organic compounds
2-Cyclohexylidene-N-methylhydrazinecarbothioamide
aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
*Correspondence e-mail: thahira.begum@science.upm.edu.my
The title compound C8H15N3S has two molecules in the in which cis–trans is exhibited around the N(NH)C=S bonds. The cyclohexyl rings in both molecules adopt a chair conformation. In the crystal, N—H⋯S hydrogen bonding produces dimers, which are interconnected through further N—H⋯S hydrogen bonds, forming chains along the b-axis direction.
Related literature
For background to the coordination chemistry of dithiocarbazate derivatives, see: Zhang et al. (2011); Khoo et al. (2005); Ravoof et al. (2010). For the synthesis and methodology, see: Tian et al. (1997); Tarafder et al. (2000); Tan et al. (2012). For related structures, see: Paulus et al. (2011); Tayamon et al. (2012). For packing arrangements in other cyclohexyl compounds, see: Rohr et al. (2009). For riding constrints, see: Cooper et al. (2010). For charge delocalization, see: Sanderson (1967). For the synthesis, see: Tian et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536812042018/bg2476sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042018/bg2476Isup2.hkl
The title compound was synthesized following established literature procedures (Tian et al., 1997; Tarafder et al., 2000). 4-methyl-3-thiosemicarbazide (1.05 g, 0.01 mol) dissolved in hot absolute ethanol (30 ml) was added dropwise to an equimolar amount of cyclohexanone (1.04 ml) also in hot absolute ethanol (20 ml). The mixture was stirred for about half an hour at about 340 K and 3 h at room temperature. Pale yellow crystals of the Schiff base suitable for X-ray analysis were obtained after 3 days by keeping the solution at room temperature.
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. |
C8H15N3S | F(000) = 800 |
Mr = 185.29 | Dx = 1.267 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 6569 reflections |
a = 10.0538 (3) Å | θ = 4–71° |
b = 11.0108 (3) Å | µ = 2.56 mm−1 |
c = 17.9484 (5) Å | T = 100 K |
β = 102.132 (3)° | Plate, yellow |
V = 1942.52 (10) Å3 | 0.27 × 0.22 × 0.10 mm |
Z = 8 |
Agilent Gemini diffractometer | 3414 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 71.3°, θmin = 4.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −12→12 |
Tmin = 0.58, Tmax = 0.77 | k = −12→13 |
13859 measured reflections | l = −22→20 |
3754 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.090 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 1.01P] , where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
3740 reflections | Δρmax = 0.42 e Å−3 |
217 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
C8H15N3S | V = 1942.52 (10) Å3 |
Mr = 185.29 | Z = 8 |
Monoclinic, P21/c | Cu Kα radiation |
a = 10.0538 (3) Å | µ = 2.56 mm−1 |
b = 11.0108 (3) Å | T = 100 K |
c = 17.9484 (5) Å | 0.27 × 0.22 × 0.10 mm |
β = 102.132 (3)° |
Agilent Gemini diffractometer | 3754 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3414 reflections with I > 2.0σ(I) |
Tmin = 0.58, Tmax = 0.77 | Rint = 0.025 |
13859 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.42 e Å−3 |
3740 reflections | Δρmin = −0.21 e Å−3 |
217 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107. |
x | y | z | Uiso*/Ueq | ||
S201 | 0.58434 (4) | −0.01233 (3) | 0.30376 (2) | 0.0187 | |
C202 | 0.60061 (14) | 0.13128 (13) | 0.27235 (8) | 0.0162 | |
N203 | 0.53742 (13) | 0.22586 (11) | 0.29493 (7) | 0.0181 | |
C204 | 0.44282 (16) | 0.21726 (14) | 0.34578 (9) | 0.0209 | |
N205 | 0.67851 (13) | 0.15375 (11) | 0.22056 (7) | 0.0167 | |
N206 | 0.70685 (13) | 0.27513 (11) | 0.20908 (7) | 0.0172 | |
C207 | 0.76628 (14) | 0.30324 (13) | 0.15489 (8) | 0.0164 | |
C208 | 0.80605 (16) | 0.22007 (13) | 0.09651 (8) | 0.0185 | |
C209 | 0.76595 (17) | 0.27449 (14) | 0.01581 (9) | 0.0224 | |
C210 | 0.81075 (18) | 0.40699 (15) | 0.01227 (9) | 0.0253 | |
C211 | 0.75322 (17) | 0.48442 (14) | 0.06856 (9) | 0.0216 | |
C212 | 0.80051 (16) | 0.43550 (13) | 0.14981 (9) | 0.0189 | |
H2042 | 0.4105 | 0.2974 | 0.3532 | 0.0328* | |
H2041 | 0.4865 | 0.1830 | 0.3941 | 0.0327* | |
H2043 | 0.3665 | 0.1658 | 0.3226 | 0.0325* | |
H2082 | 0.9047 | 0.2100 | 0.1102 | 0.0244* | |
H2081 | 0.7642 | 0.1400 | 0.0982 | 0.0221* | |
H2091 | 0.8084 | 0.2250 | −0.0181 | 0.0289* | |
H2092 | 0.6676 | 0.2711 | −0.0007 | 0.0289* | |
H2102 | 0.9105 | 0.4108 | 0.0260 | 0.0327* | |
H2101 | 0.7794 | 0.4379 | −0.0396 | 0.0332* | |
H2111 | 0.7819 | 0.5687 | 0.0665 | 0.0267* | |
H2112 | 0.6522 | 0.4812 | 0.0542 | 0.0274* | |
H2121 | 0.8989 | 0.4423 | 0.1649 | 0.0247* | |
H2122 | 0.7612 | 0.4819 | 0.1862 | 0.0250* | |
H2051 | 0.7311 | 0.0945 | 0.2094 | 0.0237* | |
H2031 | 0.5539 | 0.2982 | 0.2789 | 0.0238* | |
S101 | 0.10077 (4) | 0.43846 (3) | 0.32431 (2) | 0.0195 | |
C102 | 0.09543 (14) | 0.30514 (14) | 0.27653 (8) | 0.0162 | |
N103 | 0.03196 (13) | 0.20656 (11) | 0.29422 (7) | 0.0171 | |
C104 | −0.04378 (16) | 0.20264 (14) | 0.35483 (9) | 0.0198 | |
N105 | 0.15382 (12) | 0.29552 (11) | 0.21498 (7) | 0.0168 | |
N106 | 0.16479 (13) | 0.17797 (11) | 0.18731 (7) | 0.0191 | |
C107 | 0.20173 (15) | 0.16549 (14) | 0.12364 (9) | 0.0180 | |
C108 | 0.23688 (15) | 0.26264 (14) | 0.07247 (8) | 0.0188 | |
C109 | 0.38405 (16) | 0.24444 (14) | 0.06287 (9) | 0.0201 | |
C110 | 0.40502 (17) | 0.11593 (14) | 0.03518 (9) | 0.0228 | |
C111 | 0.36605 (16) | 0.01991 (14) | 0.08823 (9) | 0.0206 | |
C112 | 0.21911 (17) | 0.03771 (15) | 0.09779 (10) | 0.0240 | |
H1041 | −0.0770 | 0.1213 | 0.3570 | 0.0331* | |
H1042 | 0.0137 | 0.2223 | 0.4028 | 0.0329* | |
H1043 | −0.1208 | 0.2590 | 0.3436 | 0.0325* | |
H1081 | 0.2226 | 0.3447 | 0.0915 | 0.0246* | |
H1082 | 0.1745 | 0.2523 | 0.0229 | 0.0255* | |
H1092 | 0.4454 | 0.2578 | 0.1125 | 0.0256* | |
H1091 | 0.4047 | 0.3045 | 0.0275 | 0.0262* | |
H1101 | 0.5017 | 0.1051 | 0.0335 | 0.0290* | |
H1102 | 0.3480 | 0.1049 | −0.0165 | 0.0286* | |
H1112 | 0.4287 | 0.0259 | 0.1391 | 0.0258* | |
H1111 | 0.3763 | −0.0617 | 0.0669 | 0.0248* | |
H1121 | 0.1964 | −0.0195 | 0.1338 | 0.0317* | |
H1122 | 0.1553 | 0.0268 | 0.0483 | 0.0307* | |
H1031 | 0.0352 | 0.1396 | 0.2682 | 0.0230* | |
H1051 | 0.2103 | 0.3519 | 0.2083 | 0.0243* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S201 | 0.0218 (2) | 0.01267 (19) | 0.0224 (2) | −0.00031 (13) | 0.00684 (15) | 0.00329 (13) |
C202 | 0.0161 (7) | 0.0153 (7) | 0.0155 (7) | −0.0016 (5) | −0.0003 (5) | 0.0006 (5) |
N203 | 0.0214 (6) | 0.0127 (6) | 0.0214 (6) | 0.0004 (5) | 0.0069 (5) | 0.0022 (5) |
C204 | 0.0213 (8) | 0.0199 (8) | 0.0225 (8) | 0.0000 (6) | 0.0072 (6) | −0.0010 (6) |
N205 | 0.0202 (6) | 0.0112 (6) | 0.0194 (6) | 0.0009 (5) | 0.0060 (5) | 0.0014 (5) |
N206 | 0.0187 (6) | 0.0120 (6) | 0.0200 (6) | 0.0007 (5) | 0.0020 (5) | 0.0015 (5) |
C207 | 0.0161 (7) | 0.0150 (7) | 0.0168 (7) | 0.0006 (5) | 0.0008 (5) | 0.0020 (5) |
C208 | 0.0216 (7) | 0.0138 (7) | 0.0209 (8) | 0.0012 (6) | 0.0060 (6) | 0.0015 (6) |
C209 | 0.0308 (8) | 0.0195 (8) | 0.0174 (7) | −0.0022 (6) | 0.0059 (6) | −0.0001 (6) |
C210 | 0.0362 (9) | 0.0208 (8) | 0.0199 (8) | −0.0026 (7) | 0.0084 (7) | 0.0046 (6) |
C211 | 0.0257 (8) | 0.0155 (7) | 0.0234 (8) | −0.0004 (6) | 0.0047 (6) | 0.0043 (6) |
C212 | 0.0218 (7) | 0.0143 (7) | 0.0205 (8) | −0.0010 (6) | 0.0045 (6) | 0.0004 (6) |
S101 | 0.0230 (2) | 0.0150 (2) | 0.0221 (2) | −0.00106 (13) | 0.00819 (15) | −0.00470 (13) |
C102 | 0.0149 (7) | 0.0158 (7) | 0.0173 (7) | 0.0027 (5) | 0.0020 (5) | 0.0003 (5) |
N103 | 0.0195 (6) | 0.0141 (6) | 0.0189 (6) | −0.0002 (5) | 0.0069 (5) | −0.0014 (5) |
C104 | 0.0210 (7) | 0.0208 (8) | 0.0191 (7) | −0.0006 (6) | 0.0072 (6) | 0.0013 (6) |
N105 | 0.0189 (6) | 0.0120 (6) | 0.0209 (6) | −0.0016 (5) | 0.0070 (5) | −0.0016 (5) |
N106 | 0.0196 (6) | 0.0132 (6) | 0.0264 (7) | −0.0010 (5) | 0.0091 (5) | −0.0030 (5) |
C107 | 0.0149 (7) | 0.0176 (8) | 0.0223 (7) | −0.0020 (6) | 0.0055 (6) | −0.0031 (6) |
C108 | 0.0222 (8) | 0.0175 (7) | 0.0162 (7) | 0.0024 (6) | 0.0032 (6) | −0.0008 (6) |
C109 | 0.0232 (8) | 0.0181 (8) | 0.0211 (7) | −0.0016 (6) | 0.0096 (6) | 0.0007 (6) |
C110 | 0.0249 (8) | 0.0210 (8) | 0.0255 (8) | −0.0007 (6) | 0.0123 (6) | −0.0037 (6) |
C111 | 0.0240 (8) | 0.0150 (8) | 0.0249 (8) | 0.0004 (6) | 0.0094 (6) | −0.0044 (6) |
C112 | 0.0269 (8) | 0.0176 (8) | 0.0314 (9) | −0.0059 (6) | 0.0152 (7) | −0.0069 (6) |
S201—C202 | 1.6982 (15) | S101—C102 | 1.6953 (15) |
C202—N203 | 1.3269 (19) | C102—N103 | 1.331 (2) |
C202—N205 | 1.3582 (19) | C102—N105 | 1.3596 (19) |
N203—C204 | 1.4531 (19) | N103—C104 | 1.4537 (18) |
N203—H2031 | 0.874 | N103—H1031 | 0.877 |
C204—H2042 | 0.959 | C104—H1041 | 0.959 |
C204—H2041 | 0.962 | C104—H1042 | 0.955 |
C204—H2043 | 0.974 | C104—H1043 | 0.980 |
N205—N206 | 1.3909 (17) | N105—N106 | 1.3989 (17) |
N205—H2051 | 0.889 | N105—H1051 | 0.866 |
N206—C207 | 1.2818 (19) | N106—C107 | 1.281 (2) |
C207—C208 | 1.508 (2) | C107—C108 | 1.500 (2) |
C207—C212 | 1.504 (2) | C107—C112 | 1.503 (2) |
C208—C209 | 1.541 (2) | C108—C109 | 1.538 (2) |
C208—H2082 | 0.977 | C108—H1081 | 0.987 |
C208—H2081 | 0.980 | C108—H1082 | 0.982 |
C209—C210 | 1.532 (2) | C109—C110 | 1.529 (2) |
C209—H2091 | 0.979 | C109—H1092 | 0.982 |
C209—H2092 | 0.971 | C109—H1091 | 0.969 |
C210—C211 | 1.526 (2) | C110—C111 | 1.528 (2) |
C210—H2102 | 0.982 | C110—H1101 | 0.986 |
C210—H2101 | 0.980 | C110—H1102 | 0.990 |
C211—C212 | 1.534 (2) | C111—C112 | 1.535 (2) |
C211—H2111 | 0.975 | C111—H1112 | 0.997 |
C211—H2112 | 0.995 | C111—H1111 | 0.990 |
C212—H2121 | 0.972 | C112—H1121 | 0.964 |
C212—H2122 | 0.975 | C112—H1122 | 0.987 |
S201—C202—N203 | 122.94 (11) | S101—C102—N103 | 123.45 (11) |
S201—C202—N205 | 120.43 (11) | S101—C102—N105 | 120.35 (11) |
N203—C202—N205 | 116.62 (13) | N103—C102—N105 | 116.16 (13) |
C202—N203—C204 | 124.01 (13) | C102—N103—C104 | 123.75 (13) |
C202—N203—H2031 | 118.6 | C102—N103—H1031 | 119.0 |
C204—N203—H2031 | 117.4 | C104—N103—H1031 | 117.2 |
N203—C204—H2042 | 108.2 | N103—C104—H1041 | 107.4 |
N203—C204—H2041 | 110.8 | N103—C104—H1042 | 110.7 |
H2042—C204—H2041 | 109.9 | H1041—C104—H1042 | 109.0 |
N203—C204—H2043 | 109.3 | N103—C104—H1043 | 110.0 |
H2042—C204—H2043 | 109.5 | H1041—C104—H1043 | 109.4 |
H2041—C204—H2043 | 109.1 | H1042—C104—H1043 | 110.2 |
C202—N205—N206 | 116.23 (12) | C102—N105—N106 | 116.12 (12) |
C202—N205—H2051 | 118.5 | C102—N105—H1051 | 117.6 |
N206—N205—H2051 | 121.5 | N106—N105—H1051 | 120.8 |
N205—N206—C207 | 119.15 (12) | N105—N106—C107 | 118.37 (13) |
N206—C207—C208 | 127.94 (13) | N106—C107—C108 | 128.28 (14) |
N206—C207—C212 | 115.41 (13) | N106—C107—C112 | 116.74 (14) |
C208—C207—C212 | 116.66 (13) | C108—C107—C112 | 114.90 (13) |
C207—C208—C209 | 111.22 (12) | C107—C108—C109 | 109.37 (12) |
C207—C208—H2082 | 107.3 | C107—C108—H1081 | 111.7 |
C209—C208—H2082 | 109.4 | C109—C108—H1081 | 111.8 |
C207—C208—H2081 | 110.2 | C107—C108—H1082 | 106.5 |
C209—C208—H2081 | 110.5 | C109—C108—H1082 | 109.2 |
H2082—C208—H2081 | 108.1 | H1081—C108—H1082 | 108.0 |
C208—C209—C210 | 112.84 (13) | C108—C109—C110 | 111.01 (13) |
C208—C209—H2091 | 107.8 | C108—C109—H1092 | 108.3 |
C210—C209—H2091 | 109.5 | C110—C109—H1092 | 109.3 |
C208—C209—H2092 | 108.6 | C108—C109—H1091 | 109.1 |
C210—C209—H2092 | 108.3 | C110—C109—H1091 | 110.9 |
H2091—C209—H2092 | 109.8 | H1092—C109—H1091 | 108.2 |
C209—C210—C211 | 110.43 (13) | C109—C110—C111 | 111.52 (12) |
C209—C210—H2102 | 108.9 | C109—C110—H1101 | 109.0 |
C211—C210—H2102 | 108.7 | C111—C110—H1101 | 108.6 |
C209—C210—H2101 | 109.3 | C109—C110—H1102 | 109.0 |
C211—C210—H2101 | 110.2 | C111—C110—H1102 | 109.0 |
H2102—C210—H2101 | 109.3 | H1101—C110—H1102 | 109.7 |
C210—C211—C212 | 110.40 (13) | C110—C111—C112 | 111.11 (13) |
C210—C211—H2111 | 110.5 | C110—C111—H1112 | 109.2 |
C212—C211—H2111 | 109.6 | C112—C111—H1112 | 109.1 |
C210—C211—H2112 | 108.5 | C110—C111—H1111 | 109.0 |
C212—C211—H2112 | 109.2 | C112—C111—H1111 | 109.9 |
H2111—C211—H2112 | 108.5 | H1112—C111—H1111 | 108.5 |
C211—C212—C207 | 111.64 (12) | C111—C112—C107 | 109.33 (13) |
C211—C212—H2121 | 109.4 | C111—C112—H1121 | 111.2 |
C207—C212—H2121 | 106.9 | C107—C112—H1121 | 110.2 |
C211—C212—H2122 | 111.4 | C111—C112—H1122 | 110.0 |
C207—C212—H2122 | 109.6 | C107—C112—H1122 | 107.2 |
H2121—C212—H2122 | 107.7 | H1121—C112—H1122 | 108.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
N205—H2051···S101i | 0.89 | 2.57 | 3.4559 (13) | 175 |
N105—H1051···S201ii | 0.87 | 2.59 | 3.4484 (13) | 169 |
N203—H2031···S201ii | 0.87 | 2.76 | 3.4691 (13) | 139 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H15N3S |
Mr | 185.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.0538 (3), 11.0108 (3), 17.9484 (5) |
β (°) | 102.132 (3) |
V (Å3) | 1942.52 (10) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.56 |
Crystal size (mm) | 0.27 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Agilent Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.58, 0.77 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 13859, 3754, 3414 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.614 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.090, 0.98 |
No. of reflections | 3740 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.21 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
N205—H2051···S101i | 0.89 | 2.57 | 3.4559 (13) | 175 |
N105—H1051···S201ii | 0.87 | 2.59 | 3.4484 (13) | 169 |
N203—H2031···S201ii | 0.87 | 2.76 | 3.4691 (13) | 139 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 05–01–11–1243RU) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–13–11–986FR). We also thank Siti Khadijah Densabali for collecting the X-ray data. ST and NAM wish to acknowledge the Malaysian Government for sponsorship under the FRGS/RUGS Scheme.
References
Agilent, (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876. Web of Science CSD CrossRef CAS Google Scholar
Rohr, K., Herre, R. & Mahrwald, R. (2009). J. Org. Chem. 74, 3744–3749. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sanderson, R. T. (1967). Inorganic Chemistry, 1st edition. New York: Reinhold. Google Scholar
Tan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461–o1462. CSD CrossRef IUCr Journals Google Scholar
Tarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem, 25, 456–460. Web of Science CrossRef CAS Google Scholar
Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641. CSD CrossRef IUCr Journals Google Scholar
Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247–1252. CSD CrossRef PubMed CAS Web of Science Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To initiate comparative studies between hydrazine carbothioamide Schiff bases (Zhang et al., 2011) and hydrazine carbodithioate derivatives synthesized in our laboratory in our on-going investigations (Khoo et al., 2005; Ravoof et al., 2010, Tan et al. 2012, Paulus et al. 2011, Tayamon et al. 2012), the title compound (C8H15N3S) was synthesized and crystallographically characterized. The compound crystallizes in the monoclinic system, space group P 21/c. There are two independent molecules in the asymmetric unit (Fig. 1), in the thione form with C=S bond distances ranging from 1.6953 (15) Å to 1.6982 (15) Å. The values are intermediate between a C—S single bond (~1.82 Å) and a C=S double bond(~1.56 Å) due to charge delocalization (Sanderson, 1967). The C—N and C=N bond distances range from 1.3269 (19) to 1.3596 (19) Å and 1.281 (2) to 1.2818 (19) Å respectively. N—N bond distances vary from 1.3909 (17) to 1.3989 (17) Å, shorter than a single bond and indicating significant π delocalization along the NNC(S)N moiety.
Cis-trans isomerism is exhibited in the Schiff base around the N(NH)C=S bonds. In both molecules, the methyl group is cis to the thione sulfur along Cn02 – Nn03 (n: 1, 2), and the cyclohexyl group is trans to the thione sulfur along Cn02 – Nn05. Both cyclohexyl rings are in a chair conformation. The two molecules are twisted relative to one another, as shown by the angle between the planes defined by C108–C109–C111–C112 (largest deviation 0.000 Å) and C208–C209–C211–C212 (largest deviation 0.020 Å) in the respective cyclohexyl ring (83.47°), and S101–C102–N103–C104 (largest deviation 0.009 Å) and S201–C202–N203–C204 (largest deviation 0.013 Å) with a dihedral angle of 27.66°. Molecular packing viewed along the a axis shows this orthogonal arrangement of the cyclohexyl rings similar to other subsituted cyclohexyl compounds (Rohr et al., 2009).
The molecular packing is supported by hydrogen bonding through N—H···S interactions (first and second entries in Table 1) creating dimers, which in turn, are also linked through another N—H···S H-bond interaction between dimers (third entry in table 1) creating a chain-like structure along the b axis.