organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3164-o3165

(E)-3-(1,3-Benzodioxol-5-yl)-2-{[N-(2-formylphenyl)-4-methylbenzenesulfon­amido]methyl}prop-2-ene­nitrile

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, cDepartment of Physics, Ganadipathy Tulsi's Jain Engineering College, Kaniyambadi, Vellore 632 102, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 1 October 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, C25H20N2O5S, the benzodioxole ring system is essentially planar [maximum deviation = 0.021 (2) Å] and forms dihedral angles of 85.2 (1) and 74.2 (1)°, respectively, with the formyl benzene and sulfonyl-bound benzene rings. In the crystal, C—H⋯O hydrogen bonds generate C(8) chains along [100] and R33(19) ring motifs. In addition, a weak ππ inter­action [centroid–centroid distance = 3.937 (3) Å] is also observed.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). In Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For benzodioxole derivatives, see: Ullrich et al. (2004[Ullrich, T., Baumann, K., Welzenbach, K., Schmutz, S., Camenish, G., Meingassner, J. G. & Weitz-Schmidt, G. (2004). Bioorg. Med. Chem. Lett. 14, 2483-2487.]); Gates & Gillon (1974[Gates, P. S. & Gillon, J. (1974). US Patent No. 3 736 338.]); Arndt & Franke (1977[Arndt, F. & Franke, H. (1977). DE Patent No. 2624822.]); Joshi et al. (2005[Joshi, R., Kumar, M. S., Satyamoorthy, K., Unnikrisnan, M. K. & Mukherjee, T. (2005). J. Agric. Food Chem. 53, 2696-2703.]); Jae et al. (2001[Jae, H.-S., Win, M., von Geldern, T. W., Sorensen, B. K., Chiou, W. J., Nguyen, B., Marsh, K. C. & Opgenorth, T. J. (2001). J. Med. Chem. 44, 3978-3984.]); Leite et al. (2004[Leite, A. C. L., Peixoto da Silva, K., de Souza, I. A., Magali de Araujo, J. & Brondani, D. J. (2004). Eur. J. Med. Chem. 39, 1059-1065.]). For related structures, see: Madhanraj et al. (2011[Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Thrope–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N2O5S

  • Mr = 460.49

  • Monoclinic, P 21 /n

  • a = 8.921 (5) Å

  • b = 10.235 (4) Å

  • c = 25.256 (3) Å

  • β = 93.380 (4)°

  • V = 2302.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.972

  • 26810 measured reflections

  • 6451 independent reflections

  • 3582 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 1.01

  • 6451 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.97 2.42 3.282 (3) 148
C23—H23⋯O1ii 0.93 2.41 3.114 (3) 132
C4—H4⋯O3iii 0.93 2.59 3.195 (3) 124
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). Benzodioxoles derivatives can be used as inhibitors of mono-oxygenase enzymes (Ullrich et al., 2004), pesticides or pesticide intermediates (Gates & Gillon, 1974), herbicides (Arndt & Franke, 1977), antioxidants (Joshi et al., 2005), antimicrobials (Jae et al., 2001) and medicines (Leite et al., 2004). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of the title compound, with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3[119.9 (1)°] and N1—S1—C8[107.0 (1)°] angles deviating from ideal tetrahedral values, are attributed to the Thrope-Ingold effect (Bassindale, 1984). The sum of bond angles around N1 (351°) indicates that N1 is in sp2 hybridization. The benzodioxole ring system is essentially planar [maximum deviation = 0.021 (2) Å for the O5 atom] and forms dihedral angles of 85.2 (1)° and 74.2 (1)°, respectively, with the formyl benzene and sulfonyl–bound benzene rings. The carbonitrile side chain (C16–C24–N2) is almost linear, with the angle around central carbon atom being 177.1 (2)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Madhanraj et al., 2011; Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by an C15—H15B···O3 intramolecular hydrogen bond, forming an S(5) ring motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The formation of the framework can be explained in terms of two-one substructures. In the first substructure, atom C4 in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O3 in the molecule at (-1+x, y, z) generating C(8) chains which are running along [100] (Fig. 2). In the second substructure, three molecules are linked by the combination of C15—H15B···O2 and C23—H23···O1 intermolecular hydrogen bonds generating R33(19) ring motifs along [010] (Fig. 3). The crystal packing (Fig. 4) is further stabilized by weak C—H···π interactions between a dioxole H atom and the benzene ring (C1–C6) of a neighbouring molecule, with a C25—H25A···Cg1iv distance of 3.446 (4) Å (Table 1; Cg1 is the centroid of the C1–C6 benzene ring, Symmetry code: iv = 2-x, -y, 1-z). Additional stability arises from weak aromatic ππ interaction between the benzene rings of neighbouring molecules, with Cg2—Cg2iv distance of 3.937 (3) Å (Fig. 4; Cg2 is the centroid of the C18—C23 benzene ring, symmetry code: iv = 2-x, -y, 1-z).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For benzodioxole derivatives, see: Ullrich et al. (2004); Gates & Gillon (1974); Arndt & Franke (1977); Joshi et al. (2005); Jae et al. (2001); Leite et al. (2004). For related structures, see: Madhanraj et al. (2011); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the Thrope–Ingold effect, see: Bassindale (1984).

Experimental top

To a stirred solution of N-(2-formylphenyl)-4-methylbenzenesulfonamide (0.275 g, 1 mmol) in acetonitrile (7 ml), potassium carbonate (0.35 g, 2.5 mmol) was added and stirred well for five minutes. To this solution, (z)-methyl 3-(benzo[d][1,3]dioxol-5-yl)-2- (bromomethyl)prop-2-enenitrile (0.299 g, 1 mmol) in acetonitrile (0.5 ml) was added and allowed to stir well for 6 h. After the completion of the reaction, the reaction mixture was poured into water and extracted using ethyl acetate. The organic layer thus obtained was concentrated under reduced pressure and the residual mass thus obtained was purified by column chromatography on silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.435 g, 94% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

All the H atoms were positioned geometrically with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of C(8) chains along [100]. [Symmetry codes: (iii)-1+x, y, z; (v)-2+x, y, z; (vi)-3+x, y, z].
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of R33(19) ring motifs along [010] [Symmetry codes: (i)5/2-x, -1/2+y, 3/2-z; (ii)x, -1+y, z; (vii)5/2-x, -3/2+y, 3/2-z; (viii)x, -2+y, z; (ix)5/2-x, -5/2+y, 3/2-z].
[Figure 4] Fig. 4. A view of the C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroids of the C1–C6 benzene ring and C18–C23 benzene ring, respectively. [Symmetry codes: (iv)2-x,-y,1-z].
(E)-3-(1,3-Benzodioxol-5-yl)-2-{[N-(2-formylphenyl)- 4-methylbenzenesulfonamido]methyl}prop-2-enenitrile top
Crystal data top
C25H20N2O5SF(000) = 960
Mr = 460.49Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6508 reflections
a = 8.921 (5) Åθ = 2.2–29.6°
b = 10.235 (4) ŵ = 0.18 mm1
c = 25.256 (3) ÅT = 293 K
β = 93.380 (4)°Block, colourless
V = 2302.0 (16) Å30.23 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6451 independent reflections
Radiation source: fine-focus sealed tube3582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 29.6°, θmin = 2.2°
ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1214
Tmin = 0.959, Tmax = 0.972l = 3535
26810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4367P]
where P = (Fo2 + 2Fc2)/3
6451 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C25H20N2O5SV = 2302.0 (16) Å3
Mr = 460.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.921 (5) ŵ = 0.18 mm1
b = 10.235 (4) ÅT = 293 K
c = 25.256 (3) Å0.23 × 0.21 × 0.16 mm
β = 93.380 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3582 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.035
26810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
6451 reflectionsΔρmin = 0.28 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88821 (17)0.29000 (16)0.70678 (7)0.0460 (4)
C20.7817 (2)0.21821 (19)0.73197 (8)0.0583 (5)
H20.81110.14800.75350.070*
C30.6312 (2)0.2512 (2)0.72499 (9)0.0708 (6)
H30.55970.20200.74150.085*
C40.5870 (2)0.3551 (2)0.69422 (9)0.0720 (6)
H40.48600.37760.69030.086*
C50.6909 (2)0.4257 (2)0.66930 (9)0.0690 (5)
H50.66000.49640.64820.083*
C60.8425 (2)0.39395 (18)0.67483 (8)0.0571 (5)
C70.9488 (3)0.4706 (3)0.64478 (12)0.0993 (9)
H71.04640.43970.64290.119*
C81.0796 (2)0.2967 (2)0.82269 (8)0.0615 (5)
C91.1506 (3)0.1941 (2)0.84920 (10)0.0804 (6)
H91.23290.15350.83530.096*
C101.0975 (4)0.1524 (3)0.89685 (12)0.1011 (9)
H101.14490.08310.91480.121*
C110.9766 (4)0.2113 (4)0.91805 (12)0.1072 (10)
C120.9091 (3)0.3127 (4)0.89092 (13)0.1068 (9)
H120.82700.35340.90490.128*
C130.9580 (3)0.3563 (2)0.84401 (10)0.0836 (7)
H130.90980.42570.82640.100*
C140.9192 (5)0.1625 (5)0.96973 (14)0.1774 (19)
H14A0.87190.23300.98740.266*
H14B1.00170.12970.99200.266*
H14C0.84760.09380.96250.266*
C151.0965 (2)0.12671 (18)0.70817 (8)0.0607 (5)
H15A1.02100.06720.72020.073*
H15B1.18830.11230.72990.073*
C161.12431 (19)0.09650 (18)0.65121 (7)0.0547 (4)
C171.0763 (2)0.01502 (18)0.62804 (8)0.0570 (5)
H171.01330.06410.64830.068*
C181.1044 (2)0.07351 (18)0.57716 (7)0.0570 (5)
C191.2126 (3)0.0279 (2)0.54337 (8)0.0743 (6)
H191.26940.04640.55160.089*
C201.2309 (3)0.0963 (2)0.49839 (9)0.0778 (6)
C211.1496 (3)0.2059 (2)0.48521 (9)0.0798 (6)
C221.0463 (3)0.2538 (2)0.51699 (10)0.0911 (8)
H220.99160.32880.50820.109*
C231.0258 (3)0.1855 (2)0.56332 (9)0.0741 (6)
H230.95580.21650.58610.089*
C241.2139 (2)0.1901 (2)0.62545 (9)0.0708 (6)
C251.3046 (4)0.1707 (3)0.42145 (11)0.1120 (10)
H25A1.27150.13140.38780.134*
H25B1.39660.21860.41650.134*
N11.04579 (15)0.26209 (13)0.71551 (6)0.0523 (4)
N21.2828 (3)0.2688 (2)0.60623 (9)0.1089 (8)
O10.9152 (3)0.5697 (3)0.62298 (14)0.1952 (15)
O21.08789 (15)0.48120 (13)0.75324 (7)0.0788 (4)
O31.29242 (13)0.31885 (16)0.75875 (7)0.0844 (5)
O41.1940 (3)0.2561 (2)0.43819 (7)0.1168 (7)
O51.3313 (3)0.0722 (2)0.46024 (7)0.1254 (8)
S11.13777 (5)0.34993 (5)0.76162 (2)0.06199 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (8)0.0409 (8)0.0596 (10)0.0011 (7)0.0085 (7)0.0013 (8)
C20.0554 (11)0.0548 (11)0.0657 (12)0.0087 (9)0.0117 (9)0.0054 (9)
C30.0455 (10)0.0779 (14)0.0907 (15)0.0188 (10)0.0180 (10)0.0106 (12)
C40.0411 (10)0.0852 (16)0.0894 (15)0.0038 (10)0.0008 (10)0.0146 (13)
C50.0615 (12)0.0646 (13)0.0802 (14)0.0145 (10)0.0026 (10)0.0018 (11)
C60.0482 (10)0.0492 (10)0.0748 (12)0.0024 (8)0.0105 (9)0.0069 (9)
C70.0858 (17)0.0776 (16)0.137 (2)0.0021 (13)0.0276 (16)0.0496 (16)
C80.0434 (9)0.0609 (11)0.0794 (13)0.0038 (9)0.0038 (9)0.0227 (10)
C90.0644 (13)0.0822 (16)0.0931 (17)0.0013 (12)0.0080 (12)0.0174 (14)
C100.107 (2)0.105 (2)0.0874 (19)0.0205 (18)0.0199 (17)0.0057 (16)
C110.106 (2)0.136 (3)0.0801 (18)0.037 (2)0.0101 (17)0.0326 (19)
C120.094 (2)0.124 (2)0.105 (2)0.0081 (19)0.0311 (17)0.039 (2)
C130.0698 (14)0.0851 (16)0.0974 (18)0.0046 (12)0.0176 (13)0.0266 (14)
C140.203 (4)0.244 (5)0.088 (2)0.061 (4)0.033 (2)0.002 (3)
C150.0602 (11)0.0530 (10)0.0693 (12)0.0162 (9)0.0083 (9)0.0018 (9)
C160.0461 (9)0.0556 (11)0.0625 (11)0.0076 (8)0.0058 (8)0.0000 (9)
C170.0544 (10)0.0524 (10)0.0643 (11)0.0041 (9)0.0046 (9)0.0066 (9)
C180.0611 (11)0.0500 (10)0.0593 (11)0.0019 (9)0.0010 (9)0.0032 (8)
C190.0934 (16)0.0631 (12)0.0672 (13)0.0196 (12)0.0133 (11)0.0060 (10)
C200.1023 (17)0.0726 (14)0.0598 (13)0.0106 (13)0.0150 (12)0.0013 (11)
C210.1077 (18)0.0704 (14)0.0607 (13)0.0056 (14)0.0010 (12)0.0096 (11)
C220.110 (2)0.0724 (15)0.0909 (18)0.0265 (14)0.0079 (15)0.0197 (13)
C230.0794 (14)0.0626 (13)0.0809 (15)0.0122 (11)0.0103 (11)0.0005 (11)
C240.0687 (13)0.0712 (13)0.0741 (14)0.0141 (11)0.0173 (11)0.0181 (11)
C250.156 (3)0.115 (2)0.0679 (16)0.012 (2)0.0270 (17)0.0224 (16)
N10.0398 (7)0.0451 (8)0.0725 (10)0.0052 (6)0.0084 (7)0.0033 (7)
N20.1215 (18)0.1053 (17)0.1043 (16)0.0526 (15)0.0437 (14)0.0253 (13)
O10.144 (2)0.142 (2)0.305 (4)0.0164 (17)0.054 (2)0.157 (3)
O20.0565 (8)0.0483 (8)0.1309 (13)0.0080 (6)0.0003 (8)0.0096 (8)
O30.0349 (7)0.0990 (12)0.1201 (13)0.0006 (7)0.0105 (7)0.0133 (10)
O40.170 (2)0.1052 (14)0.0777 (12)0.0327 (14)0.0295 (12)0.0314 (10)
O50.183 (2)0.1159 (15)0.0837 (12)0.0514 (15)0.0614 (13)0.0252 (11)
S10.0339 (2)0.0565 (3)0.0959 (4)0.0033 (2)0.0072 (2)0.0108 (3)
Geometric parameters (Å, º) top
C1—C61.382 (2)C14—H14C0.9600
C1—C21.385 (2)C15—N11.473 (2)
C1—N11.439 (2)C15—C161.506 (3)
C2—C31.386 (3)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.361 (3)C16—C171.341 (3)
C3—H30.9300C16—C241.429 (3)
C4—C51.359 (3)C17—C181.453 (3)
C4—H40.9300C17—H170.9300
C5—C61.390 (3)C18—C231.378 (3)
C5—H50.9300C18—C191.406 (3)
C6—C71.475 (3)C19—C201.352 (3)
C7—O11.184 (3)C19—H190.9300
C7—H70.9300C20—C211.367 (3)
C8—C91.379 (3)C20—O51.376 (3)
C8—C131.381 (3)C21—C221.349 (3)
C8—S11.743 (2)C21—O41.373 (3)
C9—C101.386 (4)C22—C231.384 (3)
C9—H90.9300C22—H220.9300
C10—C111.372 (4)C23—H230.9300
C10—H100.9300C24—N21.138 (3)
C11—C121.364 (4)C25—O41.402 (3)
C11—C141.515 (5)C25—O51.417 (3)
C12—C131.361 (4)C25—H25A0.9700
C12—H120.9300C25—H25B0.9700
C13—H130.9300N1—S11.6508 (16)
C14—H14A0.9600O2—S11.4272 (15)
C14—H14B0.9600O3—S11.4219 (15)
C6—C1—C2119.32 (16)C16—C15—H15A109.1
C6—C1—N1119.61 (14)N1—C15—H15B109.1
C2—C1—N1120.99 (16)C16—C15—H15B109.1
C1—C2—C3119.88 (19)H15A—C15—H15B107.8
C1—C2—H2120.1C17—C16—C24123.01 (18)
C3—C2—H2120.1C17—C16—C15121.67 (17)
C4—C3—C2120.55 (18)C24—C16—C15115.16 (17)
C4—C3—H3119.7C16—C17—C18132.02 (18)
C2—C3—H3119.7C16—C17—H17114.0
C5—C4—C3119.87 (19)C18—C17—H17114.0
C5—C4—H4120.1C23—C18—C19118.69 (19)
C3—C4—H4120.1C23—C18—C17117.08 (18)
C4—C5—C6121.0 (2)C19—C18—C17124.10 (18)
C4—C5—H5119.5C20—C19—C18117.3 (2)
C6—C5—H5119.5C20—C19—H19121.3
C1—C6—C5119.36 (17)C18—C19—H19121.3
C1—C6—C7122.22 (18)C19—C20—C21122.8 (2)
C5—C6—C7118.39 (19)C19—C20—O5127.7 (2)
O1—C7—C6122.8 (3)C21—C20—O5109.6 (2)
O1—C7—H7118.6C22—C21—C20121.6 (2)
C6—C7—H7118.6C22—C21—O4128.4 (2)
C9—C8—C13119.7 (2)C20—C21—O4110.0 (2)
C9—C8—S1121.03 (17)C21—C22—C23116.7 (2)
C13—C8—S1119.24 (19)C21—C22—H22121.7
C8—C9—C10119.1 (2)C23—C22—H22121.7
C8—C9—H9120.5C18—C23—C22122.9 (2)
C10—C9—H9120.5C18—C23—H23118.5
C11—C10—C9121.3 (3)C22—C23—H23118.5
C11—C10—H10119.3N2—C24—C16177.1 (2)
C9—C10—H10119.3O4—C25—O5109.1 (2)
C12—C11—C10118.2 (3)O4—C25—H25A109.9
C12—C11—C14121.5 (4)O5—C25—H25A109.9
C10—C11—C14120.3 (4)O4—C25—H25B109.9
C13—C12—C11122.1 (3)O5—C25—H25B109.9
C13—C12—H12118.9H25A—C25—H25B108.3
C11—C12—H12118.9C1—N1—C15118.17 (14)
C12—C13—C8119.6 (3)C1—N1—S1116.13 (11)
C12—C13—H13120.2C15—N1—S1117.24 (12)
C8—C13—H13120.2C21—O4—C25105.78 (19)
C11—C14—H14A109.5C20—O5—C25105.5 (2)
C11—C14—H14B109.5O3—S1—O2119.87 (9)
H14A—C14—H14B109.5O3—S1—N1106.60 (9)
C11—C14—H14C109.5O2—S1—N1105.69 (9)
H14A—C14—H14C109.5O3—S1—C8108.38 (10)
H14B—C14—H14C109.5O2—S1—C8108.60 (10)
N1—C15—C16112.49 (15)N1—S1—C8107.01 (8)
N1—C15—H15A109.1
C6—C1—C2—C30.1 (3)O5—C20—C21—C22177.8 (3)
N1—C1—C2—C3176.75 (16)C19—C20—C21—O4178.8 (2)
C1—C2—C3—C41.1 (3)O5—C20—C21—O40.2 (3)
C2—C3—C4—C51.2 (3)C20—C21—C22—C230.6 (4)
C3—C4—C5—C60.2 (3)O4—C21—C22—C23178.3 (2)
C2—C1—C6—C51.1 (3)C19—C18—C23—C221.4 (3)
N1—C1—C6—C5175.84 (17)C17—C18—C23—C22177.4 (2)
C2—C1—C6—C7177.0 (2)C21—C22—C23—C180.5 (4)
N1—C1—C6—C76.1 (3)C17—C16—C24—N2152 (6)
C4—C5—C6—C10.9 (3)C15—C16—C24—N232 (6)
C4—C5—C6—C7177.2 (2)C6—C1—N1—C15130.68 (18)
C1—C6—C7—O1169.7 (3)C2—C1—N1—C1552.5 (2)
C5—C6—C7—O112.2 (5)C6—C1—N1—S182.06 (19)
C13—C8—C9—C100.3 (3)C2—C1—N1—S194.77 (18)
S1—C8—C9—C10177.96 (18)C16—C15—N1—C185.0 (2)
C8—C9—C10—C110.2 (4)C16—C15—N1—S1128.14 (15)
C9—C10—C11—C120.1 (4)C22—C21—O4—C25179.4 (3)
C9—C10—C11—C14179.0 (3)C20—C21—O4—C251.6 (3)
C10—C11—C12—C130.0 (4)O5—C25—O4—C212.8 (3)
C14—C11—C12—C13178.9 (3)C19—C20—O5—C25179.6 (3)
C11—C12—C13—C80.1 (4)C21—C20—O5—C251.9 (3)
C9—C8—C13—C120.2 (3)O4—C25—O5—C202.9 (3)
S1—C8—C13—C12178.05 (19)C1—N1—S1—O3172.54 (13)
N1—C15—C16—C17135.66 (18)C15—N1—S1—O339.89 (16)
N1—C15—C16—C2448.7 (2)C1—N1—S1—O243.97 (14)
C24—C16—C17—C184.2 (3)C15—N1—S1—O2168.46 (13)
C15—C16—C17—C18171.09 (18)C1—N1—S1—C871.65 (14)
C16—C17—C18—C23174.4 (2)C15—N1—S1—C875.91 (15)
C16—C17—C18—C199.9 (3)C9—C8—S1—O326.56 (19)
C23—C18—C19—C201.2 (3)C13—C8—S1—O3155.17 (17)
C17—C18—C19—C20176.9 (2)C9—C8—S1—O2158.29 (16)
C18—C19—C20—C210.2 (4)C13—C8—S1—O223.45 (19)
C18—C19—C20—O5178.5 (2)C9—C8—S1—N188.05 (17)
C19—C20—C21—C220.8 (4)C13—C8—S1—N190.22 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15B···O30.972.402.879 (3)110
C15—H15B···O2i0.972.423.282 (3)148
C23—H23···O1ii0.932.413.114 (3)132
C4—H4···O3iii0.932.593.195 (3)124
C25—H25A···Cg1iv0.972.963.446 (4)112
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H20N2O5S
Mr460.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.921 (5), 10.235 (4), 25.256 (3)
β (°) 93.380 (4)
V3)2302.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
26810, 6451, 3582
Rint0.035
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.01
No. of reflections6451
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15B···O30.972.402.879 (3)110.0
C15—H15B···O2i0.972.423.282 (3)147.5
C23—H23···O1ii0.932.413.114 (3)132.1
C4—H4···O3iii0.932.593.195 (3)123.5
C25—H25A···Cg1iv0.972.963.446 (4)112.0
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x+2, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationArndt, F. & Franke, H. (1977). DE Patent No. 2624822.  Google Scholar
First citationAziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGates, P. S. & Gillon, J. (1974). US Patent No. 3 736 338.  Google Scholar
First citationJae, H.-S., Win, M., von Geldern, T. W., Sorensen, B. K., Chiou, W. J., Nguyen, B., Marsh, K. C. & Opgenorth, T. J. (2001). J. Med. Chem. 44, 3978–3984.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoshi, R., Kumar, M. S., Satyamoorthy, K., Unnikrisnan, M. K. & Mukherjee, T. (2005). J. Agric. Food Chem. 53, 2696–2703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorolkovas, A. (1988). In Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationLeite, A. C. L., Peixoto da Silva, K., de Souza, I. A., Magali de Araujo, J. & Brondani, D. J. (2004). Eur. J. Med. Chem. 39, 1059–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMadhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUllrich, T., Baumann, K., Welzenbach, K., Schmutz, S., Camenish, G., Meingassner, J. G. & Weitz-Schmidt, G. (2004). Bioorg. Med. Chem. Lett. 14, 2483–2487.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3164-o3165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds