organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­meth­yl-2-hy­dr­oxy­benzaldehyde

aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hotmail.com

(Received 9 August 2012; accepted 7 September 2012; online 15 September 2012)

In the title compound, C8H7ClO2, the hydroxyl and aldehyde groups are co-planar with the benzene ring [maximum deviation 0.018 (3) Å], and the Cl—C—C plane is almost perpendicular to the benzene ring [dihedral angle 83.7 (2)°]. An intra­molecular O—H⋯O hydrogen bond occurs between the hydroxyl and aldehyde groups.

Related literature

For related structures, see: Zondervan et al. (1997[Zondervan, V., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111-3114.]); Tang et al. (2010[Tang, B., Chen, G., Song, X., Cen, C. & Han, C. (2010). Acta Cryst. E66, o1912.]). For the synthesis, see: Song & Liu (2004[Song, S.-H. & Liu, S.-Z. (2004). J. Henan Normal Univ. (Nat. Sci.), 32, 101-103.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClO2

  • Mr = 170.59

  • Orthorhombic, P 21 21 21

  • a = 4.483 (6) Å

  • b = 12.521 (18) Å

  • c = 13.71 (2) Å

  • V = 769.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 293 K

  • 0.30 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Ins. Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.92

  • 3730 measured reflections

  • 1369 independent reflections

  • 1075 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.133

  • S = 0.98

  • 1369 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6571 Friedel pairs

  • Flack parameter: −0.06 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.91 2.628 (5) 146

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Ins. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Ins. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-(Chloromethyl)-2-hydroxybenzaldehyde are well investigated just as it can be a precusor to an inhibitor-schiff bases for metal. However, just as we synthesize 5-(chloromethyl)-2-hydroxybenzaldehyde following one mehtod(Song & Liu, 2004) an unexpected byprodut 3-(chloromethyl)-2-hydroxybenzaldehyde was found and its cystal structure was determined.

Related literature top

For related structures, see: Zondervan et al. (1997); Tang et al. (2010). For the synthesis, see: Song & Liu (2004).

Experimental top

Following a reference (Song et al. 2004), salicylaldehyde (30.5 g), paraformaldehyde (13.5 g) and conc. HCl (150 ml) were mixed and stirred at room temperature for 48 h. The precipitated benzylchloride derivatives which mostly are 5-(chloromethyl)-2-hydroxybenzaldehyde were filtered off then washed with 0.5% NaHCO3 solution and water slightly. These humid precipitate were then dried in vac. for about 3 months. There are block colorless crystals appeared on the surface of precipitate.

Refinement top

H atoms were positioned geometrically and refined using a riding model.

Structure description top

5-(Chloromethyl)-2-hydroxybenzaldehyde are well investigated just as it can be a precusor to an inhibitor-schiff bases for metal. However, just as we synthesize 5-(chloromethyl)-2-hydroxybenzaldehyde following one mehtod(Song & Liu, 2004) an unexpected byprodut 3-(chloromethyl)-2-hydroxybenzaldehyde was found and its cystal structure was determined.

For related structures, see: Zondervan et al. (1997); Tang et al. (2010). For the synthesis, see: Song & Liu (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for all atoms.
[Figure 2] Fig. 2. The cell packing diagram of title compound, viewed down the a axis.
3-Chloromethyl-2-hydroxybenzaldehyde top
Crystal data top
C8H7ClO2F(000) = 352
Mr = 170.59Dx = 1.472 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1369 reflections
a = 4.483 (6) Åθ = 2.2–25.0°
b = 12.521 (18) ŵ = 0.44 mm1
c = 13.71 (2) ÅT = 293 K
V = 769.6 (19) Å3Block, colorless
Z = 40.30 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1369 independent reflections
Radiation source: fine-focus sealed tube1075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scanθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 55
Tmin = 0.88, Tmax = 0.92k = 1514
3730 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1369 reflectionsΔρmax = 0.31 e Å3
101 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 6571 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (13)
Crystal data top
C8H7ClO2V = 769.6 (19) Å3
Mr = 170.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.483 (6) ŵ = 0.44 mm1
b = 12.521 (18) ÅT = 293 K
c = 13.71 (2) Å0.30 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1369 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1075 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.92Rint = 0.052
3730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.31 e Å3
S = 0.98Δρmin = 0.32 e Å3
1369 reflectionsAbsolute structure: Flack (1983), 6571 Friedel pairs
101 parametersAbsolute structure parameter: 0.06 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5383 (2)0.21212 (5)0.21927 (5)0.0606 (3)
O10.3758 (7)0.05428 (14)0.16474 (16)0.0558 (7)
H10.26360.10570.15980.084*
O20.0222 (7)0.18989 (15)0.07502 (19)0.0640 (7)
C110.6216 (8)0.07288 (19)0.0685 (2)0.0440 (7)
C120.4289 (7)0.01314 (17)0.0756 (2)0.0384 (7)
C130.2937 (8)0.05626 (17)0.0076 (2)0.0403 (7)
C140.3593 (9)0.0101 (2)0.0985 (2)0.0509 (9)
H14A0.27190.03780.15460.061*
C150.5488 (10)0.0745 (2)0.1057 (2)0.0560 (9)
H15A0.59070.10430.16630.067*
C160.6779 (9)0.1157 (2)0.0228 (3)0.0507 (8)
H16A0.80620.17380.02820.061*
C170.7744 (9)0.1173 (3)0.1567 (3)0.0572 (9)
H17A0.95810.15220.13710.069*
H17B0.82520.05940.20070.069*
C180.0905 (9)0.14473 (19)0.0012 (2)0.0504 (9)
H18A0.00500.16950.05870.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0771 (7)0.0537 (4)0.0510 (5)0.0025 (4)0.0076 (4)0.0126 (3)
O10.078 (2)0.0496 (10)0.0400 (12)0.0038 (11)0.0019 (12)0.0056 (7)
O20.074 (2)0.0533 (9)0.0649 (15)0.0091 (11)0.0058 (15)0.0042 (9)
C110.045 (2)0.0425 (11)0.0443 (16)0.0089 (12)0.0040 (13)0.0039 (10)
C120.0424 (18)0.0371 (9)0.0358 (13)0.0089 (11)0.0027 (14)0.0003 (9)
C130.042 (2)0.0386 (10)0.0398 (16)0.0085 (12)0.0002 (13)0.0032 (9)
C140.067 (3)0.0507 (12)0.0353 (15)0.0082 (14)0.0039 (16)0.0031 (10)
C150.067 (3)0.0583 (14)0.0427 (17)0.0024 (16)0.0070 (17)0.0048 (11)
C160.050 (2)0.0474 (12)0.055 (2)0.0035 (14)0.0055 (17)0.0036 (12)
C170.054 (2)0.0597 (14)0.058 (2)0.0024 (15)0.0145 (17)0.0069 (14)
C180.053 (2)0.0412 (11)0.057 (2)0.0004 (12)0.0011 (17)0.0076 (11)
Geometric parameters (Å, º) top
Cl1—C171.808 (4)C13—C181.437 (4)
O1—C121.348 (4)C14—C151.362 (5)
O1—H10.8200C14—H14A0.9300
O2—C181.227 (4)C15—C161.376 (5)
C11—C121.384 (4)C15—H15A0.9300
C11—C161.386 (5)C16—H16A0.9300
C11—C171.496 (5)C17—H17A0.9700
C12—C131.400 (4)C17—H17B0.9700
C13—C141.404 (4)C18—H18A0.9300
C12—O1—H1109.5C14—C15—H15A120.2
C12—C11—C16118.6 (3)C16—C15—H15A120.2
C12—C11—C17121.2 (3)C15—C16—C11121.7 (3)
C16—C11—C17120.2 (3)C15—C16—H16A119.2
O1—C12—C11118.1 (3)C11—C16—H16A119.2
O1—C12—C13121.0 (3)C11—C17—Cl1111.1 (3)
C11—C12—C13120.9 (3)C11—C17—H17A109.4
C12—C13—C14118.2 (3)Cl1—C17—H17A109.4
C12—C13—C18121.5 (3)C11—C17—H17B109.4
C14—C13—C18120.3 (3)Cl1—C17—H17B109.4
C15—C14—C13121.0 (3)H17A—C17—H17B108.0
C15—C14—H14A119.5O2—C18—C13124.5 (3)
C13—C14—H14A119.5O2—C18—H18A117.8
C14—C15—C16119.6 (3)C13—C18—H18A117.8
C16—C11—C12—O1180.0 (3)C18—C13—C14—C15179.3 (3)
C17—C11—C12—O11.8 (4)C13—C14—C15—C160.1 (5)
C16—C11—C12—C130.1 (4)C14—C15—C16—C110.4 (5)
C17—C11—C12—C13178.1 (3)C12—C11—C16—C150.4 (5)
O1—C12—C13—C14179.7 (3)C17—C11—C16—C15177.8 (3)
C11—C12—C13—C140.2 (4)C12—C11—C17—Cl184.7 (3)
O1—C12—C13—C180.9 (4)C16—C11—C17—Cl197.2 (4)
C11—C12—C13—C18179.3 (3)C12—C13—C18—O20.9 (5)
C12—C13—C14—C150.2 (5)C14—C13—C18—O2179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.628 (5)146

Experimental details

Crystal data
Chemical formulaC8H7ClO2
Mr170.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.483 (6), 12.521 (18), 13.71 (2)
V3)769.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.30 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.88, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
3730, 1369, 1075
Rint0.052
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.133, 0.98
No. of reflections1369
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32
Absolute structureFlack (1983), 6571 Friedel pairs
Absolute structure parameter0.06 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.628 (5)146
 

Acknowledgements

The author thanks the doctoral startup foundation of Hengyang Normal University (09B02) and the foundation of Hengyang Bureau of Science and Technology (2011 K J21) for financial support. He also thanks Dr L.-S. Wang for help with the structure determination.

References

First citationBruker (2001). SADABS. Bruker AXS Ins. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Ins. Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S.-H. & Liu, S.-Z. (2004). J. Henan Normal Univ. (Nat. Sci.), 32, 101–103.  CAS Google Scholar
First citationTang, B., Chen, G., Song, X., Cen, C. & Han, C. (2010). Acta Cryst. E66, o1912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZondervan, V., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111–3114.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds