organic compounds
Pentacyclo[8.2.1.14,7.02,9.03,8]tetradeca-5,11-diene
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
The title compound, C14H16, was prepared through [2 + 2] cycloaddition of norbornadiene. There are two independent molecules in the each is centrosymmetric with the centroid of the four-membered ring located about an inversion center. Each molecule possesses an exo–trans–exo conformation.
Related literature
For the preparation of the title compound, see: Chen et al. (2002). For the spectroscopy of D–S–A molecules (electron donor–acceptor chromophores linked by spacers), see: Chen et al. (2002, 2006); Chow et al. (1999, 2005). For the electronic device applications of D–S–A molecules, see: Huang et al. (2011); Lee et al. (2011); Lin et al. (2010); Raposo et al. (2011); Wang et al. (2011); Wu et al. (2010); Xiang et al. (2011); Zhou et al. (2011). For related structures, see: Chen et al. (2011a,b); Tsai et al. (2012). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812038780/xu5620sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038780/xu5620Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812038780/xu5620Isup3.cml
The title compound was synthesized according to the literature (Chen et al., 2002). Colorless parallelepiped-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.
The C bound H atoms positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Electron donor (D)-acceptor (A) chromophores linked by spacers (S), forming D–S–A dyads (Huang et al., 2011; Lee et al., 2011; Raposo et al., 2011), have attracted considerable attention due to their potential applications in the design of molecular devices (Lin et al., 2010; Wang et al., 2011; Wu et al., 2010; Xiang et al., 2011; Zhou et al., 2011). Numerous types of rigid spacers have also been reported (Chen et al., 2002; Chow et al., 1999). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. Consequently, the rates of
reactions across linearly fused oligo-norbornyl spacer groups can be extensively investigated (Chen et al., 2006; Chow et al., 2005).The ORTEP diagram of the title compound is shown in Figure 1. There are two crystallographically independent molecules in the φ2 = 287.85 (15)°, and Q2 = 0.5504 (17) Å and φ2 = 144.42 (18)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Chen, et al., 2011a,b, 2002).
The molecules possess an exo-trans-exo configuration. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1–C3/C7/C6) and B (C3–C7) are Q2 = 0.5975 (16) Å andFor the preparation of the title compound, see: Chen et al. (2002). For the spectroscopy of D–S–A molecules (electron donor–acceptor chromophores linked by spacers), see: Chen et al. (2002, 2006); Chow et al. (1999, 2005). For the electronic device applications of D–S–A molecules, see: Huang et al. (2011); Lee et al. (2011); Lin et al. (2010); Raposo et al. (2011); Wang et al. (2011); Wu et al. (2010); Xiang et al. (2011); Zhou et al. (2011). For related structures, see: Chen et al. (2011a,b); Tsai et al. (2012). For puckering parameters, see: Cremer & Pople (1975).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. |
C14H16 | F(000) = 400 |
Mr = 184.27 | Dx = 1.194 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2538 reflections |
a = 10.7893 (7) Å | θ = 3.0–29.2° |
b = 10.8730 (6) Å | µ = 0.07 mm−1 |
c = 9.2407 (6) Å | T = 297 K |
β = 109.022 (7)° | Parallelepiped, colorless |
V = 1024.85 (11) Å3 | 0.70 × 0.60 × 0.50 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1662 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.014 |
Graphite monochromator | θmax = 29.2°, θmin = 3.0° |
ω scans | h = −13→14 |
4696 measured reflections | k = −13→14 |
2375 independent reflections | l = −12→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.157 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.098P)2 + 0.0079P] where P = (Fo2 + 2Fc2)/3 |
2375 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C14H16 | V = 1024.85 (11) Å3 |
Mr = 184.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.7893 (7) Å | µ = 0.07 mm−1 |
b = 10.8730 (6) Å | T = 297 K |
c = 9.2407 (6) Å | 0.70 × 0.60 × 0.50 mm |
β = 109.022 (7)° |
Bruker SMART CCD area-detector diffractometer | 1662 reflections with I > 2σ(I) |
4696 measured reflections | Rint = 0.014 |
2375 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.157 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.26 e Å−3 |
2375 reflections | Δρmin = −0.20 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.48726 (13) | 0.60019 (11) | −0.00625 (14) | 0.0354 (3) | |
H1A | 0.4862 | 0.6542 | 0.0783 | 0.042* | |
C2 | 0.60674 (12) | 0.51050 (12) | 0.03238 (15) | 0.0363 (3) | |
H2A | 0.6678 | 0.5178 | 0.1370 | 0.044* | |
C3 | 0.66729 (14) | 0.54040 (14) | −0.09413 (18) | 0.0493 (4) | |
H3A | 0.7283 | 0.4794 | −0.1102 | 0.059* | |
C4 | 0.71928 (16) | 0.66991 (16) | −0.05935 (19) | 0.0626 (5) | |
H4A | 0.8071 | 0.6926 | −0.0217 | 0.075* | |
C5 | 0.61875 (17) | 0.74451 (15) | −0.09167 (18) | 0.0576 (5) | |
H5A | 0.6226 | 0.8296 | −0.0805 | 0.069* | |
C6 | 0.49605 (14) | 0.66859 (12) | −0.15005 (16) | 0.0414 (4) | |
H6A | 0.4169 | 0.7122 | −0.2113 | 0.050* | |
C7 | 0.54463 (14) | 0.56681 (14) | −0.23163 (15) | 0.0455 (4) | |
H7A | 0.4851 | 0.4973 | −0.2591 | 0.055* | |
H7B | 0.5651 | 0.5961 | −0.3204 | 0.055* | |
C8 | 0.89681 (12) | 0.98409 (12) | −0.01155 (15) | 0.0366 (3) | |
H8A | 0.8246 | 0.9749 | −0.1082 | 0.044* | |
C9 | 0.98405 (13) | 1.09971 (11) | −0.00363 (15) | 0.0377 (3) | |
H9A | 0.9572 | 1.1510 | −0.0959 | 0.045* | |
C10 | 0.97907 (14) | 1.16558 (13) | 0.14375 (18) | 0.0485 (4) | |
H10A | 1.0466 | 1.2278 | 0.1875 | 0.058* | |
C11 | 0.83794 (17) | 1.20757 (15) | 0.1034 (2) | 0.0606 (5) | |
H11A | 0.8086 | 1.2884 | 0.0865 | 0.073* | |
C12 | 0.76413 (15) | 1.11028 (15) | 0.09629 (19) | 0.0572 (5) | |
H12A | 0.6736 | 1.1098 | 0.0736 | 0.069* | |
C13 | 0.85276 (13) | 0.99966 (13) | 0.13162 (17) | 0.0436 (4) | |
H13A | 0.8180 | 0.9259 | 0.1658 | 0.052* | |
C14 | 0.97517 (14) | 1.05643 (14) | 0.24666 (16) | 0.0477 (4) | |
H14A | 1.0517 | 1.0039 | 0.2680 | 0.057* | |
H14B | 0.9617 | 1.0811 | 0.3413 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0424 (7) | 0.0336 (7) | 0.0330 (7) | 0.0020 (5) | 0.0163 (6) | 0.0007 (5) |
C2 | 0.0315 (7) | 0.0444 (8) | 0.0324 (6) | 0.0012 (5) | 0.0095 (5) | 0.0066 (5) |
C3 | 0.0415 (8) | 0.0599 (9) | 0.0551 (9) | 0.0096 (7) | 0.0276 (7) | 0.0171 (8) |
C4 | 0.0453 (9) | 0.0788 (12) | 0.0611 (10) | −0.0188 (8) | 0.0140 (8) | 0.0218 (9) |
C5 | 0.0699 (12) | 0.0488 (9) | 0.0535 (9) | −0.0171 (8) | 0.0190 (8) | 0.0093 (7) |
C6 | 0.0450 (8) | 0.0404 (7) | 0.0397 (7) | 0.0059 (6) | 0.0151 (6) | 0.0111 (6) |
C7 | 0.0552 (9) | 0.0520 (8) | 0.0348 (7) | 0.0004 (7) | 0.0223 (7) | 0.0053 (6) |
C8 | 0.0320 (7) | 0.0425 (7) | 0.0348 (7) | −0.0061 (5) | 0.0103 (5) | −0.0051 (5) |
C9 | 0.0418 (8) | 0.0336 (7) | 0.0389 (7) | −0.0026 (5) | 0.0150 (6) | 0.0015 (5) |
C10 | 0.0528 (9) | 0.0404 (8) | 0.0573 (9) | −0.0115 (6) | 0.0249 (7) | −0.0150 (7) |
C11 | 0.0694 (12) | 0.0495 (9) | 0.0710 (11) | 0.0158 (8) | 0.0340 (9) | −0.0025 (8) |
C12 | 0.0446 (9) | 0.0711 (12) | 0.0600 (10) | 0.0089 (8) | 0.0228 (8) | −0.0068 (8) |
C13 | 0.0410 (8) | 0.0490 (8) | 0.0464 (8) | −0.0058 (6) | 0.0217 (7) | −0.0023 (6) |
C14 | 0.0481 (9) | 0.0603 (9) | 0.0363 (7) | −0.0013 (7) | 0.0159 (6) | −0.0069 (7) |
C1—C6 | 1.5525 (16) | C8—C9ii | 1.5443 (17) |
C1—C2i | 1.5413 (17) | C8—C13 | 1.5539 (18) |
C1—C2 | 1.5621 (17) | C8—C9 | 1.5578 (17) |
C1—H1A | 0.9800 | C8—H8A | 0.9800 |
C2—C1i | 1.5413 (17) | C9—C10 | 1.5551 (18) |
C2—C3 | 1.5483 (17) | C9—C8ii | 1.5442 (17) |
C2—H2A | 0.9800 | C9—H9A | 0.9800 |
C3—C4 | 1.511 (2) | C10—C11 | 1.515 (2) |
C3—C7 | 1.534 (2) | C10—C14 | 1.530 (2) |
C3—H3A | 0.9800 | C10—H10A | 0.9800 |
C4—C5 | 1.309 (2) | C11—C12 | 1.313 (2) |
C4—H4A | 0.9300 | C11—H11A | 0.9300 |
C5—C6 | 1.503 (2) | C12—C13 | 1.505 (2) |
C5—H5A | 0.9300 | C12—H12A | 0.9300 |
C6—C7 | 1.5249 (19) | C13—C14 | 1.5298 (19) |
C6—H6A | 0.9800 | C13—H13A | 0.9800 |
C7—H7A | 0.9700 | C14—H14A | 0.9700 |
C7—H7B | 0.9700 | C14—H14B | 0.9700 |
C6—C1—C2i | 117.43 (11) | C9ii—C8—C13 | 117.61 (11) |
C6—C1—C2 | 102.62 (9) | C9ii—C8—C9 | 89.98 (9) |
C2i—C1—C2 | 90.01 (9) | C13—C8—C9 | 102.70 (10) |
C6—C1—H1A | 114.5 | C9ii—C8—H8A | 114.4 |
C2i—C1—H1A | 114.5 | C13—C8—H8A | 114.4 |
C2—C1—H1A | 114.5 | C9—C8—H8A | 114.4 |
C1i—C2—C3 | 117.63 (11) | C10—C9—C8ii | 117.23 (12) |
C1i—C2—C1 | 89.99 (9) | C10—C9—C8 | 102.70 (9) |
C3—C2—C1 | 102.49 (10) | C8ii—C9—C8 | 90.02 (9) |
C1i—C2—H2A | 114.5 | C10—C9—H9A | 114.6 |
C3—C2—H2A | 114.5 | C8ii—C9—H9A | 114.6 |
C1—C2—H2A | 114.5 | C8—C9—H9A | 114.6 |
C4—C3—C7 | 99.32 (12) | C11—C10—C9 | 104.01 (12) |
C4—C3—C2 | 104.70 (12) | C11—C10—C14 | 99.07 (12) |
C7—C3—C2 | 101.67 (10) | C9—C10—C14 | 101.71 (10) |
C4—C3—H3A | 116.2 | C11—C10—H10A | 116.5 |
C7—C3—H3A | 116.2 | C9—C10—H10A | 116.5 |
C2—C3—H3A | 116.2 | C14—C10—H10A | 116.5 |
C5—C4—C3 | 107.85 (14) | C12—C11—C10 | 108.30 (14) |
C5—C4—H4A | 126.1 | C12—C11—H11A | 125.8 |
C3—C4—H4A | 126.1 | C10—C11—H11A | 125.8 |
C4—C5—C6 | 108.00 (14) | C11—C12—C13 | 107.52 (13) |
C4—C5—H5A | 126.0 | C11—C12—H12A | 126.2 |
C6—C5—H5A | 126.0 | C13—C12—H12A | 126.2 |
C5—C6—C7 | 99.87 (11) | C12—C13—C14 | 99.90 (12) |
C5—C6—C1 | 104.38 (11) | C12—C13—C8 | 104.56 (11) |
C7—C6—C1 | 101.67 (10) | C14—C13—C8 | 101.61 (9) |
C5—C6—H6A | 116.2 | C12—C13—H13A | 116.1 |
C7—C6—H6A | 116.2 | C14—C13—H13A | 116.1 |
C1—C6—H6A | 116.2 | C8—C13—H13A | 116.1 |
C3—C7—C6 | 93.97 (11) | C13—C14—C10 | 94.21 (11) |
C3—C7—H7A | 112.9 | C13—C14—H14A | 112.9 |
C6—C7—H7A | 112.9 | C10—C14—H14A | 112.9 |
C3—C7—H7B | 112.9 | C13—C14—H14B | 112.9 |
C6—C7—H7B | 112.9 | C10—C14—H14B | 112.9 |
H7A—C7—H7B | 110.3 | H14A—C14—H14B | 110.3 |
C6—C1—C2—C1i | −118.17 (11) | C9ii—C8—C9—C10 | −117.97 (12) |
C2i—C1—C2—C1i | 0.0 | C13—C8—C9—C10 | 0.39 (13) |
C6—C1—C2—C3 | 0.19 (13) | C9ii—C8—C9—C8ii | 0.0 |
C2i—C1—C2—C3 | 118.36 (12) | C13—C8—C9—C8ii | 118.36 (12) |
C1i—C2—C3—C4 | 163.80 (12) | C8ii—C9—C10—C11 | −164.01 (12) |
C1—C2—C3—C4 | 67.16 (13) | C8—C9—C10—C11 | −67.32 (13) |
C1i—C2—C3—C7 | 60.79 (15) | C8ii—C9—C10—C14 | −61.43 (13) |
C1—C2—C3—C7 | −35.86 (14) | C8—C9—C10—C14 | 35.25 (13) |
C7—C3—C4—C5 | 33.64 (15) | C9—C10—C11—C12 | 71.17 (16) |
C2—C3—C4—C5 | −71.14 (15) | C14—C10—C11—C12 | −33.41 (16) |
C3—C4—C5—C6 | −0.36 (17) | C10—C11—C12—C13 | 0.03 (18) |
C4—C5—C6—C7 | −33.32 (15) | C11—C12—C13—C14 | 33.45 (15) |
C4—C5—C6—C1 | 71.54 (14) | C11—C12—C13—C8 | −71.41 (15) |
C2i—C1—C6—C5 | −164.42 (11) | C9ii—C8—C13—C12 | 164.42 (11) |
C2—C1—C6—C5 | −67.74 (12) | C9—C8—C13—C12 | 67.68 (13) |
C2i—C1—C6—C7 | −60.91 (14) | C9ii—C8—C13—C14 | 60.85 (14) |
C2—C1—C6—C7 | 35.78 (12) | C9—C8—C13—C14 | −35.90 (13) |
C4—C3—C7—C6 | −50.28 (11) | C12—C13—C14—C10 | −50.63 (11) |
C2—C3—C7—C6 | 56.97 (12) | C8—C13—C14—C10 | 56.62 (12) |
C5—C6—C7—C3 | 50.32 (11) | C11—C10—C14—C13 | 50.10 (12) |
C1—C6—C7—C3 | −56.74 (11) | C9—C10—C14—C13 | −56.37 (11) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H16 |
Mr | 184.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 10.7893 (7), 10.8730 (6), 9.2407 (6) |
β (°) | 109.022 (7) |
V (Å3) | 1024.85 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.70 × 0.60 × 0.50 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4696, 2375, 1662 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.157, 1.07 |
No. of reflections | 2375 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.20 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University for providing fabrication and measurement facilities.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011a). Acta Cryst. E67, o1147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Chang, M.-J., Fang, T.-C., Luo, M.-H. & Tsai, H.-Y. (2011b). Acta Cryst. E67, o3312. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144. Web of Science CrossRef PubMed CAS Google Scholar
Chow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799–7801. Web of Science CrossRef CAS Google Scholar
Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Huang, X., Fang, Y., Li, X., Xie, Y. & Zhu, W. (2011). Dyes Pigm. 90, 297–303. Web of Science CrossRef CAS Google Scholar
Lee, C.-W., Lu, H.-P., Reddy, N. M., Lee, H.-W., Diau, E. W.-G. & Yeh, C.-Y. (2011). Dyes Pigm. 91, 317–323. Web of Science CrossRef CAS Google Scholar
Lin, C.-Y., Lo, C.-F., Hsieh, M.-H., Hsu, S.-J., Lu, H.-P. & Diau, E. W.-G. (2010). J. Chin. Chem. Soc. 57, 1136–1140. CrossRef CAS Google Scholar
Raposo, M. M. M., Castro, M. C. R., Belsley, M. & Fonseca, A. M. C. (2011). Dyes Pigm. 91, 454–465. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsai, H.-Y., Luo, M.-H., Chang, M.-J., Fang, T.-C. & Chen, K.-Y. (2012). Chin. Chem. Lett. 23, 1043–1046. Web of Science CSD CrossRef CAS Google Scholar
Wang, Z., Zhang, W., Tao, F., Meng, K. G., Xi, L. Y., Li, Y. & Jiang, Q. (2011). Chin. Chem. Lett. 22, 1001–1004. Web of Science CrossRef CAS Google Scholar
Wu, S.-J., Chen, C.-Y., Li, J.-Y., Chen, J.-G., Lee, K.-M., Ho, K.-C. & Wu, C.-G. (2010). J. Chin. Chem. Soc. 57, 1127–1130. CAS Google Scholar
Xiang, N., Huang, X., Feng, X., Liu, Y., Zhao, B., Deng, L., Shen, P., Fei, J. & Tan, S. (2011). Dyes Pigm. 88, 75–83. Web of Science CrossRef CAS Google Scholar
Zhou, W., Zhao, B., Shen, P., Jiang, S., Huang, H., Deng, L. & Tan, S. (2011). Dyes Pigm. 91, 404–412. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Electron donor (D)-acceptor (A) chromophores linked by spacers (S), forming D–S–A dyads (Huang et al., 2011; Lee et al., 2011; Raposo et al., 2011), have attracted considerable attention due to their potential applications in the design of molecular devices (Lin et al., 2010; Wang et al., 2011; Wu et al., 2010; Xiang et al., 2011; Zhou et al., 2011). Numerous types of rigid spacers have also been reported (Chen et al., 2002; Chow et al., 1999). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. Consequently, the rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups can be extensively investigated (Chen et al., 2006; Chow et al., 2005).
The ORTEP diagram of the title compound is shown in Figure 1. There are two crystallographically independent molecules in the asymmetric unit. The molecules possess an exo-trans-exo configuration. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1–C3/C7/C6) and B (C3–C7) are Q2 = 0.5975 (16) Å and φ2 = 287.85 (15)°, and Q2 = 0.5504 (17) Å and φ2 = 144.42 (18)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Chen, et al., 2011a,b, 2002).