organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3104-o3105

2-Cyclo­hexyl­­idene-N-methyl­hydrazine­carbo­thio­amide

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
*Correspondence e-mail: thahira.begum@science.upm.edu.my

(Received 30 July 2012; accepted 8 October 2012; online 13 October 2012)

The title compound C8H15N3S has two mol­ecules in the asymmetric unit in which cis–trans isomerism is exhibited around the N(NH)C=S bonds. The cyclo­hexyl rings in both mol­ecules adopt a chair conformation. In the crystal, N—H⋯S hydrogen bonding produces dimers, which are inter­connected through further N—H⋯S hydrogen bonds, forming chains along the b-axis direction.

Related literature

For background to the coordination chemistry of dithio­carbazate derivatives, see: Zhang et al. (2011[Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702-4708.]); Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis and methodology, see: Tian et al. (1997); Tarafder et al. (2000[Tarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem, 25, 456-460.]); Tan et al. (2012[Tan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461-o1462.]). For related structures, see: Paulus et al. (2011[Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370-o1371.]); Tayamon et al. (2012[Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640-o1641.]). For packing arrangements in other cyclohexyl compounds, see: Rohr et al. (2009[Rohr, K., Herre, R. & Mahrwald, R. (2009). J. Org. Chem. 74, 3744-3749.]). For riding constrints, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). For charge delocalization, see: Sanderson (1967[Sanderson, R. T. (1967). Inorganic Chemistry, 1st edition. New York: Reinhold.]). For the synthesis, see: Tian et al. (1997[Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247-1252.]).

[Scheme 1]

Experimental

Crystal data
  • C8H15N3S

  • Mr = 185.29

  • Monoclinic, P 21 /c

  • a = 10.0538 (3) Å

  • b = 11.0108 (3) Å

  • c = 17.9484 (5) Å

  • β = 102.132 (3)°

  • V = 1942.52 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.56 mm−1

  • T = 100 K

  • 0.27 × 0.22 × 0.10 mm

Data collection
  • Agilent Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.58, Tmax = 0.77

  • 13859 measured reflections

  • 3754 independent reflections

  • 3414 reflections with I > 2.0σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 0.98

  • 3740 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N205—H2051⋯S101i 0.89 2.57 3.4559 (13) 175
N105—H1051⋯S201ii 0.87 2.59 3.4484 (13) 169
N203—H2031⋯S201ii 0.87 2.76 3.4691 (13) 139
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

To initiate comparative studies between hydrazine carbothioamide Schiff bases (Zhang et al., 2011) and hydrazine carbodithioate derivatives synthesized in our laboratory in our on-going investigations (Khoo et al., 2005; Ravoof et al., 2010, Tan et al. 2012, Paulus et al. 2011, Tayamon et al. 2012), the title compound (C8H15N3S) was synthesized and crystallographically characterized. The compound crystallizes in the monoclinic system, space group P 21/c. There are two independent molecules in the asymmetric unit (Fig. 1), in the thione form with C=S bond distances ranging from 1.6953 (15) Å to 1.6982 (15) Å. The values are intermediate between a C—S single bond (~1.82 Å) and a C=S double bond(~1.56 Å) due to charge delocalization (Sanderson, 1967). The C—N and C=N bond distances range from 1.3269 (19) to 1.3596 (19) Å and 1.281 (2) to 1.2818 (19) Å respectively. N—N bond distances vary from 1.3909 (17) to 1.3989 (17) Å, shorter than a single bond and indicating significant π delocalization along the NNC(S)N moiety.

Cis-trans isomerism is exhibited in the Schiff base around the N(NH)C=S bonds. In both molecules, the methyl group is cis to the thione sulfur along Cn02 – Nn03 (n: 1, 2), and the cyclohexyl group is trans to the thione sulfur along Cn02 – Nn05. Both cyclohexyl rings are in a chair conformation. The two molecules are twisted relative to one another, as shown by the angle between the planes defined by C108–C109–C111–C112 (largest deviation 0.000 Å) and C208–C209–C211–C212 (largest deviation 0.020 Å) in the respective cyclohexyl ring (83.47°), and S101–C102–N103–C104 (largest deviation 0.009 Å) and S201–C202–N203–C204 (largest deviation 0.013 Å) with a dihedral angle of 27.66°. Molecular packing viewed along the a axis shows this orthogonal arrangement of the cyclohexyl rings similar to other subsituted cyclohexyl compounds (Rohr et al., 2009).

The molecular packing is supported by hydrogen bonding through N—H···S interactions (first and second entries in Table 1) creating dimers, which in turn, are also linked through another N—H···S H-bond interaction between dimers (third entry in table 1) creating a chain-like structure along the b axis.

Related literature top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Zhang et al. (2011); Khoo et al. (2005); Ravoof et al. (2010). For the synthesis and methodology, see: Tian et al. (1997); Tarafder et al. (2000); Tan et al. (2012). For related structures, see: Paulus et al. (2011); Tayamon et al. (2012). For on what subject(s)?, see: Cooper et al. (2010); Rohr et al. (2009); Sanderson (1967); Tian et al. (1997).

Experimental top

The title compound was synthesized following established literature procedures (Tian et al., 1997; Tarafder et al., 2000). 4-methyl-3-thiosemicarbazide (1.05 g, 0.01 mol) dissolved in hot absolute ethanol (30 ml) was added dropwise to an equimolar amount of cyclohexanone (1.04 ml) also in hot absolute ethanol (20 ml). The mixture was stirred for about half an hour at about 340 K and 3 h at room temperature. Pale yellow crystals of the Schiff base suitable for X-ray analysis were obtained after 3 days by keeping the solution at room temperature.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level.
2-Cyclohexylidene-N-methylhydrazinecarbothioamide top
Crystal data top
C8H15N3SF(000) = 800
Mr = 185.29Dx = 1.267 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 6569 reflections
a = 10.0538 (3) Åθ = 4–71°
b = 11.0108 (3) ŵ = 2.56 mm1
c = 17.9484 (5) ÅT = 100 K
β = 102.132 (3)°Plate, yellow
V = 1942.52 (10) Å30.27 × 0.22 × 0.10 mm
Z = 8
Data collection top
Agilent Gemini
diffractometer
3414 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 71.3°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1212
Tmin = 0.58, Tmax = 0.77k = 1213
13859 measured reflectionsl = 2220
3754 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 1.01P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3740 reflectionsΔρmax = 0.42 e Å3
217 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C8H15N3SV = 1942.52 (10) Å3
Mr = 185.29Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.0538 (3) ŵ = 2.56 mm1
b = 11.0108 (3) ÅT = 100 K
c = 17.9484 (5) Å0.27 × 0.22 × 0.10 mm
β = 102.132 (3)°
Data collection top
Agilent Gemini
diffractometer
3754 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3414 reflections with I > 2.0σ(I)
Tmin = 0.58, Tmax = 0.77Rint = 0.025
13859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.98Δρmax = 0.42 e Å3
3740 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S2010.58434 (4)0.01233 (3)0.30376 (2)0.0187
C2020.60061 (14)0.13128 (13)0.27235 (8)0.0162
N2030.53742 (13)0.22586 (11)0.29493 (7)0.0181
C2040.44282 (16)0.21726 (14)0.34578 (9)0.0209
N2050.67851 (13)0.15375 (11)0.22056 (7)0.0167
N2060.70685 (13)0.27513 (11)0.20908 (7)0.0172
C2070.76628 (14)0.30324 (13)0.15489 (8)0.0164
C2080.80605 (16)0.22007 (13)0.09651 (8)0.0185
C2090.76595 (17)0.27449 (14)0.01581 (9)0.0224
C2100.81075 (18)0.40699 (15)0.01227 (9)0.0253
C2110.75322 (17)0.48442 (14)0.06856 (9)0.0216
C2120.80051 (16)0.43550 (13)0.14981 (9)0.0189
H20420.41050.29740.35320.0328*
H20410.48650.18300.39410.0327*
H20430.36650.16580.32260.0325*
H20820.90470.21000.11020.0244*
H20810.76420.14000.09820.0221*
H20910.80840.22500.01810.0289*
H20920.66760.27110.00070.0289*
H21020.91050.41080.02600.0327*
H21010.77940.43790.03960.0332*
H21110.78190.56870.06650.0267*
H21120.65220.48120.05420.0274*
H21210.89890.44230.16490.0247*
H21220.76120.48190.18620.0250*
H20510.73110.09450.20940.0237*
H20310.55390.29820.27890.0238*
S1010.10077 (4)0.43846 (3)0.32431 (2)0.0195
C1020.09543 (14)0.30514 (14)0.27653 (8)0.0162
N1030.03196 (13)0.20656 (11)0.29422 (7)0.0171
C1040.04378 (16)0.20264 (14)0.35483 (9)0.0198
N1050.15382 (12)0.29552 (11)0.21498 (7)0.0168
N1060.16479 (13)0.17797 (11)0.18731 (7)0.0191
C1070.20173 (15)0.16549 (14)0.12364 (9)0.0180
C1080.23688 (15)0.26264 (14)0.07247 (8)0.0188
C1090.38405 (16)0.24444 (14)0.06287 (9)0.0201
C1100.40502 (17)0.11593 (14)0.03518 (9)0.0228
C1110.36605 (16)0.01991 (14)0.08823 (9)0.0206
C1120.21911 (17)0.03771 (15)0.09779 (10)0.0240
H10410.07700.12130.35700.0331*
H10420.01370.22230.40280.0329*
H10430.12080.25900.34360.0325*
H10810.22260.34470.09150.0246*
H10820.17450.25230.02290.0255*
H10920.44540.25780.11250.0256*
H10910.40470.30450.02750.0262*
H11010.50170.10510.03350.0290*
H11020.34800.10490.01650.0286*
H11120.42870.02590.13910.0258*
H11110.37630.06170.06690.0248*
H11210.19640.01950.13380.0317*
H11220.15530.02680.04830.0307*
H10310.03520.13960.26820.0230*
H10510.21030.35190.20830.0243*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S2010.0218 (2)0.01267 (19)0.0224 (2)0.00031 (13)0.00684 (15)0.00329 (13)
C2020.0161 (7)0.0153 (7)0.0155 (7)0.0016 (5)0.0003 (5)0.0006 (5)
N2030.0214 (6)0.0127 (6)0.0214 (6)0.0004 (5)0.0069 (5)0.0022 (5)
C2040.0213 (8)0.0199 (8)0.0225 (8)0.0000 (6)0.0072 (6)0.0010 (6)
N2050.0202 (6)0.0112 (6)0.0194 (6)0.0009 (5)0.0060 (5)0.0014 (5)
N2060.0187 (6)0.0120 (6)0.0200 (6)0.0007 (5)0.0020 (5)0.0015 (5)
C2070.0161 (7)0.0150 (7)0.0168 (7)0.0006 (5)0.0008 (5)0.0020 (5)
C2080.0216 (7)0.0138 (7)0.0209 (8)0.0012 (6)0.0060 (6)0.0015 (6)
C2090.0308 (8)0.0195 (8)0.0174 (7)0.0022 (6)0.0059 (6)0.0001 (6)
C2100.0362 (9)0.0208 (8)0.0199 (8)0.0026 (7)0.0084 (7)0.0046 (6)
C2110.0257 (8)0.0155 (7)0.0234 (8)0.0004 (6)0.0047 (6)0.0043 (6)
C2120.0218 (7)0.0143 (7)0.0205 (8)0.0010 (6)0.0045 (6)0.0004 (6)
S1010.0230 (2)0.0150 (2)0.0221 (2)0.00106 (13)0.00819 (15)0.00470 (13)
C1020.0149 (7)0.0158 (7)0.0173 (7)0.0027 (5)0.0020 (5)0.0003 (5)
N1030.0195 (6)0.0141 (6)0.0189 (6)0.0002 (5)0.0069 (5)0.0014 (5)
C1040.0210 (7)0.0208 (8)0.0191 (7)0.0006 (6)0.0072 (6)0.0013 (6)
N1050.0189 (6)0.0120 (6)0.0209 (6)0.0016 (5)0.0070 (5)0.0016 (5)
N1060.0196 (6)0.0132 (6)0.0264 (7)0.0010 (5)0.0091 (5)0.0030 (5)
C1070.0149 (7)0.0176 (8)0.0223 (7)0.0020 (6)0.0055 (6)0.0031 (6)
C1080.0222 (8)0.0175 (7)0.0162 (7)0.0024 (6)0.0032 (6)0.0008 (6)
C1090.0232 (8)0.0181 (8)0.0211 (7)0.0016 (6)0.0096 (6)0.0007 (6)
C1100.0249 (8)0.0210 (8)0.0255 (8)0.0007 (6)0.0123 (6)0.0037 (6)
C1110.0240 (8)0.0150 (8)0.0249 (8)0.0004 (6)0.0094 (6)0.0044 (6)
C1120.0269 (8)0.0176 (8)0.0314 (9)0.0059 (6)0.0152 (7)0.0069 (6)
Geometric parameters (Å, º) top
S201—C2021.6982 (15)S101—C1021.6953 (15)
C202—N2031.3269 (19)C102—N1031.331 (2)
C202—N2051.3582 (19)C102—N1051.3596 (19)
N203—C2041.4531 (19)N103—C1041.4537 (18)
N203—H20310.874N103—H10310.877
C204—H20420.959C104—H10410.959
C204—H20410.962C104—H10420.955
C204—H20430.974C104—H10430.980
N205—N2061.3909 (17)N105—N1061.3989 (17)
N205—H20510.889N105—H10510.866
N206—C2071.2818 (19)N106—C1071.281 (2)
C207—C2081.508 (2)C107—C1081.500 (2)
C207—C2121.504 (2)C107—C1121.503 (2)
C208—C2091.541 (2)C108—C1091.538 (2)
C208—H20820.977C108—H10810.987
C208—H20810.980C108—H10820.982
C209—C2101.532 (2)C109—C1101.529 (2)
C209—H20910.979C109—H10920.982
C209—H20920.971C109—H10910.969
C210—C2111.526 (2)C110—C1111.528 (2)
C210—H21020.982C110—H11010.986
C210—H21010.980C110—H11020.990
C211—C2121.534 (2)C111—C1121.535 (2)
C211—H21110.975C111—H11120.997
C211—H21120.995C111—H11110.990
C212—H21210.972C112—H11210.964
C212—H21220.975C112—H11220.987
S201—C202—N203122.94 (11)S101—C102—N103123.45 (11)
S201—C202—N205120.43 (11)S101—C102—N105120.35 (11)
N203—C202—N205116.62 (13)N103—C102—N105116.16 (13)
C202—N203—C204124.01 (13)C102—N103—C104123.75 (13)
C202—N203—H2031118.6C102—N103—H1031119.0
C204—N203—H2031117.4C104—N103—H1031117.2
N203—C204—H2042108.2N103—C104—H1041107.4
N203—C204—H2041110.8N103—C104—H1042110.7
H2042—C204—H2041109.9H1041—C104—H1042109.0
N203—C204—H2043109.3N103—C104—H1043110.0
H2042—C204—H2043109.5H1041—C104—H1043109.4
H2041—C204—H2043109.1H1042—C104—H1043110.2
C202—N205—N206116.23 (12)C102—N105—N106116.12 (12)
C202—N205—H2051118.5C102—N105—H1051117.6
N206—N205—H2051121.5N106—N105—H1051120.8
N205—N206—C207119.15 (12)N105—N106—C107118.37 (13)
N206—C207—C208127.94 (13)N106—C107—C108128.28 (14)
N206—C207—C212115.41 (13)N106—C107—C112116.74 (14)
C208—C207—C212116.66 (13)C108—C107—C112114.90 (13)
C207—C208—C209111.22 (12)C107—C108—C109109.37 (12)
C207—C208—H2082107.3C107—C108—H1081111.7
C209—C208—H2082109.4C109—C108—H1081111.8
C207—C208—H2081110.2C107—C108—H1082106.5
C209—C208—H2081110.5C109—C108—H1082109.2
H2082—C208—H2081108.1H1081—C108—H1082108.0
C208—C209—C210112.84 (13)C108—C109—C110111.01 (13)
C208—C209—H2091107.8C108—C109—H1092108.3
C210—C209—H2091109.5C110—C109—H1092109.3
C208—C209—H2092108.6C108—C109—H1091109.1
C210—C209—H2092108.3C110—C109—H1091110.9
H2091—C209—H2092109.8H1092—C109—H1091108.2
C209—C210—C211110.43 (13)C109—C110—C111111.52 (12)
C209—C210—H2102108.9C109—C110—H1101109.0
C211—C210—H2102108.7C111—C110—H1101108.6
C209—C210—H2101109.3C109—C110—H1102109.0
C211—C210—H2101110.2C111—C110—H1102109.0
H2102—C210—H2101109.3H1101—C110—H1102109.7
C210—C211—C212110.40 (13)C110—C111—C112111.11 (13)
C210—C211—H2111110.5C110—C111—H1112109.2
C212—C211—H2111109.6C112—C111—H1112109.1
C210—C211—H2112108.5C110—C111—H1111109.0
C212—C211—H2112109.2C112—C111—H1111109.9
H2111—C211—H2112108.5H1112—C111—H1111108.5
C211—C212—C207111.64 (12)C111—C112—C107109.33 (13)
C211—C212—H2121109.4C111—C112—H1121111.2
C207—C212—H2121106.9C107—C112—H1121110.2
C211—C212—H2122111.4C111—C112—H1122110.0
C207—C212—H2122109.6C107—C112—H1122107.2
H2121—C212—H2122107.7H1121—C112—H1122108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N205—H2051···S101i0.892.573.4559 (13)175
N105—H1051···S201ii0.872.593.4484 (13)169
N203—H2031···S201ii0.872.763.4691 (13)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H15N3S
Mr185.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.0538 (3), 11.0108 (3), 17.9484 (5)
β (°) 102.132 (3)
V3)1942.52 (10)
Z8
Radiation typeCu Kα
µ (mm1)2.56
Crystal size (mm)0.27 × 0.22 × 0.10
Data collection
DiffractometerAgilent Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.58, 0.77
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
13859, 3754, 3414
Rint0.025
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 0.98
No. of reflections3740
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N205—H2051···S101i0.892.573.4559 (13)175
N105—H1051···S201ii0.872.593.4484 (13)169
N203—H2031···S201ii0.872.763.4691 (13)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 05–01–11–1243RU) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–13–11–986FR). We also thank Siti Khadijah Densabali for collecting the X-ray data. ST and NAM wish to acknowledge the Malaysian Government for sponsorship under the FRGS/RUGS Scheme.

References

First citationAgilent, (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationRohr, K., Herre, R. & Mahrwald, R. (2009). J. Org. Chem. 74, 3744–3749.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSanderson, R. T. (1967). Inorganic Chemistry, 1st edition. New York: Reinhold.  Google Scholar
First citationTan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461–o1462.  CSD CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem, 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationTayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641.  CSD CrossRef IUCr Journals Google Scholar
First citationTian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247–1252.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar
First citationZhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3104-o3105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds