organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′′-Benzyl­­idene-1′′-methyl-1′-phenyl-1′,2′,3′,5′,6′,7′,8′,8a'-octa­hydro­di­spiro[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 16 September 2012; accepted 18 September 2012; online 22 September 2012)

In the title compound, C37H34N2O2, the pyridinone ring adopts a half-chair conformation. In the octa­hydro­indolizine fused-ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the N—C(piperidine) bond. The mol­ecular structure features a weak intra­molecular C—H⋯O inter­action.

Related literature

For the importance of spiro compounds, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Liu et al. (2007[Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409-412.]); Molyneux & James (1982[Molyneux, R. J. & James, L. F. (1982). Science, 216, 190-191.]); Nash et al. (1988[Nash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403-1406.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Smith et al. (2007[Smith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169-1171.]). For related acenaphthyl­ene structures, see: Sundar et al. (2002[Sundar, T. V., Parthasarathi, V., Álvarez-Rúa, C., García-Granda, S., Saxena, A., Pardasani, P. & Pardasani, R. T. (2002). Acta Cryst. E58, o1405-o1407.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C37H34N2O2

  • Mr = 538.66

  • Monoclinic, P 21 /c

  • a = 8.4913 (3) Å

  • b = 16.6782 (6) Å

  • c = 20.5435 (7) Å

  • β = 100.028 (2)°

  • V = 2864.92 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 43034 measured reflections

  • 9332 independent reflections

  • 5857 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.03

  • 9332 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2 0.97 2.35 2.9329 (18) 118

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro indolizine derivatives have been found to possess a variety of biological activities such as antibacterial, antiinflammatory, antiviral, (Nash et al., 1988; Molyneux & James, 1982), anticancer (Liu et al., 2007; Smith et al., 2007) and antitumor (Pearson & Guo, 2001). They are also important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). In view of the high medicinal value of these compounds in conjunction with our research interests, prompted us to synthesize and report the X-ray studies of the title compound. Related acenaphthylene structures are known (Sundar et al., 2002).

In the title compound (Fig. 1), the pyridinone ring adopts twisted chair conformation with atoms N2 and C3 deviating by -0.6237 (1) and -0.4716 (1) Å, respectively, from the least-squares plane defined by other atoms (C2/C4/C5/C6). Within the octahydroindolizine, the six membered piperidine ring adopts chair conformation as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.551 (2) Å, θ = 145.92 (2)° and Φ = 223.5 (3)°. The dihedral angle between the two benzene rings and the acenapthalene rings are 70.74 (1) and 34.81 (1) Å. The molecular structure also features a weak intramolecular C—H···O interaction (Table 1).

Related literature top

For the importance of spiro compounds, see: Gubin et al. (1992); Liu et al. (2007); Molyneux & James (1982); Nash et al. (1988); Pearson & Guo (2001); Smith et al. (2007). For related acenaphthylene structures, see: Sundar et al. (2002). For additional conformational analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml), and heated to reflux for 60 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. Melting point: 479 K, Yield: 89%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and Uiso = 1.2–1.5Ueq(C).

Structure description top

Spiro indolizine derivatives have been found to possess a variety of biological activities such as antibacterial, antiinflammatory, antiviral, (Nash et al., 1988; Molyneux & James, 1982), anticancer (Liu et al., 2007; Smith et al., 2007) and antitumor (Pearson & Guo, 2001). They are also important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). In view of the high medicinal value of these compounds in conjunction with our research interests, prompted us to synthesize and report the X-ray studies of the title compound. Related acenaphthylene structures are known (Sundar et al., 2002).

In the title compound (Fig. 1), the pyridinone ring adopts twisted chair conformation with atoms N2 and C3 deviating by -0.6237 (1) and -0.4716 (1) Å, respectively, from the least-squares plane defined by other atoms (C2/C4/C5/C6). Within the octahydroindolizine, the six membered piperidine ring adopts chair conformation as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.551 (2) Å, θ = 145.92 (2)° and Φ = 223.5 (3)°. The dihedral angle between the two benzene rings and the acenapthalene rings are 70.74 (1) and 34.81 (1) Å. The molecular structure also features a weak intramolecular C—H···O interaction (Table 1).

For the importance of spiro compounds, see: Gubin et al. (1992); Liu et al. (2007); Molyneux & James (1982); Nash et al. (1988); Pearson & Guo (2001); Smith et al. (2007). For related acenaphthylene structures, see: Sundar et al. (2002). For additional conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
5''-Benzylidene-1''-methyl-1'-phenyl-1',2',3',5',6',7',8',8a'- octahydrodispiro[acenaphthylene-1,3'-indolizine-2',3''-piperidine]- 2,4''(1H)-dione top
Crystal data top
C37H34N2O2F(000) = 1144
Mr = 538.66Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 8.4913 (3) Åθ = 2–31°
b = 16.6782 (6) ŵ = 0.08 mm1
c = 20.5435 (7) ÅT = 293 K
β = 100.028 (2)°Block, yellow
V = 2864.92 (17) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
9332 independent reflections
Radiation source: fine-focus sealed tube5857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0 pixels mm-1θmax = 31.3°, θmin = 1.6°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2224
Tmin = 0.967, Tmax = 0.974l = 2530
43034 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.5825P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9332 reflectionsΔρmax = 0.29 e Å3
371 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (7)
Crystal data top
C37H34N2O2V = 2864.92 (17) Å3
Mr = 538.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4913 (3) ŵ = 0.08 mm1
b = 16.6782 (6) ÅT = 293 K
c = 20.5435 (7) Å0.21 × 0.19 × 0.18 mm
β = 100.028 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
9332 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5857 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.035
43034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
9332 reflectionsΔρmin = 0.23 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02236 (11)0.45746 (6)0.21716 (5)0.0463 (3)
N10.18434 (14)0.27311 (6)0.30171 (5)0.0354 (2)
C130.29204 (15)0.32105 (7)0.26884 (6)0.0316 (2)
C70.14839 (15)0.39871 (7)0.34350 (6)0.0311 (2)
H70.03730.40340.32080.037*
N20.50761 (13)0.45681 (7)0.26318 (6)0.0386 (3)
C40.16715 (15)0.45441 (7)0.22914 (6)0.0320 (3)
C710.16991 (16)0.45865 (8)0.39942 (7)0.0370 (3)
O20.54309 (13)0.29695 (7)0.34803 (6)0.0555 (3)
C20.40959 (15)0.45688 (8)0.31454 (6)0.0342 (3)
H2A0.38400.51150.32500.041*
H2B0.46760.43210.35430.041*
C170.26458 (17)0.29985 (8)0.19575 (6)0.0364 (3)
C510.19570 (16)0.50244 (8)0.12120 (7)0.0383 (3)
H510.09010.48520.11080.046*
C30.25581 (14)0.41018 (7)0.28993 (6)0.0291 (2)
C520.26203 (17)0.53783 (8)0.06646 (7)0.0406 (3)
C180.1305 (2)0.30038 (9)0.14857 (7)0.0452 (3)
H180.03370.31860.15820.054*
C140.47326 (17)0.29755 (8)0.29136 (7)0.0415 (3)
C80.17403 (16)0.31133 (7)0.36444 (6)0.0341 (3)
H80.27590.30560.39490.041*
C50.26617 (15)0.49163 (8)0.18385 (7)0.0342 (3)
C90.0405 (2)0.27382 (9)0.39425 (8)0.0470 (3)
H9A0.06150.28470.36620.056*
H9B0.03850.29720.43730.056*
C60.43879 (16)0.51107 (10)0.21008 (7)0.0432 (3)
H6A0.49970.50740.17440.052*
H6B0.44660.56570.22640.052*
C150.53287 (19)0.26629 (9)0.23289 (8)0.0485 (4)
C210.4175 (2)0.23699 (10)0.11699 (9)0.0558 (4)
C160.40641 (19)0.26788 (8)0.17969 (7)0.0428 (3)
C120.2153 (2)0.18695 (8)0.30668 (8)0.0488 (4)
H12A0.31730.17710.33500.059*
H12B0.21990.16520.26330.059*
C720.2823 (2)0.44916 (10)0.45633 (7)0.0521 (4)
H720.35000.40490.46030.063*
C110.0826 (2)0.14647 (9)0.33507 (9)0.0571 (4)
H11A0.10590.08970.34090.068*
H11B0.01740.15200.30440.068*
C100.0659 (2)0.18347 (10)0.40116 (9)0.0592 (4)
H10A0.16160.17270.43330.071*
H10B0.02420.15930.41710.071*
C10.67269 (18)0.47886 (13)0.28887 (9)0.0613 (5)
H1A0.73350.47810.25360.092*
H1B0.71770.44130.32240.092*
H1C0.67570.53170.30750.092*
C760.0721 (2)0.52561 (9)0.39544 (9)0.0537 (4)
H760.00480.53400.35790.064*
C200.2790 (3)0.24183 (11)0.06903 (9)0.0658 (5)
H200.28080.22390.02630.079*
C530.2212 (2)0.50518 (11)0.00374 (8)0.0577 (4)
H530.15380.46090.00270.069*
C570.3575 (2)0.60591 (10)0.07381 (8)0.0565 (4)
H570.38390.63020.11500.068*
C750.0883 (3)0.58062 (11)0.44760 (13)0.0743 (6)
H750.02180.62530.44430.089*
C190.1418 (3)0.27253 (11)0.08442 (8)0.0600 (5)
H190.05170.27540.05150.072*
C740.1995 (3)0.56989 (13)0.50282 (11)0.0770 (6)
H740.20950.60700.53710.092*
C230.6913 (3)0.20440 (14)0.16253 (14)0.0856 (7)
H230.78910.18320.15640.103*
C220.5681 (3)0.20404 (12)0.11094 (12)0.0762 (6)
H220.58260.18180.07090.091*
C540.2788 (3)0.53737 (14)0.04922 (9)0.0760 (6)
H540.25100.51430.09080.091*
C730.2965 (3)0.50437 (13)0.50781 (9)0.0701 (5)
H730.37240.49650.54570.084*
C560.4135 (3)0.63776 (13)0.02018 (10)0.0766 (6)
H560.47720.68340.02560.092*
C240.6777 (2)0.23534 (12)0.22476 (12)0.0723 (6)
H240.76430.23490.25940.087*
C550.3763 (3)0.60290 (15)0.04099 (10)0.0802 (6)
H550.41720.62380.07660.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (5)0.0548 (6)0.0527 (6)0.0048 (4)0.0061 (4)0.0185 (5)
N10.0465 (6)0.0259 (5)0.0339 (6)0.0008 (4)0.0076 (5)0.0001 (4)
C130.0351 (6)0.0294 (6)0.0300 (6)0.0038 (5)0.0046 (5)0.0002 (5)
C70.0313 (6)0.0301 (6)0.0326 (6)0.0001 (5)0.0071 (5)0.0008 (5)
N20.0276 (5)0.0515 (7)0.0370 (6)0.0019 (5)0.0061 (4)0.0012 (5)
C40.0322 (6)0.0282 (6)0.0354 (6)0.0007 (5)0.0053 (5)0.0028 (5)
C710.0393 (7)0.0339 (6)0.0418 (7)0.0039 (5)0.0187 (6)0.0039 (5)
O20.0497 (6)0.0619 (7)0.0496 (6)0.0142 (5)0.0059 (5)0.0064 (5)
C20.0321 (6)0.0369 (6)0.0334 (6)0.0024 (5)0.0053 (5)0.0029 (5)
C170.0480 (8)0.0294 (6)0.0323 (6)0.0001 (5)0.0084 (6)0.0011 (5)
C510.0381 (7)0.0348 (6)0.0419 (7)0.0028 (5)0.0067 (6)0.0050 (5)
C30.0294 (6)0.0282 (6)0.0296 (6)0.0012 (4)0.0052 (4)0.0013 (4)
C520.0433 (7)0.0400 (7)0.0381 (7)0.0026 (6)0.0058 (6)0.0064 (6)
C180.0546 (9)0.0409 (7)0.0377 (7)0.0058 (6)0.0011 (6)0.0028 (6)
C140.0409 (7)0.0368 (7)0.0452 (8)0.0097 (6)0.0029 (6)0.0011 (6)
C80.0413 (7)0.0306 (6)0.0303 (6)0.0015 (5)0.0061 (5)0.0011 (5)
C50.0342 (6)0.0307 (6)0.0386 (7)0.0000 (5)0.0084 (5)0.0047 (5)
C90.0574 (9)0.0417 (8)0.0443 (8)0.0093 (7)0.0154 (7)0.0031 (6)
C60.0371 (7)0.0523 (8)0.0405 (7)0.0079 (6)0.0081 (6)0.0061 (6)
C150.0483 (8)0.0409 (8)0.0582 (9)0.0112 (6)0.0149 (7)0.0029 (7)
C210.0809 (12)0.0408 (8)0.0534 (10)0.0052 (8)0.0325 (9)0.0091 (7)
C160.0557 (9)0.0323 (7)0.0441 (8)0.0006 (6)0.0193 (7)0.0041 (6)
C120.0672 (10)0.0288 (7)0.0497 (8)0.0032 (6)0.0084 (7)0.0017 (6)
C720.0644 (10)0.0537 (9)0.0395 (8)0.0023 (7)0.0124 (7)0.0090 (7)
C110.0745 (11)0.0309 (7)0.0644 (11)0.0082 (7)0.0079 (9)0.0046 (7)
C100.0774 (12)0.0429 (8)0.0602 (10)0.0139 (8)0.0199 (9)0.0114 (7)
C10.0307 (7)0.0949 (14)0.0573 (10)0.0090 (8)0.0047 (7)0.0078 (9)
C760.0509 (9)0.0394 (8)0.0754 (11)0.0024 (6)0.0239 (8)0.0058 (7)
C200.1035 (16)0.0572 (10)0.0409 (9)0.0175 (10)0.0240 (10)0.0153 (7)
C530.0724 (11)0.0551 (10)0.0472 (9)0.0198 (8)0.0150 (8)0.0028 (7)
C570.0699 (11)0.0535 (9)0.0444 (8)0.0209 (8)0.0047 (8)0.0056 (7)
C750.0807 (14)0.0449 (9)0.1095 (18)0.0002 (9)0.0502 (13)0.0219 (10)
C190.0859 (13)0.0544 (10)0.0361 (8)0.0158 (9)0.0005 (8)0.0064 (7)
C740.0941 (15)0.0696 (13)0.0778 (14)0.0238 (11)0.0442 (13)0.0385 (11)
C230.0820 (15)0.0721 (14)0.115 (2)0.0208 (11)0.0528 (15)0.0141 (13)
C220.1001 (17)0.0591 (11)0.0839 (15)0.0003 (11)0.0566 (14)0.0189 (10)
C540.1030 (16)0.0851 (15)0.0436 (10)0.0282 (12)0.0228 (10)0.0055 (9)
C730.0879 (14)0.0775 (13)0.0477 (10)0.0191 (11)0.0194 (9)0.0225 (9)
C560.0903 (15)0.0769 (13)0.0618 (12)0.0402 (11)0.0107 (10)0.0169 (10)
C240.0583 (11)0.0675 (12)0.0946 (15)0.0221 (9)0.0227 (10)0.0086 (11)
C550.0961 (16)0.0948 (16)0.0544 (11)0.0282 (13)0.0259 (11)0.0160 (11)
Geometric parameters (Å, º) top
O1—C41.2122 (15)C15—C161.393 (2)
N1—C81.4539 (16)C21—C201.399 (3)
N1—C121.4612 (18)C21—C161.406 (2)
N1—C131.4652 (17)C21—C221.418 (3)
C13—C171.5207 (17)C12—C111.514 (2)
C13—C141.5772 (18)C12—H12A0.9700
C13—C31.5933 (17)C12—H12B0.9700
C7—C711.5097 (18)C72—C731.391 (2)
C7—C81.5243 (17)C72—H720.9300
C7—C31.5588 (16)C11—C101.520 (3)
C7—H70.9800C11—H11A0.9700
N2—C21.4533 (16)C11—H11B0.9700
N2—C11.4564 (18)C10—H10A0.9700
N2—C61.4589 (18)C10—H10B0.9700
C4—C51.4934 (17)C1—H1A0.9600
C4—C31.5306 (17)C1—H1B0.9600
C71—C721.384 (2)C1—H1C0.9600
C71—C761.386 (2)C76—C751.399 (3)
O2—C141.2112 (17)C76—H760.9300
C2—C31.5289 (17)C20—C191.359 (3)
C2—H2A0.9700C20—H200.9300
C2—H2B0.9700C53—C541.377 (2)
C17—C181.360 (2)C53—H530.9300
C17—C161.408 (2)C57—C561.380 (2)
C51—C51.3337 (19)C57—H570.9300
C51—C521.4666 (19)C75—C741.355 (3)
C51—H510.9300C75—H750.9300
C52—C531.386 (2)C19—H190.9300
C52—C571.388 (2)C74—C731.361 (3)
C18—C191.416 (2)C74—H740.9300
C18—H180.9300C23—C221.353 (3)
C14—C151.477 (2)C23—C241.402 (3)
C8—C91.5144 (19)C23—H230.9300
C8—H80.9800C22—H220.9300
C5—C61.5064 (19)C54—C551.364 (3)
C9—C101.525 (2)C54—H540.9300
C9—H9A0.9700C73—H730.9300
C9—H9B0.9700C56—C551.371 (3)
C6—H6A0.9700C56—H560.9300
C6—H6B0.9700C24—H240.9300
C15—C241.371 (2)C55—H550.9300
C8—N1—C12114.03 (11)C20—C21—C16116.24 (16)
C8—N1—C13107.94 (10)C20—C21—C22128.43 (17)
C12—N1—C13116.74 (11)C16—C21—C22115.33 (19)
N1—C13—C17109.12 (10)C15—C16—C21123.14 (15)
N1—C13—C14112.62 (10)C15—C16—C17113.43 (13)
C17—C13—C14101.88 (10)C21—C16—C17123.37 (15)
N1—C13—C3102.61 (9)N1—C12—C11109.19 (13)
C17—C13—C3118.80 (10)N1—C12—H12A109.8
C14—C13—C3112.14 (10)C11—C12—H12A109.8
C71—C7—C8115.21 (11)N1—C12—H12B109.8
C71—C7—C3116.61 (10)C11—C12—H12B109.8
C8—C7—C3104.13 (10)H12A—C12—H12B108.3
C71—C7—H7106.7C71—C72—C73121.46 (17)
C8—C7—H7106.7C71—C72—H72119.3
C3—C7—H7106.7C73—C72—H72119.3
C2—N2—C1111.92 (12)C12—C11—C10110.76 (13)
C2—N2—C6109.69 (11)C12—C11—H11A109.5
C1—N2—C6110.45 (12)C10—C11—H11A109.5
O1—C4—C5121.15 (11)C12—C11—H11B109.5
O1—C4—C3121.55 (11)C10—C11—H11B109.5
C5—C4—C3117.28 (10)H11A—C11—H11B108.1
C72—C71—C76117.41 (14)C11—C10—C9110.58 (13)
C72—C71—C7122.78 (12)C11—C10—H10A109.5
C76—C71—C7119.79 (14)C9—C10—H10A109.5
N2—C2—C3108.88 (10)C11—C10—H10B109.5
N2—C2—H2A109.9C9—C10—H10B109.5
C3—C2—H2A109.9H10A—C10—H10B108.1
N2—C2—H2B109.9N2—C1—H1A109.5
C3—C2—H2B109.9N2—C1—H1B109.5
H2A—C2—H2B108.3H1A—C1—H1B109.5
C18—C17—C16118.64 (13)N2—C1—H1C109.5
C18—C17—C13131.87 (13)H1A—C1—H1C109.5
C16—C17—C13109.21 (12)H1B—C1—H1C109.5
C5—C51—C52128.80 (13)C71—C76—C75120.34 (18)
C5—C51—H51115.6C71—C76—H76119.8
C52—C51—H51115.6C75—C76—H76119.8
C2—C3—C4107.15 (10)C19—C20—C21120.48 (15)
C2—C3—C7113.58 (10)C19—C20—H20119.8
C4—C3—C7111.72 (10)C21—C20—H20119.8
C2—C3—C13111.78 (10)C54—C53—C52121.02 (16)
C4—C3—C13108.58 (10)C54—C53—H53119.5
C7—C3—C13104.00 (9)C52—C53—H53119.5
C53—C52—C57117.99 (14)C56—C57—C52120.26 (16)
C53—C52—C51119.16 (13)C56—C57—H57119.9
C57—C52—C51122.75 (14)C52—C57—H57119.9
C17—C18—C19118.50 (16)C74—C75—C76121.05 (18)
C17—C18—H18120.8C74—C75—H75119.5
C19—C18—H18120.8C76—C75—H75119.5
O2—C14—C15126.79 (13)C20—C19—C18122.66 (17)
O2—C14—C13124.98 (13)C20—C19—H19118.7
C15—C14—C13107.71 (12)C18—C19—H19118.7
N1—C8—C9110.01 (11)C75—C74—C73119.54 (17)
N1—C8—C7101.35 (10)C75—C74—H74120.2
C9—C8—C7115.39 (11)C73—C74—H74120.2
N1—C8—H8109.9C22—C23—C24122.73 (19)
C9—C8—H8109.9C22—C23—H23118.6
C7—C8—H8109.9C24—C23—H23118.6
C51—C5—C4116.79 (12)C23—C22—C21121.06 (18)
C51—C5—C6124.14 (12)C23—C22—H22119.5
C4—C5—C6119.01 (11)C21—C22—H22119.5
C8—C9—C10110.01 (13)C55—C54—C53120.40 (18)
C8—C9—H9A109.7C55—C54—H54119.8
C10—C9—H9A109.7C53—C54—H54119.8
C8—C9—H9B109.7C74—C73—C72120.2 (2)
C10—C9—H9B109.7C74—C73—H73119.9
H9A—C9—H9B108.2C72—C73—H73119.9
N2—C6—C5111.84 (11)C55—C56—C57120.82 (18)
N2—C6—H6A109.2C55—C56—H56119.6
C5—C6—H6A109.2C57—C56—H56119.6
N2—C6—H6B109.2C15—C24—C23117.9 (2)
C5—C6—H6B109.2C15—C24—H24121.1
H6A—C6—H6B107.9C23—C24—H24121.1
C24—C15—C16119.82 (17)C54—C55—C56119.44 (17)
C24—C15—C14132.36 (17)C54—C55—H55120.3
C16—C15—C14107.74 (12)C56—C55—H55120.3
C8—N1—C13—C17161.77 (10)C52—C51—C5—C4179.34 (13)
C12—N1—C13—C1768.27 (14)C52—C51—C5—C63.5 (2)
C8—N1—C13—C1485.87 (12)O1—C4—C5—C5122.96 (19)
C12—N1—C13—C1444.09 (15)C3—C4—C5—C51155.19 (12)
C8—N1—C13—C334.89 (12)O1—C4—C5—C6159.74 (13)
C12—N1—C13—C3164.86 (11)C3—C4—C5—C622.11 (17)
C8—C7—C71—C7235.14 (18)N1—C8—C9—C1055.74 (16)
C3—C7—C71—C7287.39 (16)C7—C8—C9—C10169.61 (12)
C8—C7—C71—C76143.38 (13)C2—N2—C6—C554.29 (15)
C3—C7—C71—C7694.09 (15)C1—N2—C6—C5178.11 (13)
C1—N2—C2—C3163.22 (13)C51—C5—C6—N2147.88 (13)
C6—N2—C2—C373.82 (13)C4—C5—C6—N229.22 (18)
N1—C13—C17—C1855.50 (18)O2—C14—C15—C245.5 (3)
C14—C13—C17—C18174.76 (14)C13—C14—C15—C24177.54 (19)
C3—C13—C17—C1861.52 (19)O2—C14—C15—C16171.13 (15)
N1—C13—C17—C16118.20 (12)C13—C14—C15—C160.94 (16)
C14—C13—C17—C161.06 (14)C24—C15—C16—C211.7 (2)
C3—C13—C17—C16124.78 (12)C14—C15—C16—C21175.37 (14)
N2—C2—C3—C461.97 (13)C24—C15—C16—C17178.83 (16)
N2—C2—C3—C7174.16 (10)C14—C15—C16—C171.73 (18)
N2—C2—C3—C1356.87 (13)C20—C21—C16—C15178.90 (15)
O1—C4—C3—C2145.26 (12)C22—C21—C16—C150.4 (2)
C5—C4—C3—C236.60 (14)C20—C21—C16—C172.1 (2)
O1—C4—C3—C720.26 (17)C22—C21—C16—C17177.24 (15)
C5—C4—C3—C7161.60 (10)C18—C17—C16—C15176.47 (13)
O1—C4—C3—C1393.86 (14)C13—C17—C16—C151.81 (17)
C5—C4—C3—C1384.29 (13)C18—C17—C16—C210.6 (2)
C71—C7—C3—C223.51 (15)C13—C17—C16—C21175.28 (13)
C8—C7—C3—C2104.61 (12)C8—N1—C12—C1159.07 (16)
C71—C7—C3—C497.83 (13)C13—N1—C12—C11173.91 (12)
C8—C7—C3—C4134.04 (10)C76—C71—C72—C730.3 (2)
C71—C7—C3—C13145.25 (11)C7—C71—C72—C73178.25 (15)
C8—C7—C3—C1317.12 (12)N1—C12—C11—C1055.75 (18)
N1—C13—C3—C2132.33 (10)C12—C11—C10—C955.3 (2)
C17—C13—C3—C2107.27 (13)C8—C9—C10—C1154.83 (19)
C14—C13—C3—C211.23 (14)C72—C71—C76—C750.1 (2)
N1—C13—C3—C4109.69 (10)C7—C71—C76—C75178.50 (14)
C17—C13—C3—C410.71 (15)C16—C21—C20—C192.1 (2)
C14—C13—C3—C4129.22 (11)C22—C21—C20—C19177.08 (19)
N1—C13—C3—C79.40 (12)C57—C52—C53—C542.6 (3)
C17—C13—C3—C7129.80 (11)C51—C52—C53—C54178.97 (18)
C14—C13—C3—C7111.69 (11)C53—C52—C57—C562.1 (3)
C5—C51—C52—C53141.99 (17)C51—C52—C57—C56178.41 (18)
C5—C51—C52—C5741.8 (2)C71—C76—C75—C740.1 (3)
C16—C17—C18—C193.2 (2)C21—C20—C19—C180.4 (3)
C13—C17—C18—C19176.42 (14)C17—C18—C19—C203.2 (2)
N1—C13—C14—O255.56 (18)C76—C75—C74—C730.3 (3)
C17—C13—C14—O2172.32 (14)C24—C23—C22—C211.3 (4)
C3—C13—C14—O259.57 (18)C20—C21—C22—C23179.7 (2)
N1—C13—C14—C15116.69 (12)C16—C21—C22—C231.1 (3)
C17—C13—C14—C150.07 (14)C52—C53—C54—C550.7 (4)
C3—C13—C14—C15128.18 (12)C75—C74—C73—C720.5 (3)
C12—N1—C8—C959.48 (15)C71—C72—C73—C740.5 (3)
C13—N1—C8—C9169.06 (11)C52—C57—C56—C550.1 (3)
C12—N1—C8—C7177.93 (11)C16—C15—C24—C231.5 (3)
C13—N1—C8—C746.47 (12)C14—C15—C24—C23174.78 (19)
C71—C7—C8—N1166.60 (10)C22—C23—C24—C150.0 (4)
C3—C7—C8—N137.62 (12)C53—C54—C55—C561.6 (4)
C71—C7—C8—C974.61 (15)C57—C56—C55—C542.0 (4)
C3—C7—C8—C9156.41 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O20.972.352.9329 (18)118

Experimental details

Crystal data
Chemical formulaC37H34N2O2
Mr538.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4913 (3), 16.6782 (6), 20.5435 (7)
β (°) 100.028 (2)
V3)2864.92 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
43034, 9332, 5857
Rint0.035
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.03
No. of reflections9332
No. of parameters371
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O20.972.352.9329 (18)118
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks DST, New Delhi, for funds under the fast track scheme (grant No. SR/FT/CS-073/2009).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLiu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMolyneux, R. J. & James, L. F. (1982). Science, 216, 190–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403–1406.  CrossRef CAS Web of Science Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169–1171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Álvarez-Rúa, C., García-Granda, S., Saxena, A., Pardasani, P. & Pardasani, R. T. (2002). Acta Cryst. E58, o1405–o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds