organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­cyclo­[8.2.1.14,7.02,9.03,8]tetra­deca-5,11-diene

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 4 September 2012; accepted 10 September 2012; online 19 September 2012)

The title compound, C14H16, was prepared through [2 + 2] cyclo­addition of norbornadiene. There are two independent mol­ecules in the asymmetric unit: each is centrosymmetric with the centroid of the four-membered ring located about an inversion center. Each mol­ecule possesses an exo–trans–exo conformation.

Related literature

For the preparation of the title compound, see: Chen et al. (2002[Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.]). For the spectroscopy of D–S–A mol­ecules (electron donor–acceptor chromophores linked by spacers), see: Chen et al. (2002[Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.], 2006[Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136-12144.]); Chow et al. (1999[Chow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799-7801.], 2005[Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967-6975.]). For the electronic device applications of D–S–A mol­ecules, see: Huang et al. (2011[Huang, X., Fang, Y., Li, X., Xie, Y. & Zhu, W. (2011). Dyes Pigm. 90, 297-303.]); Lee et al. (2011[Lee, C.-W., Lu, H.-P., Reddy, N. M., Lee, H.-W., Diau, E. W.-G. & Yeh, C.-Y. (2011). Dyes Pigm. 91, 317-323.]); Lin et al. (2010[Lin, C.-Y., Lo, C.-F., Hsieh, M.-H., Hsu, S.-J., Lu, H.-P. & Diau, E. W.-G. (2010). J. Chin. Chem. Soc. 57, 1136-1140.]); Raposo et al. (2011[Raposo, M. M. M., Castro, M. C. R., Belsley, M. & Fonseca, A. M. C. (2011). Dyes Pigm. 91, 454-465.]); Wang et al. (2011[Wang, Z., Zhang, W., Tao, F., Meng, K. G., Xi, L. Y., Li, Y. & Jiang, Q. (2011). Chin. Chem. Lett. 22, 1001-1004.]); Wu et al. (2010[Wu, S.-J., Chen, C.-Y., Li, J.-Y., Chen, J.-G., Lee, K.-M., Ho, K.-C. & Wu, C.-G. (2010). J. Chin. Chem. Soc. 57, 1127-1130.]); Xiang et al. (2011[Xiang, N., Huang, X., Feng, X., Liu, Y., Zhao, B., Deng, L., Shen, P., Fei, J. & Tan, S. (2011). Dyes Pigm. 88, 75-83.]); Zhou et al. (2011[Zhou, W., Zhao, B., Shen, P., Jiang, S., Huang, H., Deng, L. & Tan, S. (2011). Dyes Pigm. 91, 404-412.]). For related structures, see: Chen et al. (2011a[Chen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011a). Acta Cryst. E67, o1147.],b[Chen, K.-Y., Chang, M.-J., Fang, T.-C., Luo, M.-H. & Tsai, H.-Y. (2011b). Acta Cryst. E67, o3312.]); Tsai et al. (2012[Tsai, H.-Y., Luo, M.-H., Chang, M.-J., Fang, T.-C. & Chen, K.-Y. (2012). Chin. Chem. Lett. 23, 1043-1046.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16

  • Mr = 184.27

  • Monoclinic, P 21 /c

  • a = 10.7893 (7) Å

  • b = 10.8730 (6) Å

  • c = 9.2407 (6) Å

  • β = 109.022 (7)°

  • V = 1024.85 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 297 K

  • 0.70 × 0.60 × 0.50 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 4696 measured reflections

  • 2375 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.07

  • 2375 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Electron donor (D)-acceptor (A) chromophores linked by spacers (S), forming D–S–A dyads (Huang et al., 2011; Lee et al., 2011; Raposo et al., 2011), have attracted considerable attention due to their potential applications in the design of molecular devices (Lin et al., 2010; Wang et al., 2011; Wu et al., 2010; Xiang et al., 2011; Zhou et al., 2011). Numerous types of rigid spacers have also been reported (Chen et al., 2002; Chow et al., 1999). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. Consequently, the rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups can be extensively investigated (Chen et al., 2006; Chow et al., 2005).

The ORTEP diagram of the title compound is shown in Figure 1. There are two crystallographically independent molecules in the asymmetric unit. The molecules possess an exo-trans-exo configuration. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1–C3/C7/C6) and B (C3–C7) are Q2 = 0.5975 (16) Å and φ2 = 287.85 (15)°, and Q2 = 0.5504 (17) Å and φ2 = 144.42 (18)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Chen, et al., 2011a,b, 2002).

Related literature top

For the preparation of the title compound, see: Chen et al. (2002). For the spectroscopy of D–S–A molecules (electron donor–acceptor chromophores linked by spacers), see: Chen et al. (2002, 2006); Chow et al. (1999, 2005). For the electronic device applications of D–S–A molecules, see: Huang et al. (2011); Lee et al. (2011); Lin et al. (2010); Raposo et al. (2011); Wang et al. (2011); Wu et al. (2010); Xiang et al. (2011); Zhou et al. (2011). For related structures, see: Chen et al. (2011a,b); Tsai et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to the literature (Chen et al., 2002). Colorless parallelepiped-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement top

The C bound H atoms positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Electron donor (D)-acceptor (A) chromophores linked by spacers (S), forming D–S–A dyads (Huang et al., 2011; Lee et al., 2011; Raposo et al., 2011), have attracted considerable attention due to their potential applications in the design of molecular devices (Lin et al., 2010; Wang et al., 2011; Wu et al., 2010; Xiang et al., 2011; Zhou et al., 2011). Numerous types of rigid spacers have also been reported (Chen et al., 2002; Chow et al., 1999). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. Consequently, the rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups can be extensively investigated (Chen et al., 2006; Chow et al., 2005).

The ORTEP diagram of the title compound is shown in Figure 1. There are two crystallographically independent molecules in the asymmetric unit. The molecules possess an exo-trans-exo configuration. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1–C3/C7/C6) and B (C3–C7) are Q2 = 0.5975 (16) Å and φ2 = 287.85 (15)°, and Q2 = 0.5504 (17) Å and φ2 = 144.42 (18)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Chen, et al., 2011a,b, 2002).

For the preparation of the title compound, see: Chen et al. (2002). For the spectroscopy of D–S–A molecules (electron donor–acceptor chromophores linked by spacers), see: Chen et al. (2002, 2006); Chow et al. (1999, 2005). For the electronic device applications of D–S–A molecules, see: Huang et al. (2011); Lee et al. (2011); Lin et al. (2010); Raposo et al. (2011); Wang et al. (2011); Wu et al. (2010); Xiang et al. (2011); Zhou et al. (2011). For related structures, see: Chen et al. (2011a,b); Tsai et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Pentacyclo[8.2.1.14,7.02,9.03,8]tetradeca-5,11-diene top
Crystal data top
C14H16F(000) = 400
Mr = 184.27Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2538 reflections
a = 10.7893 (7) Åθ = 3.0–29.2°
b = 10.8730 (6) ŵ = 0.07 mm1
c = 9.2407 (6) ÅT = 297 K
β = 109.022 (7)°Parallelepiped, colorless
V = 1024.85 (11) Å30.70 × 0.60 × 0.50 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1662 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 29.2°, θmin = 3.0°
ω scansh = 1314
4696 measured reflectionsk = 1314
2375 independent reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.098P)2 + 0.0079P]
where P = (Fo2 + 2Fc2)/3
2375 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H16V = 1024.85 (11) Å3
Mr = 184.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7893 (7) ŵ = 0.07 mm1
b = 10.8730 (6) ÅT = 297 K
c = 9.2407 (6) Å0.70 × 0.60 × 0.50 mm
β = 109.022 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1662 reflections with I > 2σ(I)
4696 measured reflectionsRint = 0.014
2375 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
2375 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48726 (13)0.60019 (11)0.00625 (14)0.0354 (3)
H1A0.48620.65420.07830.042*
C20.60674 (12)0.51050 (12)0.03238 (15)0.0363 (3)
H2A0.66780.51780.13700.044*
C30.66729 (14)0.54040 (14)0.09413 (18)0.0493 (4)
H3A0.72830.47940.11020.059*
C40.71928 (16)0.66991 (16)0.05935 (19)0.0626 (5)
H4A0.80710.69260.02170.075*
C50.61875 (17)0.74451 (15)0.09167 (18)0.0576 (5)
H5A0.62260.82960.08050.069*
C60.49605 (14)0.66859 (12)0.15005 (16)0.0414 (4)
H6A0.41690.71220.21130.050*
C70.54463 (14)0.56681 (14)0.23163 (15)0.0455 (4)
H7A0.48510.49730.25910.055*
H7B0.56510.59610.32040.055*
C80.89681 (12)0.98409 (12)0.01155 (15)0.0366 (3)
H8A0.82460.97490.10820.044*
C90.98405 (13)1.09971 (11)0.00363 (15)0.0377 (3)
H9A0.95721.15100.09590.045*
C100.97907 (14)1.16558 (13)0.14375 (18)0.0485 (4)
H10A1.04661.22780.18750.058*
C110.83794 (17)1.20757 (15)0.1034 (2)0.0606 (5)
H11A0.80861.28840.08650.073*
C120.76413 (15)1.11028 (15)0.09629 (19)0.0572 (5)
H12A0.67361.10980.07360.069*
C130.85276 (13)0.99966 (13)0.13162 (17)0.0436 (4)
H13A0.81800.92590.16580.052*
C140.97517 (14)1.05643 (14)0.24666 (16)0.0477 (4)
H14A1.05171.00390.26800.057*
H14B0.96171.08110.34130.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (7)0.0336 (7)0.0330 (7)0.0020 (5)0.0163 (6)0.0007 (5)
C20.0315 (7)0.0444 (8)0.0324 (6)0.0012 (5)0.0095 (5)0.0066 (5)
C30.0415 (8)0.0599 (9)0.0551 (9)0.0096 (7)0.0276 (7)0.0171 (8)
C40.0453 (9)0.0788 (12)0.0611 (10)0.0188 (8)0.0140 (8)0.0218 (9)
C50.0699 (12)0.0488 (9)0.0535 (9)0.0171 (8)0.0190 (8)0.0093 (7)
C60.0450 (8)0.0404 (7)0.0397 (7)0.0059 (6)0.0151 (6)0.0111 (6)
C70.0552 (9)0.0520 (8)0.0348 (7)0.0004 (7)0.0223 (7)0.0053 (6)
C80.0320 (7)0.0425 (7)0.0348 (7)0.0061 (5)0.0103 (5)0.0051 (5)
C90.0418 (8)0.0336 (7)0.0389 (7)0.0026 (5)0.0150 (6)0.0015 (5)
C100.0528 (9)0.0404 (8)0.0573 (9)0.0115 (6)0.0249 (7)0.0150 (7)
C110.0694 (12)0.0495 (9)0.0710 (11)0.0158 (8)0.0340 (9)0.0025 (8)
C120.0446 (9)0.0711 (12)0.0600 (10)0.0089 (8)0.0228 (8)0.0068 (8)
C130.0410 (8)0.0490 (8)0.0464 (8)0.0058 (6)0.0217 (7)0.0023 (6)
C140.0481 (9)0.0603 (9)0.0363 (7)0.0013 (7)0.0159 (6)0.0069 (7)
Geometric parameters (Å, º) top
C1—C61.5525 (16)C8—C9ii1.5443 (17)
C1—C2i1.5413 (17)C8—C131.5539 (18)
C1—C21.5621 (17)C8—C91.5578 (17)
C1—H1A0.9800C8—H8A0.9800
C2—C1i1.5413 (17)C9—C101.5551 (18)
C2—C31.5483 (17)C9—C8ii1.5442 (17)
C2—H2A0.9800C9—H9A0.9800
C3—C41.511 (2)C10—C111.515 (2)
C3—C71.534 (2)C10—C141.530 (2)
C3—H3A0.9800C10—H10A0.9800
C4—C51.309 (2)C11—C121.313 (2)
C4—H4A0.9300C11—H11A0.9300
C5—C61.503 (2)C12—C131.505 (2)
C5—H5A0.9300C12—H12A0.9300
C6—C71.5249 (19)C13—C141.5298 (19)
C6—H6A0.9800C13—H13A0.9800
C7—H7A0.9700C14—H14A0.9700
C7—H7B0.9700C14—H14B0.9700
C6—C1—C2i117.43 (11)C9ii—C8—C13117.61 (11)
C6—C1—C2102.62 (9)C9ii—C8—C989.98 (9)
C2i—C1—C290.01 (9)C13—C8—C9102.70 (10)
C6—C1—H1A114.5C9ii—C8—H8A114.4
C2i—C1—H1A114.5C13—C8—H8A114.4
C2—C1—H1A114.5C9—C8—H8A114.4
C1i—C2—C3117.63 (11)C10—C9—C8ii117.23 (12)
C1i—C2—C189.99 (9)C10—C9—C8102.70 (9)
C3—C2—C1102.49 (10)C8ii—C9—C890.02 (9)
C1i—C2—H2A114.5C10—C9—H9A114.6
C3—C2—H2A114.5C8ii—C9—H9A114.6
C1—C2—H2A114.5C8—C9—H9A114.6
C4—C3—C799.32 (12)C11—C10—C9104.01 (12)
C4—C3—C2104.70 (12)C11—C10—C1499.07 (12)
C7—C3—C2101.67 (10)C9—C10—C14101.71 (10)
C4—C3—H3A116.2C11—C10—H10A116.5
C7—C3—H3A116.2C9—C10—H10A116.5
C2—C3—H3A116.2C14—C10—H10A116.5
C5—C4—C3107.85 (14)C12—C11—C10108.30 (14)
C5—C4—H4A126.1C12—C11—H11A125.8
C3—C4—H4A126.1C10—C11—H11A125.8
C4—C5—C6108.00 (14)C11—C12—C13107.52 (13)
C4—C5—H5A126.0C11—C12—H12A126.2
C6—C5—H5A126.0C13—C12—H12A126.2
C5—C6—C799.87 (11)C12—C13—C1499.90 (12)
C5—C6—C1104.38 (11)C12—C13—C8104.56 (11)
C7—C6—C1101.67 (10)C14—C13—C8101.61 (9)
C5—C6—H6A116.2C12—C13—H13A116.1
C7—C6—H6A116.2C14—C13—H13A116.1
C1—C6—H6A116.2C8—C13—H13A116.1
C3—C7—C693.97 (11)C13—C14—C1094.21 (11)
C3—C7—H7A112.9C13—C14—H14A112.9
C6—C7—H7A112.9C10—C14—H14A112.9
C3—C7—H7B112.9C13—C14—H14B112.9
C6—C7—H7B112.9C10—C14—H14B112.9
H7A—C7—H7B110.3H14A—C14—H14B110.3
C6—C1—C2—C1i118.17 (11)C9ii—C8—C9—C10117.97 (12)
C2i—C1—C2—C1i0.0C13—C8—C9—C100.39 (13)
C6—C1—C2—C30.19 (13)C9ii—C8—C9—C8ii0.0
C2i—C1—C2—C3118.36 (12)C13—C8—C9—C8ii118.36 (12)
C1i—C2—C3—C4163.80 (12)C8ii—C9—C10—C11164.01 (12)
C1—C2—C3—C467.16 (13)C8—C9—C10—C1167.32 (13)
C1i—C2—C3—C760.79 (15)C8ii—C9—C10—C1461.43 (13)
C1—C2—C3—C735.86 (14)C8—C9—C10—C1435.25 (13)
C7—C3—C4—C533.64 (15)C9—C10—C11—C1271.17 (16)
C2—C3—C4—C571.14 (15)C14—C10—C11—C1233.41 (16)
C3—C4—C5—C60.36 (17)C10—C11—C12—C130.03 (18)
C4—C5—C6—C733.32 (15)C11—C12—C13—C1433.45 (15)
C4—C5—C6—C171.54 (14)C11—C12—C13—C871.41 (15)
C2i—C1—C6—C5164.42 (11)C9ii—C8—C13—C12164.42 (11)
C2—C1—C6—C567.74 (12)C9—C8—C13—C1267.68 (13)
C2i—C1—C6—C760.91 (14)C9ii—C8—C13—C1460.85 (14)
C2—C1—C6—C735.78 (12)C9—C8—C13—C1435.90 (13)
C4—C3—C7—C650.28 (11)C12—C13—C14—C1050.63 (11)
C2—C3—C7—C656.97 (12)C8—C13—C14—C1056.62 (12)
C5—C6—C7—C350.32 (11)C11—C10—C14—C1350.10 (12)
C1—C6—C7—C356.74 (11)C9—C10—C14—C1356.37 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H16
Mr184.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)10.7893 (7), 10.8730 (6), 9.2407 (6)
β (°) 109.022 (7)
V3)1024.85 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.70 × 0.60 × 0.50
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4696, 2375, 1662
Rint0.014
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.07
No. of reflections2375
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University for providing fabrication and measurement facilities.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011a). Acta Cryst. E67, o1147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Chang, M.-J., Fang, T.-C., Luo, M.-H. & Tsai, H.-Y. (2011b). Acta Cryst. E67, o3312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799–7801.  Web of Science CrossRef CAS Google Scholar
First citationChow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, X., Fang, Y., Li, X., Xie, Y. & Zhu, W. (2011). Dyes Pigm. 90, 297–303.  Web of Science CrossRef CAS Google Scholar
First citationLee, C.-W., Lu, H.-P., Reddy, N. M., Lee, H.-W., Diau, E. W.-G. & Yeh, C.-Y. (2011). Dyes Pigm. 91, 317–323.  Web of Science CrossRef CAS Google Scholar
First citationLin, C.-Y., Lo, C.-F., Hsieh, M.-H., Hsu, S.-J., Lu, H.-P. & Diau, E. W.-G. (2010). J. Chin. Chem. Soc. 57, 1136–1140.  CrossRef CAS Google Scholar
First citationRaposo, M. M. M., Castro, M. C. R., Belsley, M. & Fonseca, A. M. C. (2011). Dyes Pigm. 91, 454–465.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, H.-Y., Luo, M.-H., Chang, M.-J., Fang, T.-C. & Chen, K.-Y. (2012). Chin. Chem. Lett. 23, 1043–1046.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z., Zhang, W., Tao, F., Meng, K. G., Xi, L. Y., Li, Y. & Jiang, Q. (2011). Chin. Chem. Lett. 22, 1001–1004.  Web of Science CrossRef CAS Google Scholar
First citationWu, S.-J., Chen, C.-Y., Li, J.-Y., Chen, J.-G., Lee, K.-M., Ho, K.-C. & Wu, C.-G. (2010). J. Chin. Chem. Soc. 57, 1127–1130.  CAS Google Scholar
First citationXiang, N., Huang, X., Feng, X., Liu, Y., Zhao, B., Deng, L., Shen, P., Fei, J. & Tan, S. (2011). Dyes Pigm. 88, 75–83.  Web of Science CrossRef CAS Google Scholar
First citationZhou, W., Zhao, B., Shen, P., Jiang, S., Huang, H., Deng, L. & Tan, S. (2011). Dyes Pigm. 91, 404–412.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds