al. (2010); Ishar et al. (2006); Hassan (1992); Nohara et al. (1974). For a related structure, see: Wang & Kong (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
6-Methyl-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C11H8O3Z = 2
Mr = 188.17F(000) = 196
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6945 (7) ÅCell parameters from 1636 reflections
b = 7.1079 (7) Åθ = 3.2–28.1°
c = 10.3032 (11) ŵ = 0.11 mm1
α = 71.593 (2)°T = 273 K
β = 84.962 (2)°Block, colorles
γ = 69.843 (2)°0.26 × 0.23 × 0.11 mm
V = 436.57 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1629 independent reflections
Radiation source: fine-focus sealed tube1300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.973, Tmax = 0.989k = 88
4974 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.0886P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1629 reflectionsΔρmax = 0.26 e Å3
128 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (9)
Crystal data top
C11H8O3γ = 69.843 (2)°
Mr = 188.17V = 436.57 (8) Å3
Triclinic, P1Z = 2
a = 6.6945 (7) ÅMo Kα radiation
b = 7.1079 (7) ŵ = 0.11 mm1
c = 10.3032 (11) ÅT = 273 K
α = 71.593 (2)°0.26 × 0.23 × 0.11 mm
β = 84.962 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1629 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1300 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.019
4974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
1629 reflectionsΔρmin = 0.19 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2834 (2)0.1857 (2)0.62203 (13)0.0573 (4)
O20.30931 (18)0.3149 (2)0.47149 (12)0.0476 (4)
O30.2182 (3)0.2434 (3)0.87960 (15)0.0749 (5)
C10.2333 (3)0.2150 (3)0.34035 (18)0.0415 (4)
H1A0.37240.17950.37030.050*
C20.1952 (3)0.2394 (3)0.20506 (19)0.0455 (5)
C30.0162 (3)0.2971 (3)0.16259 (19)0.0497 (5)
H3A0.04520.31690.07170.060*
C40.1816 (3)0.3252 (3)0.25048 (19)0.0494 (5)
H4A0.32100.36420.21990.059*
C50.1371 (3)0.2942 (3)0.38609 (18)0.0397 (4)
C60.2734 (3)0.2855 (3)0.60304 (19)0.0443 (5)
H6A0.38940.29530.66040.053*
C70.0835 (3)0.2431 (3)0.65872 (18)0.0396 (4)
C80.1067 (3)0.2197 (3)0.57661 (18)0.0386 (4)
C90.0686 (3)0.2422 (2)0.43295 (17)0.0360 (4)
C100.3734 (4)0.2037 (4)0.1063 (2)0.0654 (6)
H10A0.50690.16450.15240.098*
H10B0.35370.33080.03160.098*
H10C0.37330.09310.07170.098*
C110.0697 (3)0.2176 (3)0.8057 (2)0.0548 (5)
H11A0.06490.17840.84400.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (8)0.0876 (10)0.0504 (8)0.0238 (7)0.0042 (6)0.0252 (7)
O20.0330 (7)0.0611 (8)0.0441 (7)0.0130 (6)0.0026 (5)0.0121 (6)
O30.0733 (11)0.1117 (13)0.0537 (9)0.0380 (10)0.0201 (8)0.0413 (9)
C10.0385 (9)0.0444 (10)0.0434 (10)0.0157 (8)0.0003 (7)0.0138 (8)
C20.0522 (11)0.0442 (10)0.0401 (10)0.0176 (8)0.0025 (8)0.0117 (8)
C30.0609 (12)0.0530 (11)0.0348 (9)0.0209 (9)0.0073 (8)0.0087 (8)
C40.0436 (10)0.0553 (11)0.0459 (11)0.0163 (9)0.0118 (8)0.0077 (8)
C50.0373 (9)0.0369 (9)0.0423 (10)0.0120 (7)0.0017 (7)0.0085 (7)
C60.0389 (10)0.0465 (10)0.0440 (10)0.0114 (8)0.0043 (7)0.0133 (8)
C70.0419 (10)0.0387 (9)0.0403 (10)0.0145 (7)0.0017 (8)0.0141 (7)
C80.0369 (9)0.0385 (9)0.0427 (9)0.0131 (7)0.0033 (7)0.0137 (7)
C90.0372 (9)0.0325 (8)0.0384 (9)0.0124 (7)0.0024 (7)0.0094 (7)
C100.0634 (14)0.0885 (16)0.0457 (11)0.0245 (12)0.0091 (10)0.0256 (11)
C110.0550 (12)0.0696 (13)0.0482 (11)0.0241 (10)0.0037 (9)0.0262 (10)
Geometric parameters (Å, º) top
O1—C81.227 (2)C4—H4A0.9300
O2—C61.335 (2)C5—C91.385 (2)
O2—C51.383 (2)C6—C71.339 (3)
O3—C111.196 (2)C6—H6A0.9300
C1—C21.385 (3)C7—C81.455 (2)
C1—C91.396 (2)C7—C111.475 (3)
C1—H1A0.9300C8—C91.473 (2)
C2—C31.399 (3)C10—H10A0.9600
C2—C101.505 (3)C10—H10B0.9600
C3—C41.368 (3)C10—H10C0.9600
C3—H3A0.9300C11—H11A0.9300
C4—C51.387 (3)
C6—O2—C5117.99 (13)C6—C7—C8120.85 (16)
C2—C1—C9121.75 (17)C6—C7—C11118.72 (16)
C2—C1—H1A119.1C8—C7—C11120.43 (16)
C9—C1—H1A119.1O1—C8—C7123.32 (16)
C1—C2—C3117.68 (17)O1—C8—C9122.63 (16)
C1—C2—C10121.76 (18)C7—C8—C9114.04 (15)
C3—C2—C10120.56 (17)C5—C9—C1118.08 (16)
C4—C3—C2122.15 (17)C5—C9—C8119.66 (16)
C4—C3—H3A118.9C1—C9—C8122.26 (16)
C2—C3—H3A118.9C2—C10—H10A109.5
C3—C4—C5118.60 (17)C2—C10—H10B109.5
C3—C4—H4A120.7H10A—C10—H10B109.5
C5—C4—H4A120.7C2—C10—H10C109.5
O2—C5—C9122.29 (16)H10A—C10—H10C109.5
O2—C5—C4116.01 (15)H10B—C10—H10C109.5
C9—C5—C4121.69 (16)O3—C11—C7125.06 (19)
O2—C6—C7125.04 (16)O3—C11—H11A117.5
O2—C6—H6A117.5C7—C11—H11A117.5
C7—C6—H6A117.5
C9—C1—C2—C31.3 (3)C6—C7—C8—C91.3 (2)
C9—C1—C2—C10178.14 (16)C11—C7—C8—C9177.95 (15)
C1—C2—C3—C41.3 (3)O2—C5—C9—C1176.96 (14)
C10—C2—C3—C4178.17 (18)C4—C5—C9—C11.9 (3)
C2—C3—C4—C50.3 (3)O2—C5—C9—C83.7 (3)
C6—O2—C5—C90.8 (2)C4—C5—C9—C8177.44 (15)
C6—O2—C5—C4179.73 (15)C2—C1—C9—C50.3 (3)
C3—C4—C5—O2176.99 (15)C2—C1—C9—C8179.10 (15)
C3—C4—C5—C92.0 (3)O1—C8—C9—C5175.79 (16)
C5—O2—C6—C72.0 (3)C7—C8—C9—C53.7 (2)
O2—C6—C7—C81.6 (3)O1—C8—C9—C13.6 (3)
O2—C6—C7—C11179.14 (16)C7—C8—C9—C1176.89 (14)
C6—C7—C8—O1178.25 (17)C6—C7—C11—O34.4 (3)
C11—C7—C8—O12.5 (3)C8—C7—C11—O3176.35 (19)

Experimental details

Crystal data
Chemical formulaC11H8O3
Mr188.17
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.6945 (7), 7.1079 (7), 10.3032 (11)
α, β, γ (°)71.593 (2), 84.962 (2), 69.843 (2)
V3)436.57 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4974, 1629, 1300
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.07
No. of reflections1629
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are thankful to OPCW, The Netherlands, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for their financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGautam, R., Srivastava, A., Jachak, S. M. & Saklani, A. (2010). Fitoterapia, 81, 45–49.  Web of Science CrossRef PubMed Google Scholar
First citationHassan, A. M. A. (1992). J. Chem. Soc. Pak. 14, 108–110.  Google Scholar
First citationIshar, M. P. S., Singh, G., Singh, S., Sreenivasan, K. K. & Singh, G. (2006). Bioorg. Med. Chem. Lett. 16, 1366–1370.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2987.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNohara, A., Umetani, T., Ukawa, K. & Sanno, Y. (1974). Chem. Pharm. Bull. 22, 2959–2965.  CrossRef CAS PubMed Google Scholar
First citationPatel, M. C., Nilesh, N. G. & Rajani, D. P. (2011). Der Pharma Chem. 3, 422–432.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-B. & Kong, L.-Y. (2007). Acta Cryst. E63, o4340.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds