organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-methyl-2-((1-methyl-1H-pyrrol-2-yl)methyl­ene)-3-oxo-5-phenyl-3,5-di­hydro-2H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aWenzhou Medical College, School of Pharmacy, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: proflxk@163.com

(Received 1 September 2012; accepted 5 October 2012; online 10 October 2012)

In the structure of the title compound, C22H21N3O3S, the thia­zole ring forms dihedral angles of 88.83 (7) and 9.39 (9)°, respectively, with the benzene and pyrrole rings. The dihydro­pyrimidine ring adopts a flattened boat conformation. The olefinic double bond is in a Z conformation.

Related literature

For related structures, see: Hou (2009[Hou, Z.-H. (2009). Acta Cryst. E65, o235.]); Zhao et al. (2011[Zhao, C.-G., Hu, J., Zhang, Y.-L., Zhang, J. & Yang, S.-L. (2011). Acta Cryst. E67, o3009.]). For background to the biological properties of fused thia­zolo[3,2-a]pyrimidine derivatives, see: Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]); Bahekar & Shinde (2004[Bahekar, S. S. & Shinde, D. B. (2004). Bioorg. Med. Chem. Lett. 14, 1733-1736.]); Hurst & Hull (1961[Hurst, E. W. & Hull, R. (1961). J. Med. Pharm. Chem. 3, 215-229.]); Mehta et al. (2006[Mehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103-106.]); Shah & Desai (2007[Shah, T. J. & Desai, V. A. (2007). Arkivoc, 14, 218-228.]); Srivastava et al. (2006[Srivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118-1123.]); Subudhi et al. (2007[Subudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114-118.]); Magerramov et al. (2006[Magerramov, A. M., Kurbanova, M. M., Abdinbekova, R. T., Rzaeva, I. A., Farzaliev, V. M. & Allakhverdiev, M. A. (2006). Russ. J. Appl. Chem. 79, 787-790.]); Zhou et al. (2008[Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242-1250.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21N3O3S

  • Mr = 407.48

  • Monoclinic, P 21 /n

  • a = 11.8187 (10) Å

  • b = 10.2911 (9) Å

  • c = 16.2290 (14) Å

  • β = 90.584 (2)°

  • V = 1973.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 1.000

  • 10415 measured reflections

  • 3877 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.05

  • 3877 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolinone and their derivatives have attracted continuing interest over the years because of their varied biological activities (Shah & Desai,2007), such as antifungal (Mehta et al., 2006), antibacterial (Subudhi et al., 2007), anti-tumor (Zhou et al., 2008), anti-HIV and anti-inflammatory (Srivastava et al., 2006). 3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) are known for more than a century and have attracted considerable attention because of their wide spectrum of therapeutic and pharmacological properties. DHPMs have been used as antibacterial, antifungal (Ashok et al., 2007), antiviral (Hurst & Hull, 1961), anti-inflammatory (Bahekar & Shinde, 2004), antioxidative properties and noteworthy, as well as calcium channel modulators (Magerramov et al., 2006). Herein, we report in the present work based on the pharmacological principle of stacking, such biologically active groups as DHPMs was introduced to thiazolinone, with a view to get new compounds with better bioactivity.

In continuation of our studies on heterocyclic compounds, we report the crystal structure of the title compound. The fused thiazole ring has usual geometry as observed in other thiazolo[3,2-a]pyrimidine compounds (Hou, 2009; Zhao et al., 2011). The thiazole ring makes dihedral angles of 88.83 (7) and 9.39 (9)° with the benzene ring and pyrrole ring, respectively. The pyrimidine ring adopts a flattened boat conformation. The C2–C17 distance, 1.345 (2) Å, confirms this as a double bond and the molecule adopts a Z conformation with respect to this bond (Fig. 1).

Related literature top

For related structures, see: Hou (2009); Zhao et al. (2011). For background to the biological properties of fused thiazolo[3,2-a]pyrimidine derivatives, see: Ashok et al. (2007); Bahekar & Shinde (2004); Hurst & Hull (1961); Mehta et al. (2006); Shah & Desai (2007); Srivastava et al. (2006); Subudhi et al. (2007); Magerramov et al. (2006); Zhou et al. (2008).

Experimental top

In a typical procedure of one pot Biginelli reaction, sulfamic acid (0.4 mol) was added to a solution of substituted benzaldehyde (0.5 mol), ethyl acetylacetate (0.6 mol), and thiourea (0.75 mol) in ethanol and reflux at 351 K for 2 h. When the reaction was finished, the mixture was cooled to room temperature and filtered. The product ethyl 2-mercapto-4-methyl-6 -phenyl-1,6-dihydropyrimidine-5-carboxylate was washed with water, and then dried in vacuum as a white solid.

To a stirred solution of ethyl ] 2-mercapto-4-methyl-6-phenyl-1,6-dihydropyrimidine-5-carboxylate (2 mmol) and ethyl chloroacetate (2 mmol) in ethanol (10 ml) pyridine (2 mmol) was added.The reaction was heated at refluxing temperature for 4 h. Then 1-methyl-1H-pyrrole-2-carbaldehyde (2 mmol) and morpholine (2 mmol) was added to the mixture without further treatment until the reaction finished. The mixture was then cooled to room temperature, filtered and washed with water to obtain crude product. The resulting yellow solid was collected and recrystallized from acetic acid, then single crystals were grown in CH2Cl2/CH3OH mixture (2:1). Yield 45.6%.

1H NMR (DMSO-d6) δ: 1.111 (3H, m, 6–CH3), 4.030 (2H, m, 6–CH2), 2.380 (3H, s, N–CH3), 3.730 (3H, s, 7–CH3), 6.035 (H, s, 5–CH), 6.317 (1H, m, pyrrole), 6.576(1H, m, pyrrole), 7.213 (1H, m, pyrrole), 7.284–7.340 (5H, m, Ar—H), 7.625 (1H, s, =CH). ESI-MS m/z: 408.4 (M)+, 430.3 (M+Na)+, calcd for C22H21N3O3S 407.49.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 – 0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
Ethyl 7-methyl-2-((1-methyl-1H-pyrrol-2-yl)methylene)-3-oxo-5- phenyl-3,5-dihydro-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C22H21N3O3SF(000) = 856
Mr = 407.48Dx = 1.371 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4867 reflections
a = 11.8187 (10) Åθ = 5.0–56.3°
b = 10.2911 (9) ŵ = 0.19 mm1
c = 16.2290 (14) ÅT = 293 K
β = 90.584 (2)°Prismatic, red
V = 1973.8 (3) Å30.32 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3877 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.814, Tmax = 1.000k = 1211
10415 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.5784P]
where P = (Fo2 + 2Fc2)/3
3877 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H21N3O3SV = 1973.8 (3) Å3
Mr = 407.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8187 (10) ŵ = 0.19 mm1
b = 10.2911 (9) ÅT = 293 K
c = 16.2290 (14) Å0.32 × 0.24 × 0.16 mm
β = 90.584 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3877 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3433 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 1.000Rint = 0.020
10415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3877 reflectionsΔρmin = 0.19 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45859 (3)0.25287 (4)0.01131 (2)0.04128 (14)
N10.36364 (10)0.46192 (12)0.06560 (7)0.0318 (3)
N20.26786 (11)0.35881 (14)0.04481 (8)0.0402 (3)
N30.76832 (11)0.15037 (14)0.18041 (8)0.0413 (3)
O10.48083 (10)0.52724 (11)0.17107 (8)0.0471 (3)
O20.05024 (13)0.69653 (15)0.05111 (10)0.0735 (5)
O30.14144 (10)0.76092 (11)0.06154 (7)0.0473 (3)
C10.45910 (12)0.45135 (15)0.11618 (9)0.0337 (3)
C20.52334 (12)0.33419 (15)0.09404 (9)0.0343 (3)
C30.34879 (12)0.36725 (15)0.00763 (9)0.0338 (3)
C40.19135 (13)0.46391 (15)0.04784 (9)0.0362 (3)
C50.19370 (12)0.56033 (15)0.00841 (9)0.0336 (3)
C60.27014 (12)0.55164 (14)0.08448 (9)0.0316 (3)
H60.30140.63790.09650.038*
C70.20515 (11)0.50354 (15)0.15961 (9)0.0330 (3)
C80.16948 (14)0.59098 (18)0.21843 (10)0.0446 (4)
H80.18830.67840.21380.054*
C90.10566 (17)0.5486 (2)0.28426 (11)0.0588 (5)
H90.08090.60810.32330.071*
C100.07856 (16)0.4197 (2)0.29245 (11)0.0573 (5)
H100.03600.39190.33700.069*
C110.11433 (15)0.3322 (2)0.23496 (11)0.0520 (4)
H110.09670.24460.24060.062*
C120.17686 (14)0.37389 (17)0.16826 (10)0.0422 (4)
H120.20010.31410.12890.051*
C130.11228 (15)0.45209 (19)0.12025 (11)0.0485 (4)
H13A0.05020.51120.11370.073*
H13B0.08400.36480.12350.073*
H13C0.15200.47280.16990.073*
C140.12023 (13)0.67570 (16)0.00121 (10)0.0396 (4)
C150.07470 (16)0.87886 (19)0.05991 (13)0.0561 (5)
H15A0.00340.85910.07270.067*
H15B0.07680.91730.00540.067*
C160.1209 (2)0.9705 (3)0.12081 (18)0.0907 (9)
H16A0.11360.93450.17510.136*
H16B0.07991.05090.11760.136*
H16C0.19930.98610.10960.136*
C170.61539 (12)0.29575 (16)0.13690 (10)0.0371 (3)
H170.64110.35290.17730.045*
C180.67851 (12)0.17881 (16)0.12828 (10)0.0384 (4)
C190.66600 (15)0.07268 (18)0.07624 (12)0.0503 (4)
H190.61230.06430.03430.060*
C200.74750 (17)0.01876 (19)0.09753 (13)0.0572 (5)
H200.75810.09940.07290.069*
C210.80908 (15)0.03176 (18)0.16125 (12)0.0516 (4)
H210.86970.00910.18750.062*
C220.81581 (16)0.23339 (19)0.24420 (13)0.0548 (5)
H22A0.87050.18530.27600.082*
H22B0.75650.26280.27960.082*
H22C0.85180.30690.21920.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0416 (2)0.0415 (2)0.0407 (2)0.01238 (17)0.00433 (17)0.00727 (16)
N10.0271 (6)0.0325 (7)0.0358 (6)0.0032 (5)0.0009 (5)0.0010 (5)
N20.0418 (7)0.0412 (8)0.0373 (7)0.0070 (6)0.0067 (6)0.0036 (6)
N30.0334 (7)0.0417 (8)0.0488 (8)0.0044 (6)0.0002 (6)0.0088 (6)
O10.0408 (6)0.0430 (7)0.0573 (7)0.0047 (5)0.0145 (5)0.0128 (6)
O20.0766 (10)0.0619 (9)0.0813 (10)0.0293 (8)0.0421 (8)0.0117 (8)
O30.0500 (7)0.0418 (7)0.0499 (7)0.0171 (5)0.0098 (5)0.0021 (5)
C10.0281 (7)0.0335 (8)0.0396 (8)0.0014 (6)0.0007 (6)0.0012 (6)
C20.0296 (7)0.0346 (8)0.0388 (8)0.0004 (6)0.0019 (6)0.0010 (6)
C30.0346 (7)0.0338 (8)0.0331 (7)0.0041 (6)0.0019 (6)0.0005 (6)
C40.0334 (7)0.0393 (8)0.0359 (7)0.0015 (6)0.0023 (6)0.0039 (6)
C50.0289 (7)0.0357 (8)0.0363 (7)0.0019 (6)0.0008 (6)0.0055 (6)
C60.0283 (7)0.0288 (7)0.0376 (8)0.0036 (6)0.0016 (6)0.0014 (6)
C70.0263 (7)0.0398 (8)0.0328 (7)0.0047 (6)0.0051 (6)0.0007 (6)
C80.0474 (9)0.0451 (10)0.0413 (9)0.0062 (8)0.0028 (7)0.0075 (7)
C90.0566 (11)0.0806 (15)0.0395 (9)0.0131 (10)0.0064 (8)0.0122 (9)
C100.0463 (10)0.0845 (16)0.0412 (9)0.0007 (10)0.0076 (8)0.0094 (9)
C110.0436 (9)0.0572 (11)0.0554 (10)0.0039 (8)0.0033 (8)0.0114 (9)
C120.0403 (8)0.0430 (9)0.0433 (9)0.0009 (7)0.0033 (7)0.0006 (7)
C130.0467 (9)0.0545 (11)0.0442 (9)0.0063 (8)0.0121 (7)0.0035 (8)
C140.0358 (8)0.0402 (9)0.0427 (8)0.0044 (7)0.0033 (7)0.0062 (7)
C150.0539 (11)0.0439 (10)0.0703 (12)0.0189 (8)0.0066 (9)0.0017 (9)
C160.0925 (18)0.0751 (17)0.1037 (19)0.0376 (14)0.0330 (15)0.0384 (14)
C170.0305 (7)0.0371 (8)0.0437 (8)0.0001 (6)0.0004 (6)0.0003 (7)
C180.0294 (7)0.0393 (9)0.0465 (9)0.0029 (6)0.0007 (6)0.0054 (7)
C190.0444 (9)0.0479 (10)0.0584 (11)0.0083 (8)0.0045 (8)0.0052 (8)
C200.0566 (11)0.0425 (10)0.0725 (13)0.0140 (9)0.0016 (10)0.0040 (9)
C210.0438 (9)0.0447 (10)0.0663 (12)0.0142 (8)0.0024 (8)0.0129 (9)
C220.0479 (10)0.0532 (11)0.0628 (12)0.0022 (8)0.0167 (9)0.0072 (9)
Geometric parameters (Å, º) top
S1—C21.7515 (15)C9—H90.9300
S1—C31.7525 (15)C10—C111.367 (3)
N1—C31.3644 (19)C10—H100.9300
N1—C11.3927 (18)C11—C121.385 (2)
N1—C61.4747 (18)C11—H110.9300
N2—C31.2767 (19)C12—H120.9300
N2—C41.410 (2)C13—H13A0.9600
N3—C211.350 (2)C13—H13B0.9600
N3—C181.382 (2)C13—H13C0.9600
N3—C221.451 (2)C15—C161.467 (3)
O1—C11.2103 (18)C15—H15A0.9700
O2—C141.1986 (19)C15—H15B0.9700
O3—C141.336 (2)C16—H16A0.9600
O3—C151.448 (2)C16—H16B0.9600
C1—C21.471 (2)C16—H16C0.9600
C2—C171.345 (2)C17—C181.424 (2)
C4—C51.348 (2)C17—H170.9300
C4—C131.499 (2)C18—C191.388 (2)
C5—C141.475 (2)C19—C201.388 (3)
C5—C61.525 (2)C19—H190.9300
C6—C71.530 (2)C20—C211.362 (3)
C6—H60.9800C20—H200.9300
C7—C81.381 (2)C21—H210.9300
C7—C121.383 (2)C22—H22A0.9600
C8—C91.384 (3)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C9—C101.371 (3)
C2—S1—C391.30 (7)C7—C12—C11120.65 (16)
C3—N1—C1116.64 (12)C7—C12—H12119.7
C3—N1—C6119.93 (12)C11—C12—H12119.7
C1—N1—C6122.05 (12)C4—C13—H13A109.5
C3—N2—C4116.54 (13)C4—C13—H13B109.5
C21—N3—C18108.92 (15)H13A—C13—H13B109.5
C21—N3—C22124.10 (15)C4—C13—H13C109.5
C18—N3—C22126.96 (14)H13A—C13—H13C109.5
C14—O3—C15116.02 (13)H13B—C13—H13C109.5
O1—C1—N1123.23 (14)O2—C14—O3121.64 (15)
O1—C1—C2127.04 (14)O2—C14—C5126.98 (16)
N1—C1—C2109.69 (12)O3—C14—C5111.37 (13)
C17—C2—C1122.10 (14)O3—C15—C16109.13 (16)
C17—C2—S1126.93 (13)O3—C15—H15A109.9
C1—C2—S1110.87 (10)C16—C15—H15A109.9
N2—C3—N1126.75 (14)O3—C15—H15B109.9
N2—C3—S1121.76 (12)C16—C15—H15B109.9
N1—C3—S1111.48 (10)H15A—C15—H15B108.3
C5—C4—N2122.14 (13)C15—C16—H16A109.5
C5—C4—C13126.79 (15)C15—C16—H16B109.5
N2—C4—C13111.07 (14)H16A—C16—H16B109.5
C4—C5—C14122.06 (14)C15—C16—H16C109.5
C4—C5—C6120.85 (13)H16A—C16—H16C109.5
C14—C5—C6117.05 (13)H16B—C16—H16C109.5
N1—C6—C5107.91 (11)C2—C17—C18128.30 (15)
N1—C6—C7110.27 (12)C2—C17—H17115.8
C5—C6—C7111.47 (11)C18—C17—H17115.8
N1—C6—H6109.0N3—C18—C19106.40 (14)
C5—C6—H6109.0N3—C18—C17121.26 (15)
C7—C6—H6109.0C19—C18—C17132.26 (15)
C8—C7—C12118.85 (15)C18—C19—C20108.23 (17)
C8—C7—C6119.96 (15)C18—C19—H19125.9
C12—C7—C6121.13 (13)C20—C19—H19125.9
C7—C8—C9120.06 (18)C21—C20—C19107.12 (17)
C7—C8—H8120.0C21—C20—H20126.4
C9—C8—H8120.0C19—C20—H20126.4
C10—C9—C8120.59 (18)N3—C21—C20109.33 (16)
C10—C9—H9119.7N3—C21—H21125.3
C8—C9—H9119.7C20—C21—H21125.3
C11—C10—C9119.81 (17)N3—C22—H22A109.5
C11—C10—H10120.1N3—C22—H22B109.5
C9—C10—H10120.1H22A—C22—H22B109.5
C10—C11—C12120.04 (19)N3—C22—H22C109.5
C10—C11—H11120.0H22A—C22—H22C109.5
C12—C11—H11120.0H22B—C22—H22C109.5
C3—N1—C1—O1178.40 (14)C5—C6—C7—C8101.17 (16)
C6—N1—C1—O111.8 (2)N1—C6—C7—C1243.80 (18)
C3—N1—C1—C20.46 (18)C5—C6—C7—C1276.03 (17)
C6—N1—C1—C2166.11 (12)C12—C7—C8—C90.6 (2)
O1—C1—C2—C172.4 (2)C6—C7—C8—C9176.68 (15)
N1—C1—C2—C17175.41 (14)C7—C8—C9—C100.9 (3)
O1—C1—C2—S1179.05 (14)C8—C9—C10—C110.3 (3)
N1—C1—C2—S11.22 (15)C9—C10—C11—C120.6 (3)
C3—S1—C2—C17175.15 (15)C8—C7—C12—C110.3 (2)
C3—S1—C2—C11.27 (11)C6—C7—C12—C11177.55 (14)
C4—N2—C3—N15.9 (2)C10—C11—C12—C70.9 (3)
C4—N2—C3—S1173.22 (11)C15—O3—C14—O20.3 (2)
C1—N1—C3—N2179.70 (15)C15—O3—C14—C5179.36 (14)
C6—N1—C3—N213.4 (2)C4—C5—C14—O22.3 (3)
C1—N1—C3—S10.50 (16)C6—C5—C14—O2175.46 (18)
C6—N1—C3—S1167.38 (10)C4—C5—C14—O3176.79 (14)
C2—S1—C3—N2179.73 (14)C6—C5—C14—O35.49 (19)
C2—S1—C3—N11.03 (11)C14—O3—C15—C16170.47 (19)
C3—N2—C4—C58.6 (2)C1—C2—C17—C18172.86 (15)
C3—N2—C4—C13170.92 (14)S1—C2—C17—C183.2 (3)
N2—C4—C5—C14174.67 (14)C21—N3—C18—C190.08 (18)
C13—C4—C5—C144.7 (2)C22—N3—C18—C19178.08 (16)
N2—C4—C5—C67.7 (2)C21—N3—C18—C17177.00 (14)
C13—C4—C5—C6172.92 (15)C22—N3—C18—C174.8 (2)
C3—N1—C6—C526.08 (17)C2—C17—C18—N3176.53 (15)
C1—N1—C6—C5167.78 (13)C2—C17—C18—C190.3 (3)
C3—N1—C6—C795.89 (15)N3—C18—C19—C200.3 (2)
C1—N1—C6—C770.25 (17)C17—C18—C19—C20176.32 (17)
C4—C5—C6—N123.55 (19)C18—C19—C20—C210.4 (2)
C14—C5—C6—N1158.71 (12)C18—N3—C21—C200.2 (2)
C4—C5—C6—C797.67 (16)C22—N3—C21—C20178.41 (17)
C14—C5—C6—C780.07 (16)C19—C20—C21—N30.4 (2)
N1—C6—C7—C8139.00 (14)

Experimental details

Crystal data
Chemical formulaC22H21N3O3S
Mr407.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.8187 (10), 10.2911 (9), 16.2290 (14)
β (°) 90.584 (2)
V3)1973.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.32 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.814, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10415, 3877, 3433
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.05
No. of reflections3877
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grants No. LY12H16003 and Y4110197) and the project of Wenzhou Sci & Tech Bureau (Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, is gratefully acknowledged for the data collection.

References

First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBahekar, S. S. & Shinde, D. B. (2004). Bioorg. Med. Chem. Lett. 14, 1733–1736.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Z.-H. (2009). Acta Cryst. E65, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHurst, E. W. & Hull, R. (1961). J. Med. Pharm. Chem. 3, 215–229.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMagerramov, A. M., Kurbanova, M. M., Abdinbekova, R. T., Rzaeva, I. A., Farzaliev, V. M. & Allakhverdiev, M. A. (2006). Russ. J. Appl. Chem. 79, 787–790.  Web of Science CrossRef CAS Google Scholar
First citationMehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103–106.  CrossRef CAS Google Scholar
First citationShah, T. J. & Desai, V. A. (2007). Arkivoc, 14, 218–228.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118–1123.  CAS Google Scholar
First citationSubudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114–118.  CAS Google Scholar
First citationZhao, C.-G., Hu, J., Zhang, Y.-L., Zhang, J. & Yang, S.-L. (2011). Acta Cryst. E67, o3009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242–1250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds