organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 4-amino­benzoate

aDepartment of Physics, M.A.M. School of Engineering, Siruganur, Tiruchirappalli 621 105, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Anna University, BIT Campus, Tiruchirappalli 620 024, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 1 October 2012; accepted 16 October 2012; online 20 October 2012)

In the title molecular salt, C5H6ClN2+·C7H6NO2, the cations and anions are connected by cation-to-anion and anion-to-anion N—H⋯O hydrogen bonds into a three-dimensional network. The dihedral angle between the ring and the CO2 group in the anion is 7.14 (7)°.

Related literature

For general background to chloro­pyridinium derivatives, see: Brahadeeswaran et al. (2006[Brahadeeswaran, S., Onduka, S., Takagi, M., Takahashi, Y., Adachi, H., Yoshimura, M., Mori, Y. & Sasaki, T. (2006). J. Cryst. Growth, 292, 441-444.]); Tomaru et al. (1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]). For N—H⋯O hydrogen bonds, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C7H6NO2

  • Mr = 265.70

  • Monoclinic, P 21 /n

  • a = 6.9879 (4) Å

  • b = 22.0074 (13) Å

  • c = 8.0554 (5) Å

  • β = 92.796 (1)°

  • V = 1237.33 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.946

  • 12108 measured reflections

  • 3086 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.04

  • 3086 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.76 2.6135 (15) 175
N2—H2A⋯O1i 0.89 (2) 1.94 (2) 2.8216 (18) 172.1 (19)
N2—H2B⋯O1ii 0.86 (2) 2.10 (2) 2.8776 (17) 150.3 (19)
N3—H3A⋯O1iii 0.862 (19) 2.19 (2) 3.0357 (18) 167.4 (17)
N3—H3B⋯O2iv 0.86 (2) 2.08 (2) 2.9291 (18) 171 (2)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine heterocycles and their derivatives are present in many large molecules having photo chemical, electro chemical and catalytic applications. Pyridine derivatives possess nonlinear optical (NLO) properties(Tomaru et al., 1991). 4-N,N-dimethylamino-4'-N'-methyl stilbazolium tosylate (DAST) is used in generating and detecting terahertz (THz) frequencies (Brahadeeswaran et al., 2006). An attempt is made to solve the pyridine based crystal structures to explore the NLO behaviour.

The ORTEP plot of the molecule is shown in Fig.1. The structure can be described as segregated (C5H6ClN2)+.(C7H6NO2)- groups and connected via N—H···O hydrogen bonds (Blessing, 1986; Brown, 1976). The dihedral angle between the chloropyridinium ring and aminobenzoate group is 51.5 (7)°. The external bond angle [N1—C2—N2=] 118.1 (1)° at the attached amino group in pyridinium moiety is slightly widened due to the hydrogen bond formation between the ionic groups.

A dimer formation occurs through N—H···O hydrogen bonds between the symmetry related molecules(Fig.2). N—H···O type of hydrogen bonds stabilize the molecules in the unit cell.

Related literature top

For general background to chloropyridinium derivatives, see: Blessing (1986); Brahadeeswaran et al. (2006); Brown (1976); Tomaru et al. (1991).

Experimental top

Methanol solutions of 2-amino-5-chloropyridine (64.28 mg, Aldrich) and 4-aminobenzoic acid (68.57 mg, Merck) were mixed together and stirred for about 1 h to get a homogeneous mixture. The resulting solution was allowed to evaporate at 303 K slowly in a water bath which has a temperature accuracy of ± 0.01°C at ambient atmosphere. Brown colour crystals with developed morphology of title compound were obtained after 12 days.

Refinement top

H atoms bonded to aromatic C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.2Ueq(C,N). The H atoms of the two NH2 groups were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis.
2-Amino-5-chloropyridinium 4-aminobenzoate top
Crystal data top
C5H6ClN2+·C7H6NO2F(000) = 552
Mr = 265.70Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2642 reflections
a = 6.9879 (4) Åθ = 1.9–28.4°
b = 22.0074 (13) ŵ = 0.31 mm1
c = 8.0554 (5) ÅT = 293 K
β = 92.796 (1)°Block, white crystalline
V = 1237.33 (13) Å30.20 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3086 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.941, Tmax = 0.946k = 2929
12108 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
3086 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C5H6ClN2+·C7H6NO2V = 1237.33 (13) Å3
Mr = 265.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9879 (4) ŵ = 0.31 mm1
b = 22.0074 (13) ÅT = 293 K
c = 8.0554 (5) Å0.20 × 0.19 × 0.18 mm
β = 92.796 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2642 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.946Rint = 0.021
12108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3086 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3159 (2)0.04218 (6)0.77668 (17)0.0407 (3)
C30.3355 (2)0.09763 (7)0.6908 (2)0.0479 (3)
H30.23720.12610.68890.057*
C40.4987 (2)0.10919 (7)0.61093 (19)0.0486 (4)
H40.51330.14600.55630.058*
C50.6448 (2)0.06560 (7)0.61107 (17)0.0431 (3)
C60.6216 (2)0.01208 (6)0.69117 (17)0.0406 (3)
H60.71730.01730.69110.049*
C70.71327 (19)0.12257 (6)1.01810 (16)0.0359 (3)
C80.71041 (18)0.18462 (6)0.94334 (16)0.0346 (3)
C90.87870 (19)0.21125 (6)0.89231 (17)0.0389 (3)
H90.99370.19020.90660.047*
C100.87784 (19)0.26832 (6)0.82089 (17)0.0407 (3)
H100.99230.28540.78950.049*
C110.70654 (19)0.30071 (6)0.79533 (16)0.0371 (3)
C120.5373 (2)0.27406 (6)0.84646 (18)0.0412 (3)
H120.42190.29480.83110.049*
C130.54024 (19)0.21735 (6)0.91937 (17)0.0390 (3)
H130.42640.20060.95330.047*
N10.45860 (17)0.00142 (5)0.77144 (14)0.0385 (3)
H10.44610.03290.82100.046*
N20.1643 (2)0.02799 (7)0.86228 (19)0.0545 (4)
N30.7058 (2)0.35808 (6)0.72634 (18)0.0477 (3)
O10.86491 (14)0.09238 (5)1.02101 (14)0.0471 (3)
O20.55877 (14)0.10303 (4)1.07566 (14)0.0483 (3)
Cl10.85224 (7)0.07952 (2)0.50832 (6)0.06516 (16)
H3A0.598 (3)0.3696 (9)0.680 (2)0.049 (5)*
H2A0.155 (3)0.0086 (11)0.909 (2)0.067 (6)*
H2B0.078 (3)0.0551 (10)0.877 (3)0.069 (6)*
H3B0.808 (3)0.3657 (9)0.676 (3)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0455 (7)0.0342 (6)0.0423 (7)0.0007 (5)0.0014 (5)0.0021 (5)
C30.0525 (8)0.0348 (7)0.0557 (8)0.0043 (6)0.0035 (7)0.0047 (6)
C40.0605 (9)0.0358 (7)0.0488 (8)0.0081 (6)0.0060 (7)0.0091 (6)
C50.0458 (7)0.0437 (7)0.0395 (7)0.0108 (6)0.0008 (5)0.0013 (6)
C60.0414 (7)0.0371 (7)0.0432 (7)0.0019 (5)0.0007 (5)0.0009 (5)
C70.0370 (6)0.0310 (6)0.0397 (6)0.0004 (5)0.0026 (5)0.0017 (5)
C80.0366 (6)0.0310 (6)0.0364 (6)0.0006 (5)0.0032 (5)0.0013 (5)
C90.0330 (6)0.0389 (7)0.0447 (7)0.0017 (5)0.0026 (5)0.0013 (5)
C100.0349 (6)0.0418 (7)0.0457 (7)0.0061 (5)0.0048 (5)0.0027 (6)
C110.0417 (7)0.0319 (6)0.0377 (6)0.0027 (5)0.0014 (5)0.0015 (5)
C120.0366 (7)0.0360 (6)0.0512 (8)0.0044 (5)0.0050 (6)0.0026 (6)
C130.0346 (6)0.0359 (6)0.0470 (7)0.0019 (5)0.0071 (5)0.0008 (5)
N10.0444 (6)0.0297 (5)0.0414 (6)0.0003 (4)0.0041 (5)0.0025 (4)
N20.0529 (8)0.0424 (7)0.0698 (9)0.0093 (6)0.0199 (7)0.0069 (6)
N30.0450 (7)0.0381 (6)0.0600 (8)0.0030 (5)0.0026 (6)0.0104 (6)
O10.0389 (5)0.0374 (5)0.0654 (7)0.0055 (4)0.0072 (5)0.0045 (4)
O20.0403 (5)0.0372 (5)0.0686 (7)0.0042 (4)0.0144 (5)0.0137 (5)
Cl10.0575 (3)0.0704 (3)0.0685 (3)0.0175 (2)0.0128 (2)0.0112 (2)
Geometric parameters (Å, º) top
C2—N21.329 (2)C8—C131.3956 (18)
C2—N11.3433 (18)C9—C101.3814 (19)
C2—C31.413 (2)C9—H90.9300
C3—C41.360 (2)C10—C111.3997 (19)
C3—H30.9300C10—H100.9300
C4—C51.401 (2)C11—N31.3794 (18)
C4—H40.9300C11—C121.3997 (19)
C5—C61.357 (2)C12—C131.3791 (19)
C5—Cl11.7312 (15)C12—H120.9300
C6—N11.3573 (17)C13—H130.9300
C6—H60.9300N1—H10.8600
C7—O11.2500 (16)N2—H2A0.89 (2)
C7—O21.2706 (16)N2—H2B0.86 (2)
C7—C81.4921 (18)N3—H3A0.862 (19)
C8—C91.3937 (18)N3—H3B0.86 (2)
N2—C2—N1118.11 (13)C8—C9—H9119.4
N2—C2—C3123.76 (14)C9—C10—C11120.70 (12)
N1—C2—C3118.14 (13)C9—C10—H10119.6
C4—C3—C2119.78 (14)C11—C10—H10119.6
C4—C3—H3120.1N3—C11—C10120.77 (13)
C2—C3—H3120.1N3—C11—C12121.04 (13)
C3—C4—C5119.95 (13)C10—C11—C12118.16 (12)
C3—C4—H4120.0C13—C12—C11120.62 (12)
C5—C4—H4120.0C13—C12—H12119.7
C6—C5—C4119.40 (14)C11—C12—H12119.7
C6—C5—Cl1120.23 (12)C12—C13—C8121.38 (12)
C4—C5—Cl1120.37 (11)C12—C13—H13119.3
C5—C6—N1119.95 (13)C8—C13—H13119.3
C5—C6—H6120.0C2—N1—C6122.74 (12)
N1—C6—H6120.0C2—N1—H1118.6
O1—C7—O2123.22 (12)C6—N1—H1118.6
O1—C7—C8119.25 (12)C2—N2—H2A120.4 (13)
O2—C7—C8117.53 (11)C2—N2—H2B119.4 (14)
C9—C8—C13117.89 (12)H2A—N2—H2B120.1 (19)
C9—C8—C7120.59 (12)C11—N3—H3A115.5 (12)
C13—C8—C7121.51 (12)C11—N3—H3B112.7 (14)
C10—C9—C8121.23 (12)H3A—N3—H3B117.8 (18)
C10—C9—H9119.4
N2—C2—C3—C4177.79 (15)C7—C8—C9—C10179.13 (12)
N1—C2—C3—C42.3 (2)C8—C9—C10—C111.0 (2)
C2—C3—C4—C51.4 (2)C9—C10—C11—N3179.01 (13)
C3—C4—C5—C60.1 (2)C9—C10—C11—C121.0 (2)
C3—C4—C5—Cl1179.43 (12)N3—C11—C12—C13178.26 (13)
C4—C5—C6—N10.6 (2)C10—C11—C12—C130.2 (2)
Cl1—C5—C6—N1179.96 (10)C11—C12—C13—C80.5 (2)
O1—C7—C8—C96.38 (19)C9—C8—C13—C120.5 (2)
O2—C7—C8—C9173.83 (12)C7—C8—C13—C12178.37 (13)
O1—C7—C8—C13172.44 (13)N2—C2—N1—C6178.27 (13)
O2—C7—C8—C137.35 (19)C3—C2—N1—C61.8 (2)
C13—C8—C9—C100.3 (2)C5—C6—N1—C20.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.762.6135 (15)175
N2—H2A···O1i0.89 (2)1.94 (2)2.8216 (18)172.1 (19)
N2—H2B···O1ii0.86 (2)2.10 (2)2.8776 (17)150.3 (19)
N3—H3A···O1iii0.862 (19)2.19 (2)3.0357 (18)167.4 (17)
N3—H3B···O2iv0.86 (2)2.08 (2)2.9291 (18)171 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C7H6NO2
Mr265.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9879 (4), 22.0074 (13), 8.0554 (5)
β (°) 92.796 (1)
V3)1237.33 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.941, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
12108, 3086, 2642
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.04
No. of reflections3086
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.762.6135 (15)175.3
N2—H2A···O1i0.89 (2)1.94 (2)2.8216 (18)172.1 (19)
N2—H2B···O1ii0.86 (2)2.10 (2)2.8776 (17)150.3 (19)
N3—H3A···O1iii0.862 (19)2.19 (2)3.0357 (18)167.4 (17)
N3—H3B···O2iv0.86 (2)2.08 (2)2.9291 (18)171 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the TBI Consultancy, University of Madras, India, for the data collection.

References

First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrahadeeswaran, S., Onduka, S., Takagi, M., Takahashi, Y., Adachi, H., Yoshimura, M., Mori, Y. & Sasaki, T. (2006). J. Cryst. Growth, 292, 441–444.  Web of Science CrossRef CAS Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds