organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-1-Methyl-4-[(2E)-2-(4-methyl­benzyl­­idene)hydrazin-1-yl­­idene]-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 11 August 2012; accepted 17 September 2012; online 22 September 2012)

In the title compound, C17H17N3O2S, the dihedral angle between the aromatic rings is 6.3 (5)° and the C=N—N=C group is statistically planar [torsion angle = 179.8 (8)°]. The conformation of the thia­zine ring is an envelope, with the S atom displaced by 0.823 (9) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.012 Å). In the crystal, C—H⋯O inter­actions link the mol­ecules into C(5) chains propagating along [101]. The chains are consolidated by weak aromatic ππ stacking between the benzene and toluene rings [centroid-to-centroid separation = 3.826 (5) Å and inter­planar angle = 6.3 (4)°].

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.]). For related structures, see: Shafiq, Khan et al. (2011[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2092.]); Shafiq et al. (2012[Shafiq, M., Harrison, W. T. A., Khan, I. U., Bukhari, I. H. & Bokhari, T. H. (2012). Acta Cryst. E68, o2643.]). For C—H⋯O inter­actions, see: Steiner (2006[Steiner, Th. (2006). Crystallogr. Rev. 6, 1-57.]). For graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2S

  • Mr = 327.40

  • Monoclinic, P 21 /n

  • a = 7.899 (1) Å

  • b = 25.061 (3) Å

  • c = 8.1743 (11) Å

  • β = 101.114 (9)°

  • V = 1587.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.45 × 0.21 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13483 measured reflections

  • 2877 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.120

  • wR(F2) = 0.347

  • S = 1.15

  • 2877 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.96 2.59 3.468 (13) 153
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of benzothiazine derivatives with potential biological activity (Shafiq, Zia-ur-Rehman et al., 2011), we now describe the crystal structure of the title compound, (I), (Fig. 1).

The dihedral angle between the aromatic rings (C1–C6 and C10–C15) in (I) is 6.3 (5)° and the C7N2—N3C9 torsion angle is 179.8 (8)°. Similar values have been seen in related structures (Shafiq, Khan et al., 2011; Shafiq et al., 2012). The conformation of the thiazine ring in (I) is an envelope, with the S atom displaced by 0.823 (9) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.012 Å). Again, this is similar to the situation in related structures (Shafiq, Khan et al., 2011; Shafiq et al., 2012).

In the crystal of (I) (Fig. 2), weak C—H···O interactions (Steiner, 2006) (Table 1) link the molecules to generate C(5) chains propagating in [101]. The chains are consolidated by weak aromatic ππ stacking between the benzene and toluene rings [centroid-centroid separation = 3.826 (5) Å, inter-planar angle = 6.3 (4)°].

Related literature top

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011). For related structures, see: Shafiq, Khan et al. (2011); Shafiq et al. (2012). For C—H···O interactions, see: Steiner (2006). For graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

For the synthesis, see: Shafiq, Zia-ur-Rehman et al. (2011). Yellow blades were recrystallized from ethyl acetate. The crystal quality was poor, which may correlate with the rather high residuals.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied. The highest difference peak is 1.27 Å from atom O2.

Structure description top

As part of our ongoing studies of benzothiazine derivatives with potential biological activity (Shafiq, Zia-ur-Rehman et al., 2011), we now describe the crystal structure of the title compound, (I), (Fig. 1).

The dihedral angle between the aromatic rings (C1–C6 and C10–C15) in (I) is 6.3 (5)° and the C7N2—N3C9 torsion angle is 179.8 (8)°. Similar values have been seen in related structures (Shafiq, Khan et al., 2011; Shafiq et al., 2012). The conformation of the thiazine ring in (I) is an envelope, with the S atom displaced by 0.823 (9) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.012 Å). Again, this is similar to the situation in related structures (Shafiq, Khan et al., 2011; Shafiq et al., 2012).

In the crystal of (I) (Fig. 2), weak C—H···O interactions (Steiner, 2006) (Table 1) link the molecules to generate C(5) chains propagating in [101]. The chains are consolidated by weak aromatic ππ stacking between the benzene and toluene rings [centroid-centroid separation = 3.826 (5) Å, inter-planar angle = 6.3 (4)°].

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011). For related structures, see: Shafiq, Khan et al. (2011); Shafiq et al. (2012). For C—H···O interactions, see: Steiner (2006). For graph-set nomenclature, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Detail of the packing of (I) showing part of a [101] chain of molecules linked by C—H···O hydrogen bonds (double dashed lines) and consolidated by aromatic ππ stacking between the centroids of the benzene and toluene rings (open pink lines). Symmetry codes: (i) -1/2 + x, 3/2 - y, -1/2 + z; (ii) -1 + x, y, -1 + z.
(4Z)-1-Methyl-4-[(2E)-2-(4-methylbenzylidene)hydrazin-1- ylidene]-3,4-dihydro-1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C17H17N3O2SF(000) = 688
Mr = 327.40Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3678 reflections
a = 7.899 (1) Åθ = 2.8–24.9°
b = 25.061 (3) ŵ = 0.22 mm1
c = 8.1743 (11) ÅT = 296 K
β = 101.114 (9)°Blade, yellow
V = 1587.8 (3) Å30.45 × 0.21 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1897 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.3°, θmin = 2.7°
ω scansh = 99
13483 measured reflectionsk = 3030
2877 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.120H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.347 w = 1/[σ2(Fo2) + (0.0894P)2 + 15.6763P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2877 reflectionsΔρmax = 1.44 e Å3
215 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C17H17N3O2SV = 1587.8 (3) Å3
Mr = 327.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.899 (1) ŵ = 0.22 mm1
b = 25.061 (3) ÅT = 296 K
c = 8.1743 (11) Å0.45 × 0.21 × 0.09 mm
β = 101.114 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1897 reflections with I > 2σ(I)
13483 measured reflectionsRint = 0.049
2877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1200 restraints
wR(F2) = 0.347H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0894P)2 + 15.6763P]
where P = (Fo2 + 2Fc2)/3
2877 reflectionsΔρmax = 1.44 e Å3
215 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2464 (11)0.6374 (3)0.1249 (10)0.0393 (19)
C20.0924 (11)0.6173 (4)0.0246 (12)0.048 (2)
H20.00620.63840.00230.058*
C30.0902 (12)0.5668 (4)0.0386 (13)0.052 (2)
H30.01070.55390.10470.063*
C40.2323 (12)0.5349 (4)0.0072 (12)0.050 (2)
H40.22830.50050.05000.060*
C50.3802 (11)0.5541 (3)0.0875 (11)0.042 (2)
H50.47790.53260.10700.050*
C60.3899 (10)0.6050 (3)0.1561 (10)0.0329 (17)
C70.5555 (10)0.6233 (3)0.2611 (10)0.0378 (19)
C80.5629 (11)0.6777 (3)0.3398 (11)0.046 (2)
H8A0.68050.69080.35830.055*
H8B0.52830.67510.44710.055*
C90.9564 (11)0.5776 (4)0.4027 (12)0.045 (2)
H90.928 (13)0.538 (4)0.348 (12)0.07 (3)*
C101.1248 (10)0.5891 (3)0.5059 (10)0.0362 (19)
C111.1580 (11)0.6354 (4)0.5998 (11)0.045 (2)
H111.07100.66060.59800.054*
C121.3211 (11)0.6445 (3)0.6965 (11)0.044 (2)
H121.34210.67550.75980.053*
C131.4514 (11)0.6077 (4)0.6988 (11)0.043 (2)
C141.4177 (11)0.5616 (4)0.6071 (12)0.051 (2)
H141.50500.53650.61010.062*
C151.2550 (10)0.5515 (4)0.5095 (10)0.041 (2)
H151.23430.52020.44800.049*
C160.0902 (13)0.7157 (4)0.2205 (13)0.059 (3)
H16A0.02800.73080.11850.089*
H16B0.12070.74350.30170.089*
H16C0.01890.68990.26170.089*
C171.6295 (12)0.6184 (5)0.8015 (14)0.064 (3)
H17A1.71160.62050.72920.096*
H17B1.66100.59000.88020.096*
H17C1.62840.65160.86020.096*
S10.4268 (3)0.72269 (9)0.2121 (3)0.0472 (7)
N10.2450 (9)0.6901 (3)0.1900 (11)0.052 (2)
N20.6832 (9)0.5911 (3)0.2813 (9)0.0448 (18)
N30.8324 (9)0.6113 (3)0.3859 (10)0.0477 (19)
O10.4836 (11)0.7265 (3)0.0588 (9)0.069 (2)
O20.4100 (10)0.7710 (2)0.3007 (9)0.064 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (5)0.036 (4)0.042 (5)0.003 (4)0.004 (4)0.001 (4)
C20.033 (5)0.049 (5)0.061 (6)0.006 (4)0.004 (4)0.006 (4)
C30.038 (5)0.050 (6)0.062 (6)0.016 (4)0.009 (4)0.003 (5)
C40.057 (6)0.033 (5)0.061 (6)0.008 (4)0.016 (5)0.011 (4)
C50.032 (4)0.039 (5)0.054 (5)0.004 (4)0.006 (4)0.004 (4)
C60.031 (4)0.032 (4)0.037 (4)0.000 (3)0.009 (3)0.000 (3)
C70.036 (4)0.042 (5)0.036 (5)0.001 (4)0.007 (4)0.001 (4)
C80.042 (5)0.051 (5)0.043 (5)0.001 (4)0.006 (4)0.006 (4)
C90.039 (5)0.047 (5)0.048 (5)0.001 (4)0.010 (4)0.004 (4)
C100.034 (4)0.040 (4)0.035 (4)0.004 (3)0.008 (4)0.006 (3)
C110.042 (5)0.045 (5)0.051 (5)0.007 (4)0.015 (4)0.000 (4)
C120.043 (5)0.041 (5)0.046 (5)0.003 (4)0.004 (4)0.004 (4)
C130.038 (5)0.050 (5)0.040 (5)0.003 (4)0.005 (4)0.011 (4)
C140.036 (5)0.055 (6)0.062 (6)0.013 (4)0.006 (4)0.000 (5)
C150.038 (5)0.045 (5)0.040 (5)0.006 (4)0.006 (4)0.004 (4)
C160.067 (7)0.051 (6)0.066 (7)0.013 (5)0.028 (5)0.005 (5)
C170.034 (5)0.086 (8)0.065 (7)0.001 (5)0.004 (5)0.013 (6)
S10.0551 (15)0.0354 (12)0.0503 (14)0.0034 (10)0.0081 (11)0.0015 (10)
N10.038 (4)0.040 (4)0.078 (6)0.005 (3)0.010 (4)0.012 (4)
N20.030 (4)0.048 (4)0.053 (5)0.001 (3)0.001 (3)0.004 (3)
N30.035 (4)0.054 (5)0.052 (5)0.006 (3)0.002 (3)0.007 (4)
O10.099 (6)0.059 (4)0.057 (4)0.025 (4)0.033 (4)0.004 (3)
O20.081 (5)0.037 (3)0.073 (5)0.004 (3)0.010 (4)0.013 (3)
Geometric parameters (Å, º) top
C1—C61.378 (11)C10—C151.391 (11)
C1—C21.421 (12)C11—C121.394 (12)
C1—N11.424 (11)C11—H110.9300
C2—C31.366 (13)C12—C131.378 (12)
C2—H20.9300C12—H120.9300
C3—C41.362 (13)C13—C141.377 (13)
C3—H30.9300C13—C171.517 (12)
C4—C51.359 (12)C14—C151.398 (12)
C4—H40.9300C14—H140.9300
C5—C61.388 (11)C15—H150.9300
C5—H50.9300C16—N11.445 (11)
C6—C71.493 (11)C16—H16A0.9600
C7—N21.278 (10)C16—H16B0.9600
C7—C81.502 (12)C16—H16C0.9600
C8—S11.757 (9)C17—H17A0.9600
C8—H8A0.9700C17—H17B0.9600
C8—H8B0.9700C17—H17C0.9600
C9—N31.280 (11)S1—O11.414 (7)
C9—C101.459 (12)S1—O21.430 (6)
C9—H91.10 (10)S1—N11.632 (8)
C10—C111.390 (12)N2—N31.410 (9)
C6—C1—C2118.7 (7)C13—C12—C11120.3 (8)
C6—C1—N1122.8 (7)C13—C12—H12119.8
C2—C1—N1118.4 (7)C11—C12—H12119.8
C3—C2—C1119.5 (8)C14—C13—C12119.3 (8)
C3—C2—H2120.2C14—C13—C17120.8 (9)
C1—C2—H2120.2C12—C13—C17120.0 (9)
C4—C3—C2121.5 (8)C13—C14—C15121.5 (8)
C4—C3—H3119.2C13—C14—H14119.3
C2—C3—H3119.2C15—C14—H14119.3
C5—C4—C3119.1 (8)C10—C15—C14119.0 (8)
C5—C4—H4120.4C10—C15—H15120.5
C3—C4—H4120.4C14—C15—H15120.5
C4—C5—C6122.0 (8)N1—C16—H16A109.5
C4—C5—H5119.0N1—C16—H16B109.5
C6—C5—H5119.0H16A—C16—H16B109.5
C1—C6—C5119.2 (7)N1—C16—H16C109.5
C1—C6—C7121.6 (7)H16A—C16—H16C109.5
C5—C6—C7119.3 (7)H16B—C16—H16C109.5
N2—C7—C6117.5 (7)C13—C17—H17A109.5
N2—C7—C8123.6 (8)C13—C17—H17B109.5
C6—C7—C8118.9 (7)H17A—C17—H17B109.5
C7—C8—S1111.0 (6)C13—C17—H17C109.5
C7—C8—H8A109.4H17A—C17—H17C109.5
S1—C8—H8A109.4H17B—C17—H17C109.5
C7—C8—H8B109.4O1—S1—O2117.9 (4)
S1—C8—H8B109.4O1—S1—N1111.0 (5)
H8A—C8—H8B108.0O2—S1—N1108.3 (4)
N3—C9—C10121.7 (8)O1—S1—C8107.9 (5)
N3—C9—H9118 (5)O2—S1—C8110.4 (4)
C10—C9—H9120 (5)N1—S1—C899.7 (4)
C11—C10—C15119.6 (8)C1—N1—C16123.0 (8)
C11—C10—C9122.5 (8)C1—N1—S1115.8 (6)
C15—C10—C9117.9 (8)C16—N1—S1120.9 (6)
C10—C11—C12120.3 (8)C7—N2—N3113.4 (7)
C10—C11—H11119.8C9—N3—N2111.1 (7)
C12—C11—H11119.8
C6—C1—C2—C30.3 (13)C11—C12—C13—C17178.7 (8)
N1—C1—C2—C3179.7 (9)C12—C13—C14—C151.1 (14)
C1—C2—C3—C40.4 (15)C17—C13—C14—C15178.9 (9)
C2—C3—C4—C50.9 (15)C11—C10—C15—C140.5 (12)
C3—C4—C5—C61.3 (14)C9—C10—C15—C14179.8 (8)
C2—C1—C6—C50.7 (12)C13—C14—C15—C100.2 (14)
N1—C1—C6—C5179.9 (8)C7—C8—S1—O160.6 (7)
C2—C1—C6—C7179.6 (8)C7—C8—S1—O2169.2 (6)
N1—C1—C6—C70.3 (12)C7—C8—S1—N155.4 (7)
C4—C5—C6—C11.2 (13)C6—C1—N1—C16153.1 (9)
C4—C5—C6—C7179.1 (8)C2—C1—N1—C1626.3 (13)
C1—C6—C7—N2178.7 (8)C6—C1—N1—S132.7 (11)
C5—C6—C7—N20.9 (11)C2—C1—N1—S1147.9 (7)
C1—C6—C7—C82.5 (11)O1—S1—N1—C157.5 (8)
C5—C6—C7—C8177.9 (8)O2—S1—N1—C1171.6 (6)
N2—C7—C8—S1148.3 (7)C8—S1—N1—C156.1 (7)
C6—C7—C8—S133.0 (9)O1—S1—N1—C16116.9 (8)
N3—C9—C10—C114.0 (13)O2—S1—N1—C1614.1 (9)
N3—C9—C10—C15176.4 (8)C8—S1—N1—C16129.5 (8)
C15—C10—C11—C120.3 (13)C6—C7—N2—N3178.3 (7)
C9—C10—C11—C12179.9 (8)C8—C7—N2—N30.4 (12)
C10—C11—C12—C130.6 (13)C10—C9—N3—N2179.7 (7)
C11—C12—C13—C141.3 (13)C7—N2—N3—C9179.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.962.593.468 (13)153
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H17N3O2S
Mr327.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.899 (1), 25.061 (3), 8.1743 (11)
β (°) 101.114 (9)
V3)1587.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.21 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13483, 2877, 1897
Rint0.049
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.120, 0.347, 1.15
No. of reflections2877
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0894P)2 + 15.6763P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.44, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.962.593.468 (13)153
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

MS acknowledges the Higher Education Commission of Pakistan for providing a PhD scholarship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Harrison, W. T. A., Khan, I. U., Bukhari, I. H. & Bokhari, T. H. (2012). Acta Cryst. E68, o2643.  CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, Th. (2006). Crystallogr. Rev. 6, 1–57.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds