metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­bis­­[μ2-6-(pyridine-3-car­box­amido)­naphthalene-2-carboxyl­ato]copper(II)] dihydrate]

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 12 July 2012; accepted 24 October 2012; online 31 October 2012)

The title compound, {[Cu(C17H11N2O3)2(H2O)]·2H2O}n, is a two-dimensional polymer. The Cu2+ ion lies on the crystallographic twofold axis. The coordination sphere of the Cu2+ ion can be described as a distorted square pyramid. All of the H atoms in the amide group and lattice water mol­ecules participate in O—H⋯O or N—H⋯O hydrogen bonding to strengthen the two-dimensioal framework of the polymer.

Related literature

For coordination polymers based on linking ligands with O- and N-donor atoms, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157]). For df coordination polymers based on linking ligands with pyrid­yl–carboxyl­ate terminal ligands, see: Hu et al. (2012[Hu, S., Sheng, T., Wen, Y., Fu, R. & Wu, X. (2012). Inorg. Chem. Commun. 16, 28-32.]); Chen et al. (2010[Chen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267-3276.]); Tang et al. (2010[Tang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924-928.]); Yue et al. (2011[Yue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396-1399.]); Zhu et al. (2010[Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]). For related potential linking ligands, see: Han & Lee (2012[Han, S. H. & Lee, S. W. (2012). Acta Cryst. E68, o294.]); Zheng & Lee (2012[Zheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.]). For the ligand used for the preparation of the title compound, see: Song & Lee (2012[Song, Y.-S. & Lee, S. W. (2012). Acta Cryst. E68, o1978.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H11N2O3)2(H2O)]·2H2O

  • Mr = 700.14

  • Monoclinic, C 2/c

  • a = 29.6255 (8) Å

  • b = 6.8582 (2) Å

  • c = 14.8264 (4) Å

  • β = 94.728 (3)°

  • V = 3002.14 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.870, Tmax = 0.884

  • 24367 measured reflections

  • 3705 independent reflections

  • 2462 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.095

  • S = 1.00

  • 3705 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.81 (3) 2.07 (3) 2.857 (4) 164 (3)
O5—H51⋯O2ii 0.75 (4) 2.13 (4) 2.861 (3) 164 (4)
O5—H52⋯O3 0.77 (4) 2.04 (4) 2.811 (4) 177 (5)
O4—H4⋯O2iii 0.90 (3) 1.95 (3) 2.820 (3) 163 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2008[Bruker (2008). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers are prepared by employing a wide variety of linking ligands possessing pyridyl–pyridyl, pyridyl–amine, furan–furan, thiophene–thiophene, or pyridyl–carboxylate terminals. For instance, bis(pyridyl)- and dicarboxylate-type linking ligands have long been utilized in preparing such polymers (Robin & Fromm, 2006). In particular, those containing the pyridyl–carboxylate terminals are intriguing due to the presence of both a harder carboxylate oxygen donor and a softer pyridyl nitrogen donor in them. The ligands of this type were employed to prepare unique polymers containing both d- and f-block metals within their frameworks (Hu et al., 2012; Chen et al., 2010; Tang et al., 2010; Yue et al., 2011; Zhu et al., 2010). 6-(Nicotinamido)-2-naphthoic acid (HL) belongs to the pyridyl–carboxylate-type linking ligands, and we recently reported its preparation and structure (Song & Lee, 2012). Our research group also reported the molecular structures of two other related linking ligands (Han & Lee, 2012; Zheng & Lee, 2012). We report herein the structure of a two-dimensional Cu polymer of the HL ligand, which is the first d-block coordination polymer of this ligand.

Fig. 1 shows an asymmetric unit of the title polymer, which consists of one half Cu2+ ion, one 6-(nicotinamido)-2-naphthoato ligand (L), one half aqua ligand, and one lattice water molecule. The Cu1 and O4 atoms lie on the crystallographic twofold axis, and the remaining atoms occupy general positions. The Cu2+ ion is coordinated to two oxygen atoms from two ligands and two nitrogen atoms from another two ligands to form a distorted square plane. The Cu1···O4 length (2.490 (3) Å), which is represented by a dotted line in Fig. 1, is extremely long, considering the covalent radii of Cu (1.28 Å) and O (0.66 Å) atoms. The van der Waals radii of Cu and O atoms are 1.40 and 1.52 Å, respectively, and therefore the Cu1···O4 bond may be best described as a strong van der Waals contact. Consequently, the coordination sphere of the Cu2+ ion may be thought of as square pyramidal, if the Cu1···O4 van der Waals contact is included. The molecular plane, defined by the two O and two N atoms, is extremely distorted from the planarity with the average atomic displacement of 0.328 (1) Å. Two carboxylate oxygen atoms act differently; one (O1) is coordinated to the Cu2+ ion and the other (O2) acts as a H-bond acceptor. The terminal carboxylate and pyridyl groups are bonded to the Cu2+ ions, indicating that this ligand behaves as a linking ligand. The amide group (–CONH–) does not coordinate to the metal ion, and the carbonyl oxygen (O3) acts as a H-bond acceptor and the N–H bond behaves as a H-bond donor. In fact, all of the hydrogen atoms in the amide group and lattice water molecule participate in the hydrogen bonds of the O–H···O or N–H···O types (Table 1). Fig. 2 shows a projection of the title polymer along the c-axis. The repeat unit consists of four ligands and four Cu2+ ions. This unit contains 56 atoms (4 Cu2+ ions and 52 ligand atoms) with the Cu2+···Cu2+ separation of 15.2045 (4) Å. The repeat units are connected by the ligands to form a 2-D layer in the [110] direction.

Related literature top

For coordination polymers based on linking ligands with O- and N-donor atoms, see: Robin & Fromm (2006). For df coordination polymers based on linking ligands with pyridyl–carboxylate terminal ligands, see: Hu et al. (2012); Chen et al. (2010); Tang et al. (2010); Yue et al. (2011); Zhu et al. (2010). For related potential linking ligands, see: Han & Lee (2012); Zheng & Lee (2012). For the ligand used for the preparation of the title compound, see: Song & Lee (2012).

Experimental top

A mixture of Cu(NO3)2.3H2O (48.3 mg, 0.2 mmol) and 6-(nicotinamido)-2-naphthoic acid (58.4 mg, 0.2 mmol) in H2O (20 ml) was sealed in a 24 ml Teflon-lined vessel. The reaction mixture was heated 150 °C for 72 h and then slowly air-cooled to room temperature for 24 h. The resulting green crystals were isolated by filtration, washed by methanol (10 ml × 3), and then air-dried to give the title compound (19 mg, 0.027 mmol, 27% yield). mp: 586–589 K. IR (KBr, cm-1): 3474 (w), 2897 (w), 2633 (w), 2383 (w), 2298 (w), 2084 (w), 1805 (w), 1660 (m), 1580 (m), 1483 (m), 1353 (m), 1204 (w), 1108 (w), 1049 (w), 951 (w), 886 (w), 824 (w), 772 (w), 749 (w), 702 (w), 625 (w), 457 (w).

Refinement top

C-bound H atoms were positioned geometrically [C—H = 0.93 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H-atoms participating in the H-bonds were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing a 2-D layer in the [110] direction. Dotted lines represent hydrogen bonds.
Poly[[aquabis[µ2-6-(pyridine-3-carboxamido)naphthalene-2- carboxylato]copper(II)] dihydrate] top
Crystal data top
[Cu(C17H11N2O3)2(H2O)]·2H2OF(000) = 1444
Mr = 700.14Dx = 1.549 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3663 reflections
a = 29.6255 (8) Åθ = 2.8–26.3°
b = 6.8582 (2) ŵ = 0.79 mm1
c = 14.8264 (4) ÅT = 296 K
β = 94.728 (3)°Block, green
V = 3002.14 (14) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3705 independent reflections
Radiation source: sealed tube2462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3839
Tmin = 0.870, Tmax = 0.884k = 98
24367 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0323P)2 + 3.3539P]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C17H11N2O3)2(H2O)]·2H2OV = 3002.14 (14) Å3
Mr = 700.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.6255 (8) ŵ = 0.79 mm1
b = 6.8582 (2) ÅT = 296 K
c = 14.8264 (4) Å0.18 × 0.16 × 0.16 mm
β = 94.728 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2462 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.884Rint = 0.071
24367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
3705 reflectionsΔρmin = 0.28 e Å3
234 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.15958 (7)0.75000.02730 (14)
O10.43940 (5)0.1123 (3)0.69567 (11)0.0339 (5)
O20.43602 (6)0.1766 (3)0.76371 (12)0.0404 (5)
O30.14263 (6)0.0207 (3)0.50325 (12)0.0388 (5)
O40.50000.5226 (5)0.75000.0458 (8)
O50.11363 (10)0.3690 (4)0.58013 (19)0.0586 (7)
N10.15983 (7)0.2657 (4)0.57653 (15)0.0298 (5)
N20.02186 (6)0.2919 (3)0.62447 (13)0.0248 (5)
C10.41869 (8)0.0433 (4)0.71535 (16)0.0286 (6)
C20.36998 (8)0.0565 (4)0.67842 (16)0.0278 (6)
C30.34545 (8)0.2230 (4)0.69110 (17)0.0315 (6)
H30.35970.32880.72070.038*
C40.29901 (8)0.2372 (4)0.66017 (16)0.0277 (6)
C50.27238 (8)0.4042 (4)0.67428 (18)0.0348 (7)
H50.28570.51200.70370.042*
C60.22799 (8)0.4089 (4)0.64557 (17)0.0337 (6)
H60.21110.52010.65550.040*
C70.20668 (8)0.2475 (4)0.60056 (16)0.0274 (6)
C80.23130 (8)0.0832 (4)0.58502 (16)0.0286 (6)
H80.21740.02250.55500.034*
C90.27774 (8)0.0746 (4)0.61459 (16)0.0269 (6)
C100.30397 (8)0.0933 (4)0.60178 (18)0.0337 (7)
H100.29060.20010.57160.040*
C110.34869 (8)0.1023 (4)0.63273 (17)0.0336 (7)
H110.36520.21480.62340.040*
C120.13114 (8)0.1337 (4)0.53628 (16)0.0268 (6)
C130.08218 (8)0.1870 (4)0.53737 (16)0.0247 (5)
C140.05252 (8)0.1765 (4)0.45994 (16)0.0295 (6)
H140.06240.13410.40530.035*
C150.00809 (9)0.2305 (4)0.46597 (17)0.0329 (7)
H150.01230.22950.41470.040*
C160.00604 (8)0.2859 (4)0.54859 (16)0.0292 (6)
H160.03620.32070.55180.035*
C170.06539 (8)0.2429 (4)0.61731 (16)0.0262 (6)
H170.08520.24710.66920.031*
H10.1478 (10)0.368 (5)0.588 (2)0.055 (11)*
H40.4757 (10)0.599 (6)0.754 (3)0.083 (13)*
H510.1036 (13)0.338 (6)0.623 (2)0.072 (14)*
H520.1223 (14)0.273 (7)0.561 (3)0.088 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0144 (2)0.0424 (3)0.0249 (2)0.0000.00091 (16)0.000
O10.0186 (8)0.0527 (14)0.0301 (9)0.0109 (9)0.0001 (7)0.0015 (9)
O20.0268 (9)0.0467 (14)0.0464 (11)0.0048 (10)0.0051 (8)0.0007 (10)
O30.0274 (10)0.0329 (12)0.0565 (12)0.0030 (9)0.0062 (9)0.0119 (10)
O40.052 (2)0.032 (2)0.0547 (19)0.0000.0111 (16)0.000
O50.0766 (18)0.0398 (17)0.0638 (17)0.0107 (13)0.0319 (14)0.0065 (13)
N10.0185 (11)0.0281 (14)0.0426 (13)0.0052 (11)0.0013 (9)0.0033 (11)
N20.0186 (10)0.0288 (14)0.0269 (10)0.0003 (9)0.0015 (8)0.0006 (9)
C10.0190 (12)0.0431 (19)0.0237 (12)0.0003 (13)0.0028 (10)0.0078 (12)
C20.0188 (12)0.0366 (17)0.0281 (13)0.0046 (12)0.0028 (10)0.0042 (12)
C30.0233 (13)0.0352 (18)0.0356 (14)0.0019 (12)0.0003 (11)0.0004 (12)
C40.0219 (12)0.0310 (16)0.0299 (13)0.0020 (12)0.0001 (10)0.0020 (11)
C50.0260 (14)0.0308 (17)0.0467 (16)0.0020 (12)0.0024 (12)0.0081 (13)
C60.0278 (14)0.0278 (16)0.0450 (15)0.0059 (12)0.0003 (12)0.0078 (13)
C70.0177 (12)0.0326 (16)0.0317 (13)0.0017 (12)0.0021 (10)0.0005 (12)
C80.0220 (12)0.0290 (16)0.0343 (13)0.0011 (12)0.0003 (10)0.0041 (12)
C90.0228 (12)0.0299 (16)0.0278 (12)0.0038 (11)0.0012 (10)0.0008 (11)
C100.0256 (13)0.0307 (17)0.0437 (15)0.0045 (12)0.0031 (11)0.0074 (12)
C110.0256 (13)0.0376 (19)0.0372 (14)0.0094 (12)0.0001 (11)0.0040 (12)
C120.0205 (12)0.0313 (17)0.0289 (12)0.0009 (12)0.0040 (10)0.0020 (12)
C130.0204 (12)0.0205 (15)0.0332 (13)0.0012 (11)0.0031 (10)0.0024 (11)
C140.0276 (13)0.0322 (17)0.0286 (12)0.0012 (13)0.0024 (10)0.0016 (12)
C150.0281 (14)0.0411 (18)0.0281 (13)0.0006 (12)0.0061 (11)0.0007 (12)
C160.0188 (12)0.0349 (18)0.0336 (13)0.0014 (11)0.0003 (10)0.0013 (11)
C170.0187 (12)0.0330 (16)0.0265 (12)0.0013 (11)0.0007 (10)0.0003 (11)
Geometric parameters (Å, º) top
Cu1—O11.9337 (16)C4—C91.424 (4)
Cu1—O1i1.9337 (16)C5—C61.349 (3)
Cu1—N2ii2.0476 (19)C5—H50.9300
Cu1—N2iii2.0476 (19)C6—C71.414 (4)
O1—C11.277 (3)C6—H60.9300
O2—C11.246 (3)C7—C81.372 (4)
O3—C121.227 (3)C8—C91.410 (3)
O4—H40.90 (3)C8—H80.9300
O5—H510.75 (4)C9—C101.410 (4)
O5—H520.77 (4)C10—C111.367 (3)
N1—C121.347 (3)C10—H100.9300
N1—C71.410 (3)C11—H110.9300
N1—H10.81 (3)C12—C131.497 (3)
N2—C161.341 (3)C13—C171.377 (3)
N2—C171.345 (3)C13—C141.389 (3)
N2—Cu1iv2.0476 (19)C14—C151.377 (3)
C1—C21.503 (3)C14—H140.9300
C2—C31.374 (4)C15—C161.380 (3)
C2—C111.405 (4)C15—H150.9300
C3—C41.417 (3)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.416 (4)
O1—Cu1—O1i160.69 (12)C8—C7—C6120.0 (2)
O1—Cu1—N2ii93.07 (7)N1—C7—C6116.2 (2)
O1i—Cu1—N2ii90.06 (7)C7—C8—C9120.1 (2)
O1—Cu1—N2iii90.06 (7)C7—C8—H8120.0
O1i—Cu1—N2iii93.07 (7)C9—C8—H8120.0
N2ii—Cu1—N2iii161.31 (12)C8—C9—C10121.8 (2)
C1—O1—Cu1119.48 (17)C8—C9—C4119.8 (2)
H51—O5—H52104 (4)C10—C9—C4118.4 (2)
C12—N1—C7128.7 (2)C11—C10—C9121.4 (3)
C12—N1—H1114 (2)C11—C10—H10119.3
C7—N1—H1118 (2)C9—C10—H10119.3
C16—N2—C17117.1 (2)C10—C11—C2120.7 (3)
C16—N2—Cu1iv123.25 (15)C10—C11—H11119.6
C17—N2—Cu1iv119.30 (15)C2—C11—H11119.6
O2—C1—O1124.2 (2)O3—C12—N1124.8 (2)
O2—C1—C2120.2 (2)O3—C12—C13121.1 (2)
O1—C1—C2115.6 (2)N1—C12—C13114.1 (2)
C3—C2—C11119.3 (2)C17—C13—C14118.5 (2)
C3—C2—C1120.2 (2)C17—C13—C12119.8 (2)
C11—C2—C1120.5 (2)C14—C13—C12121.7 (2)
C2—C3—C4121.5 (3)C15—C14—C13118.4 (2)
C2—C3—H3119.2C15—C14—H14120.8
C4—C3—H3119.2C13—C14—H14120.8
C5—C4—C3123.1 (2)C14—C15—C16119.5 (2)
C5—C4—C9118.3 (2)C14—C15—H15120.2
C3—C4—C9118.7 (2)C16—C15—H15120.2
C6—C5—C4120.9 (3)N2—C16—C15122.8 (2)
C6—C5—H5119.6N2—C16—H16118.6
C4—C5—H5119.6C15—C16—H16118.6
C5—C6—C7121.0 (3)N2—C17—C13123.6 (2)
C5—C6—H6119.5N2—C17—H17118.2
C7—C6—H6119.5C13—C17—H17118.2
C8—C7—N1123.8 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5v0.81 (3)2.07 (3)2.857 (4)164 (3)
O5—H51···O2ii0.75 (4)2.13 (4)2.861 (3)164 (4)
O5—H52···O30.77 (4)2.04 (4)2.811 (4)177 (5)
O4—H4···O2vi0.90 (3)1.95 (3)2.820 (3)163 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (v) x, y1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C17H11N2O3)2(H2O)]·2H2O
Mr700.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.6255 (8), 6.8582 (2), 14.8264 (4)
β (°) 94.728 (3)
V3)3002.14 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.870, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
24367, 3705, 2462
Rint0.071
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.095, 1.00
No. of reflections3705
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.81 (3)2.07 (3)2.857 (4)164 (3)
O5—H51···O2ii0.75 (4)2.13 (4)2.861 (3)164 (4)
O5—H52···O30.77 (4)2.04 (4)2.811 (4)177 (5)
O4—H4···O2iii0.90 (3)1.95 (3)2.820 (3)163 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z.
 

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1A2000876).

References

First citationBruker (2008). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267–3276.  Web of Science CSD CrossRef Google Scholar
First citationHan, S. H. & Lee, S. W. (2012). Acta Cryst. E68, o294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, S., Sheng, T., Wen, Y., Fu, R. & Wu, X. (2012). Inorg. Chem. Commun. 16, 28–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-S. & Lee, S. W. (2012). Acta Cryst. E68, o1978.  CSD CrossRef IUCr Journals Google Scholar
First citationTang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924–928.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.  CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds