organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{[1-(2,3,5-Tri-O-benzoyl-β-D-ribofur­an­os-1-yl)-1H-1,2,3-triazol-4-yl]meth­yl}quin­a­zolin-4(3H)-one

aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elazhari52@yahoo.com

(Received 1 October 2012; accepted 12 October 2012; online 20 October 2012)

In the compound, C37H29N5O8, the quinazoline residue forms a dihedral angle of 72.90 (9)° with the triazole ring. The furan ring adopts a twist conformation. In the crystal, the mol­ecules are linked by non-classical C—H⋯N and C—H⋯O hydrogen bonds, building an infinite three-dimensional network.

Related literature

For details of the synthesis, see: Ines et al. (2008[Ines, N., Ioannis, K. K., Carole, D., Elizabeth, C., Mauro, I. & Thierry, B. (2008). Tetrahedron Lett. 49, 7033-7036.]); Krim et al. (2009[Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). Arkivoc, xiii, 142-152.]); Huisgen (1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565-598.]), Wu et al. (2004[Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Frechet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928-3932.]). For background to the biological activity of quinazolines, see: Traxler (1998[Traxler, P. M. (1998). Exp. Opin. Ther. Patents, 8, 1599-1625.]); Bridges (2001[Bridges, A. J. (2001). Chem. Rev. 101, 2541-2571.]); Wakeling (2005[Wakeling, A. E. (2005). Handbook of Experimental Pharmacology, Vol. 167, pp. 433-450.]); Diana & Nitz (1993[Diana, G. D. & Nitz, J. J. (1993). Eur. Patent 1, 1-38.]); Chen et al. (2000[Chen, M. D., Lu, S. J., Yuag, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421-426.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C37H29N5O8

  • Mr = 671.65

  • Monoclinic, P 21

  • a = 11.2646 (2) Å

  • b = 5.6471 (1) Å

  • c = 25.7507 (4) Å

  • β = 99.595 (1)°

  • V = 1615.15 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.33 × 0.29 × 0.25 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 26180 measured reflections

  • 4490 independent reflections

  • 3651 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.03

  • 4490 reflections

  • 451 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O6i 0.93 2.57 3.483 (3) 168
C13—H13⋯O6ii 0.98 2.36 3.293 (3) 159
C6—H6⋯N1iii 0.93 2.62 3.390 (3) 141
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z; (iii) [-x+3, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinazoline and its derivatives are an interesting class of heterocyclic compounds that have drawn much attention because of their biological and pharmaceutical activities including a wide range of antitumor activity (Traxler, 1998; Bridges, 2001; Wakeling, 2005). Furthermore, triazole heterocycles are potent antiviral (Diana & Nitz, 1993), antimicrobial (Chen et al., 2000), and anti-proliferate agents (Manfredini et al., 2000). The pharmaceutical importance of triazoles has prompted the design and synthesis of various triazolonucleosides.

The most interesting method for the synthesis of triazoles is the Huisgen 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen, 1963). Copper-catalyzed click chemistry is an efficient method that uses azides and terminal acetylenes to have 1,4-disubstituted-1,2,3- triazole products with excellent selectivity and high yield (Wu et al., 2004). In connection to our studies on the synthesis of new nucleosides, we decided to explore the feasibility of the 'click' chemistry for the synthesis of novel 1,2,3-triazoles containing the quinazolinone moiety.

The molecule of the title compound contains a quinazolinone moiety linked to a furan ring through a triazole ring. As shown in Fig.1, the furan ring is also connected to three benzoyl rings. The furan ring which adopts a twist conformation as indicated by Cremer & Pople (1975) puckering parameters Q(2)= 0.365 (2) Å and the phase angle ϕ = 85.7 (3)°. The five-membered ring (O2 C12 C13 C22 C30) is nearly perpendicular to (N3 N4 N5 C10 C11), (C16 to C21), (C24 to C29) and to (C32 to C37) with the dihedral angles of 79.6 (2), 75.9 (2), 83.4 (2) and 88.2 (2)°, respectively.

An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite three-dimensional network ensure the cohesion of the crystal structure (see Table 1).

Related literature top

For details of the synthesis, see: Ines et al. (2008); Krim et al. (2009); Huisgen (1963), Wu et al. (2004). For background to the biological activity of quinazolines, see: Traxler (1998); Bridges (2001); Wakeling (2005); Diana & Nitz (1993); Chen et al. (2000); Manfredini et al. (2000). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

The title compound, 3-((2,3,5-tri-O-benzoyl-β-D-ribofuranosyl- 1H-1,2,3-τriazol-4-yl)methyl) quinazolin-4(3H)-one was achieved by cycloaddition of propargylated quinazolinone with 2,3,5-tri-O-benzoyl-β-D– ribofuranosyl azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (84%) and short reaction time (Ines et al. (2008); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH, respectively and with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
3-{[1-(2,3,5-Tri-O-benzoyl-β-D-ribofuranos-1-yl)- 1H-1,2,3-triazol-4-yl]methyl}quinazolin-4(3H)-one top
Crystal data top
C37H29N5O8F(000) = 700
Mr = 671.65Dx = 1.381 Mg m3
Monoclinic, P21Melting point: 454 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.2646 (2) ÅCell parameters from 4490 reflections
b = 5.6471 (1) Åθ = 0.8–28.5°
c = 25.7507 (4) ŵ = 0.10 mm1
β = 99.595 (1)°T = 296 K
V = 1615.15 (5) Å3Block, colourless
Z = 20.33 × 0.29 × 0.25 mm
Data collection top
Bruker X8 APEXII
diffractometer
3651 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.5°, θmin = 0.8°
ϕ and ω scansh = 1513
26180 measured reflectionsk = 67
4490 independent reflectionsl = 3234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1513P]
where P = (Fo2 + 2Fc2)/3
4490 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C37H29N5O8V = 1615.15 (5) Å3
Mr = 671.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.2646 (2) ŵ = 0.10 mm1
b = 5.6471 (1) ÅT = 296 K
c = 25.7507 (4) Å0.33 × 0.29 × 0.25 mm
β = 99.595 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3651 reflections with I > 2σ(I)
26180 measured reflectionsRint = 0.029
4490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
4490 reflectionsΔρmin = 0.13 e Å3
451 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.48779 (13)0.5193 (3)0.77079 (5)0.0599 (4)
C11.47437 (15)0.5402 (3)0.81663 (7)0.0394 (4)
C21.52690 (15)0.3864 (4)0.85969 (7)0.0409 (4)
C31.60106 (17)0.1978 (4)0.85044 (9)0.0527 (5)
H31.61600.16750.81660.063*
C41.6516 (2)0.0575 (5)0.89200 (12)0.0715 (7)
H41.70130.06820.88630.086*
C51.6288 (2)0.1029 (6)0.94223 (11)0.0803 (8)
H51.66380.00730.97000.096*
C61.5565 (2)0.2845 (6)0.95168 (9)0.0702 (7)
H61.54210.31220.98570.084*
C71.50357 (18)0.4298 (4)0.91030 (8)0.0491 (5)
N11.42881 (18)0.6125 (4)0.92126 (7)0.0596 (5)
N21.40433 (13)0.7224 (3)0.83175 (6)0.0419 (3)
C81.38486 (19)0.7462 (4)0.88269 (8)0.0545 (5)
H81.33550.87010.88980.065*
C91.35481 (18)0.8972 (4)0.79210 (8)0.0517 (5)
H9A1.41190.92280.76830.062*
H9B1.34441.04640.80950.062*
C101.23629 (16)0.8228 (3)0.76079 (7)0.0407 (4)
C111.18997 (17)0.6052 (4)0.74762 (8)0.0445 (4)
H111.22530.45880.75660.053*
N31.15628 (14)0.9885 (3)0.73967 (6)0.0439 (4)
N41.06111 (14)0.8827 (3)0.71381 (7)0.0456 (4)
N51.08115 (13)0.6486 (3)0.71851 (6)0.0392 (3)
C120.98816 (16)0.4739 (3)0.69944 (7)0.0396 (4)
H121.02330.34500.68150.048*
O20.93768 (11)0.3821 (3)0.74159 (5)0.0486 (3)
C130.81906 (16)0.4779 (4)0.74176 (7)0.0441 (4)
H130.76020.35360.72980.053*
C140.80732 (18)0.5416 (5)0.79708 (8)0.0529 (5)
H14A0.72730.60330.79790.063*
H14B0.81850.40130.81910.063*
C150.92262 (17)0.7284 (4)0.87000 (7)0.0495 (5)
O30.89576 (12)0.7166 (3)0.81724 (5)0.0523 (4)
O40.87382 (16)0.6050 (4)0.89822 (6)0.0759 (5)
C161.01456 (17)0.9096 (4)0.88883 (7)0.0482 (5)
C171.05099 (19)1.0778 (4)0.85589 (8)0.0537 (5)
H171.01991.07590.82010.064*
C181.1337 (2)1.2490 (5)0.87610 (10)0.0701 (7)
H181.15721.36380.85400.084*
C191.1811 (2)1.2495 (6)0.92904 (10)0.0770 (8)
H191.23721.36410.94250.092*
C201.1460 (3)1.0813 (7)0.96195 (10)0.0810 (8)
H201.17861.08210.99760.097*
C211.0629 (2)0.9123 (6)0.94236 (8)0.0688 (7)
H211.03890.79950.96480.083*
C220.80514 (15)0.6720 (3)0.70008 (7)0.0388 (4)
H220.83490.82310.71580.047*
O50.68225 (11)0.6958 (2)0.67425 (5)0.0454 (3)
O60.65640 (13)0.9904 (3)0.72934 (6)0.0625 (4)
C230.61705 (16)0.8669 (4)0.69278 (7)0.0420 (4)
C240.49230 (16)0.8815 (4)0.66316 (7)0.0440 (4)
C250.4252 (2)1.0813 (5)0.67048 (9)0.0592 (6)
H250.45991.20440.69180.071*
C260.3065 (2)1.0963 (6)0.64598 (11)0.0767 (9)
H260.26151.23040.65060.092*
C270.2555 (2)0.9163 (7)0.61522 (12)0.0833 (10)
H270.17510.92660.59950.100*
C280.3214 (2)0.7190 (7)0.60707 (11)0.0827 (9)
H280.28600.59760.58550.099*
C290.4405 (2)0.7013 (5)0.63111 (9)0.0620 (6)
H290.48550.56820.62560.074*
C300.88453 (15)0.5871 (4)0.66172 (7)0.0400 (4)
H300.91100.71590.64080.048*
O70.82166 (11)0.4025 (3)0.62974 (5)0.0452 (3)
O80.97436 (13)0.3887 (4)0.58366 (6)0.0704 (5)
C310.87760 (18)0.3172 (4)0.59115 (8)0.0494 (5)
C320.80817 (18)0.1250 (4)0.56099 (7)0.0486 (5)
C330.6908 (2)0.0733 (5)0.56586 (9)0.0645 (6)
H330.65160.16230.58830.077*
C340.6317 (3)0.1120 (6)0.53723 (10)0.0793 (8)
H340.55240.14670.54020.095*
C350.6900 (3)0.2449 (6)0.50442 (10)0.0794 (8)
H350.65030.37000.48540.095*
C360.8059 (3)0.1932 (6)0.49975 (10)0.0810 (9)
H360.84500.28360.47760.097*
C370.8650 (2)0.0097 (6)0.52735 (9)0.0666 (7)
H370.94380.02510.52360.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0670 (9)0.0774 (11)0.0363 (7)0.0054 (9)0.0121 (6)0.0024 (7)
C10.0354 (9)0.0417 (10)0.0403 (9)0.0081 (8)0.0036 (7)0.0004 (8)
C20.0346 (8)0.0445 (10)0.0420 (9)0.0090 (8)0.0021 (7)0.0018 (8)
C30.0383 (10)0.0541 (13)0.0657 (13)0.0055 (9)0.0085 (9)0.0017 (11)
C40.0495 (12)0.0572 (15)0.105 (2)0.0085 (11)0.0051 (12)0.0176 (15)
C50.0767 (16)0.082 (2)0.0746 (17)0.0064 (16)0.0094 (13)0.0320 (16)
C60.0818 (16)0.0797 (18)0.0457 (12)0.0010 (15)0.0006 (11)0.0169 (13)
C70.0509 (11)0.0548 (13)0.0394 (10)0.0091 (10)0.0012 (8)0.0036 (9)
N10.0744 (12)0.0659 (12)0.0388 (9)0.0013 (11)0.0105 (8)0.0050 (9)
N20.0447 (8)0.0390 (8)0.0394 (8)0.0056 (7)0.0005 (6)0.0015 (7)
C80.0628 (12)0.0528 (13)0.0472 (11)0.0010 (11)0.0075 (9)0.0084 (10)
C90.0548 (11)0.0391 (11)0.0561 (12)0.0088 (10)0.0059 (9)0.0077 (9)
C100.0464 (10)0.0327 (10)0.0417 (10)0.0007 (8)0.0032 (8)0.0027 (8)
C110.0437 (10)0.0319 (9)0.0529 (11)0.0057 (8)0.0068 (8)0.0032 (9)
N30.0439 (8)0.0296 (7)0.0580 (10)0.0008 (7)0.0074 (7)0.0036 (7)
N40.0409 (8)0.0308 (8)0.0638 (10)0.0030 (7)0.0050 (7)0.0048 (8)
N50.0400 (8)0.0290 (8)0.0467 (8)0.0026 (6)0.0018 (6)0.0008 (6)
C120.0410 (9)0.0318 (9)0.0445 (10)0.0010 (8)0.0027 (7)0.0018 (8)
O20.0480 (7)0.0437 (7)0.0533 (8)0.0039 (7)0.0059 (6)0.0130 (7)
C130.0394 (9)0.0440 (10)0.0472 (10)0.0087 (9)0.0022 (7)0.0005 (9)
C140.0479 (10)0.0664 (14)0.0444 (10)0.0136 (10)0.0075 (8)0.0057 (10)
C150.0486 (10)0.0630 (13)0.0374 (10)0.0065 (10)0.0088 (8)0.0042 (10)
O30.0546 (8)0.0639 (9)0.0369 (7)0.0138 (7)0.0028 (6)0.0009 (7)
O40.0871 (11)0.0960 (14)0.0462 (8)0.0236 (12)0.0156 (8)0.0069 (10)
C160.0489 (10)0.0554 (12)0.0395 (10)0.0059 (10)0.0048 (8)0.0042 (9)
C170.0584 (12)0.0580 (13)0.0451 (11)0.0031 (11)0.0095 (9)0.0044 (10)
C180.0831 (16)0.0657 (16)0.0636 (15)0.0101 (14)0.0185 (12)0.0084 (13)
C190.0741 (16)0.088 (2)0.0684 (16)0.0170 (16)0.0097 (13)0.0245 (16)
C200.0841 (17)0.106 (2)0.0478 (13)0.0097 (18)0.0033 (12)0.0182 (16)
C210.0778 (15)0.0861 (19)0.0405 (11)0.0056 (15)0.0037 (10)0.0000 (12)
C220.0349 (8)0.0389 (10)0.0408 (9)0.0000 (8)0.0009 (7)0.0039 (8)
O50.0380 (6)0.0471 (8)0.0482 (7)0.0065 (6)0.0011 (5)0.0111 (6)
O60.0558 (8)0.0545 (9)0.0761 (10)0.0015 (8)0.0079 (7)0.0252 (9)
C230.0429 (9)0.0365 (10)0.0474 (10)0.0012 (8)0.0098 (8)0.0019 (9)
C240.0411 (9)0.0481 (11)0.0443 (10)0.0030 (9)0.0116 (8)0.0094 (9)
C250.0582 (12)0.0618 (14)0.0616 (13)0.0162 (12)0.0215 (10)0.0190 (12)
C260.0622 (15)0.095 (2)0.0780 (17)0.0330 (16)0.0267 (13)0.0387 (17)
C270.0468 (13)0.123 (3)0.0780 (18)0.0130 (17)0.0044 (12)0.048 (2)
C280.0629 (15)0.095 (2)0.0812 (18)0.0118 (16)0.0149 (13)0.0114 (17)
C290.0522 (12)0.0651 (15)0.0647 (14)0.0008 (12)0.0019 (10)0.0026 (12)
C300.0417 (9)0.0388 (10)0.0385 (9)0.0017 (8)0.0040 (7)0.0005 (8)
O70.0436 (7)0.0520 (8)0.0394 (7)0.0014 (6)0.0051 (5)0.0093 (6)
O80.0559 (9)0.0925 (13)0.0672 (10)0.0132 (10)0.0234 (7)0.0204 (10)
C310.0494 (11)0.0585 (13)0.0404 (10)0.0063 (10)0.0076 (8)0.0048 (9)
C320.0521 (11)0.0568 (12)0.0355 (9)0.0057 (10)0.0034 (8)0.0033 (9)
C330.0683 (14)0.0726 (16)0.0567 (13)0.0108 (13)0.0225 (11)0.0148 (13)
C340.0811 (17)0.089 (2)0.0725 (16)0.0296 (17)0.0256 (14)0.0197 (16)
C350.102 (2)0.0711 (18)0.0631 (15)0.0160 (17)0.0086 (14)0.0229 (14)
C360.0784 (17)0.096 (2)0.0663 (15)0.0148 (16)0.0043 (13)0.0357 (16)
C370.0544 (12)0.0889 (19)0.0549 (13)0.0114 (13)0.0043 (10)0.0217 (13)
Geometric parameters (Å, º) top
O1—C11.220 (2)C17—C181.383 (3)
C1—N21.391 (2)C17—H170.9300
C1—C21.455 (3)C18—C191.379 (4)
C2—C71.394 (3)C18—H180.9300
C2—C31.398 (3)C19—C201.374 (4)
C3—C41.376 (3)C19—H190.9300
C3—H30.9300C20—C211.373 (4)
C4—C51.384 (4)C20—H200.9300
C4—H40.9300C21—H210.9300
C5—C61.357 (4)C22—O51.439 (2)
C5—H50.9300C22—C301.517 (2)
C6—C71.397 (3)C22—H220.9800
C6—H60.9300O5—C231.348 (2)
C7—N11.390 (3)O6—C231.196 (2)
N1—C81.280 (3)C23—C241.485 (3)
N2—C81.372 (2)C24—C291.377 (3)
N2—C91.462 (3)C24—C251.388 (3)
C8—H80.9300C25—C261.383 (3)
C9—C101.500 (3)C25—H250.9300
C9—H9A0.9700C26—C271.356 (5)
C9—H9B0.9700C26—H260.9300
C10—N31.349 (2)C27—C281.374 (5)
C10—C111.356 (3)C27—H270.9300
C11—N51.348 (2)C28—C291.385 (3)
C11—H110.9300C28—H280.9300
N3—N41.308 (2)C29—H290.9300
N4—N51.343 (2)C30—O71.439 (2)
N5—C121.463 (2)C30—H300.9800
C12—O21.406 (2)O7—C311.351 (2)
C12—C301.529 (2)O8—C311.207 (2)
C12—H120.9800C31—C321.480 (3)
O2—C131.442 (2)C32—C331.380 (3)
C13—C141.496 (3)C32—C371.387 (3)
C13—C221.524 (3)C33—C341.385 (4)
C13—H130.9800C33—H330.9300
C14—O31.437 (3)C34—C351.376 (4)
C14—H14A0.9700C34—H340.9300
C14—H14B0.9700C35—C361.362 (4)
C15—O41.204 (3)C35—H350.9300
C15—O31.343 (2)C36—C371.365 (4)
C15—C161.479 (3)C36—H360.9300
C16—C171.381 (3)C37—H370.9300
C16—C211.395 (3)
O1—C1—N2120.65 (17)C16—C17—C18120.0 (2)
O1—C1—C2125.40 (18)C16—C17—H17120.0
N2—C1—C2113.95 (16)C18—C17—H17120.0
C7—C2—C3120.29 (19)C19—C18—C17120.0 (3)
C7—C2—C1119.44 (18)C19—C18—H18120.0
C3—C2—C1120.26 (18)C17—C18—H18120.0
C4—C3—C2119.2 (2)C20—C19—C18120.3 (3)
C4—C3—H3120.4C20—C19—H19119.9
C2—C3—H3120.4C18—C19—H19119.9
C3—C4—C5120.2 (2)C21—C20—C19120.2 (2)
C3—C4—H4119.9C21—C20—H20119.9
C5—C4—H4119.9C19—C20—H20119.9
C6—C5—C4121.2 (2)C20—C21—C16120.1 (3)
C6—C5—H5119.4C20—C21—H21120.0
C4—C5—H5119.4C16—C21—H21120.0
C5—C6—C7120.0 (2)O5—C22—C30110.78 (13)
C5—C6—H6120.0O5—C22—C13111.78 (15)
C7—C6—H6120.0C30—C22—C13103.22 (16)
N1—C7—C2122.38 (18)O5—C22—H22110.3
N1—C7—C6118.5 (2)C30—C22—H22110.3
C2—C7—C6119.1 (2)C13—C22—H22110.3
C8—N1—C7116.71 (17)C23—O5—C22116.25 (14)
C8—N2—C1121.92 (17)O6—C23—O5122.97 (17)
C8—N2—C9119.88 (18)O6—C23—C24124.52 (18)
C1—N2—C9118.16 (16)O5—C23—C24112.50 (16)
N1—C8—N2125.5 (2)C29—C24—C25119.8 (2)
N1—C8—H8117.2C29—C24—C23122.45 (19)
N2—C8—H8117.2C25—C24—C23117.7 (2)
N2—C9—C10112.83 (17)C26—C25—C24119.7 (3)
N2—C9—H9A109.0C26—C25—H25120.2
C10—C9—H9A109.0C24—C25—H25120.2
N2—C9—H9B109.0C27—C26—C25120.3 (3)
C10—C9—H9B109.0C27—C26—H26119.9
H9A—C9—H9B107.8C25—C26—H26119.9
N3—C10—C11108.93 (16)C26—C27—C28120.6 (2)
N3—C10—C9119.82 (17)C26—C27—H27119.7
C11—C10—C9131.24 (18)C28—C27—H27119.7
N5—C11—C10104.50 (17)C27—C28—C29119.9 (3)
N5—C11—H11127.7C27—C28—H28120.1
C10—C11—H11127.7C29—C28—H28120.1
N4—N3—C10108.91 (16)C24—C29—C28119.8 (3)
N3—N4—N5107.01 (15)C24—C29—H29120.1
N4—N5—C11110.65 (16)C28—C29—H29120.1
N4—N5—C12122.23 (15)O7—C30—C22108.31 (14)
C11—N5—C12126.70 (16)O7—C30—C12108.15 (15)
O2—C12—N5110.41 (14)C22—C30—C12100.90 (14)
O2—C12—C30106.29 (14)O7—C30—H30112.9
N5—C12—C30111.07 (15)C22—C30—H30112.9
O2—C12—H12109.7C12—C30—H30112.9
N5—C12—H12109.7C31—O7—C30115.70 (15)
C30—C12—H12109.7O8—C31—O7122.9 (2)
C12—O2—C13110.98 (14)O8—C31—C32124.97 (19)
O2—C13—C14108.78 (15)O7—C31—C32112.15 (17)
O2—C13—C22104.75 (14)C33—C32—C37119.3 (2)
C14—C13—C22118.86 (19)C33—C32—C31122.55 (19)
O2—C13—H13108.0C37—C32—C31118.14 (19)
C14—C13—H13108.0C32—C33—C34119.6 (2)
C22—C13—H13108.0C32—C33—H33120.2
O3—C14—C13110.08 (15)C34—C33—H33120.2
O3—C14—H14A109.6C35—C34—C33120.2 (2)
C13—C14—H14A109.6C35—C34—H34119.9
O3—C14—H14B109.6C33—C34—H34119.9
C13—C14—H14B109.6C36—C35—C34120.0 (3)
H14A—C14—H14B108.2C36—C35—H35120.0
O4—C15—O3122.2 (2)C34—C35—H35120.0
O4—C15—C16124.62 (18)C35—C36—C37120.5 (2)
O3—C15—C16113.16 (17)C35—C36—H36119.7
C15—O3—C14115.17 (16)C37—C36—H36119.7
C17—C16—C21119.5 (2)C36—C37—C32120.4 (2)
C17—C16—C15122.56 (17)C36—C37—H37119.8
C21—C16—C15117.9 (2)C32—C37—H37119.8
O1—C1—C2—C7179.64 (19)O3—C15—C16—C21170.2 (2)
N2—C1—C2—C70.4 (2)C21—C16—C17—C180.8 (3)
O1—C1—C2—C30.9 (3)C15—C16—C17—C18177.3 (2)
N2—C1—C2—C3178.99 (16)C16—C17—C18—C191.0 (4)
C7—C2—C3—C40.7 (3)C17—C18—C19—C200.5 (4)
C1—C2—C3—C4178.7 (2)C18—C19—C20—C210.3 (5)
C2—C3—C4—C50.2 (4)C19—C20—C21—C160.5 (4)
C3—C4—C5—C60.2 (4)C17—C16—C21—C200.0 (4)
C4—C5—C6—C70.1 (4)C15—C16—C21—C20178.1 (2)
C3—C2—C7—N1178.85 (19)O2—C13—C22—O5147.77 (14)
C1—C2—C7—N11.7 (3)C14—C13—C22—O590.54 (19)
C3—C2—C7—C60.8 (3)O2—C13—C22—C3028.67 (18)
C1—C2—C7—C6178.6 (2)C14—C13—C22—C30150.35 (16)
C5—C6—C7—N1179.3 (2)C30—C22—O5—C23148.57 (16)
C5—C6—C7—C20.4 (4)C13—C22—O5—C2396.90 (19)
C2—C7—N1—C82.3 (3)C22—O5—C23—O61.7 (3)
C6—C7—N1—C8178.0 (2)C22—O5—C23—C24178.91 (16)
O1—C1—N2—C8178.11 (19)O6—C23—C24—C29162.5 (2)
C2—C1—N2—C82.0 (2)O5—C23—C24—C2916.9 (3)
O1—C1—N2—C94.4 (3)O6—C23—C24—C2514.6 (3)
C2—C1—N2—C9175.55 (15)O5—C23—C24—C25166.00 (16)
C7—N1—C8—N20.8 (3)C29—C24—C25—C260.7 (3)
C1—N2—C8—N11.5 (3)C23—C24—C25—C26176.40 (19)
C9—N2—C8—N1176.0 (2)C24—C25—C26—C270.4 (3)
C8—N2—C9—C1095.6 (2)C25—C26—C27—C281.3 (4)
C1—N2—C9—C1086.8 (2)C26—C27—C28—C291.0 (4)
N2—C9—C10—N3152.32 (18)C25—C24—C29—C281.0 (3)
N2—C9—C10—C1128.9 (3)C23—C24—C29—C28176.0 (2)
N3—C10—C11—N50.2 (2)C27—C28—C29—C240.1 (4)
C9—C10—C11—N5179.07 (19)O5—C22—C30—O742.7 (2)
C11—C10—N3—N40.2 (2)C13—C22—C30—O777.08 (16)
C9—C10—N3—N4179.22 (17)O5—C22—C30—C12156.17 (15)
C10—N3—N4—N50.1 (2)C13—C22—C30—C1236.37 (17)
N3—N4—N5—C110.0 (2)O2—C12—C30—O781.39 (17)
N3—N4—N5—C12173.02 (15)N5—C12—C30—O7158.48 (14)
C10—C11—N5—N40.1 (2)O2—C12—C30—C2232.19 (18)
C10—C11—N5—C12172.54 (17)N5—C12—C30—C2287.95 (17)
N4—N5—C12—O2101.9 (2)C22—C30—O7—C31176.14 (16)
C11—N5—C12—O270.0 (2)C12—C30—O7—C3175.31 (19)
N4—N5—C12—C3015.8 (2)C30—O7—C31—O80.3 (3)
C11—N5—C12—C30172.38 (17)C30—O7—C31—C32178.77 (15)
N5—C12—O2—C13105.43 (16)O8—C31—C32—C33170.3 (2)
C30—C12—O2—C1315.1 (2)O7—C31—C32—C3311.3 (3)
C12—O2—C13—C14136.61 (18)O8—C31—C32—C3710.9 (3)
C12—O2—C13—C228.5 (2)O7—C31—C32—C37167.5 (2)
O2—C13—C14—O360.5 (2)C37—C32—C33—C340.1 (4)
C22—C13—C14—O359.1 (2)C31—C32—C33—C34178.7 (2)
O4—C15—O3—C141.7 (3)C32—C33—C34—C350.5 (4)
C16—C15—O3—C14179.56 (18)C33—C34—C35—C360.5 (5)
C13—C14—O3—C15157.97 (19)C34—C35—C36—C370.1 (5)
O4—C15—C16—C17167.0 (2)C35—C36—C37—C320.7 (4)
O3—C15—C16—C1711.7 (3)C33—C32—C37—C360.7 (4)
O4—C15—C16—C2111.1 (3)C31—C32—C37—C36178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.573.483 (3)168
C13—H13···O6ii0.982.363.293 (3)159
C6—H6···N1iii0.932.623.390 (3)141
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+3, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC37H29N5O8
Mr671.65
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)11.2646 (2), 5.6471 (1), 25.7507 (4)
β (°) 99.595 (1)
V3)1615.15 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.29 × 0.25
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26180, 4490, 3651
Rint0.029
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.03
No. of reflections4490
No. of parameters451
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.573.483 (3)167.7
C13—H13···O6ii0.982.363.293 (3)158.9
C6—H6···N1iii0.932.623.390 (3)140.7
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+3, y1/2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBridges, A. J. (2001). Chem. Rev. 101, 2541–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M. D., Lu, S. J., Yuag, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421–426.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDiana, G. D. & Nitz, J. J. (1993). Eur. Patent 1, 1–38.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565–598.  CrossRef Google Scholar
First citationInes, N., Ioannis, K. K., Carole, D., Elizabeth, C., Mauro, I. & Thierry, B. (2008). Tetrahedron Lett. 49, 7033–7036.  Google Scholar
First citationKrim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). Arkivoc, xiii, 142–152.  CrossRef Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTraxler, P. M. (1998). Exp. Opin. Ther. Patents, 8, 1599–1625.  Google Scholar
First citationWakeling, A. E. (2005). Handbook of Experimental Pharmacology, Vol. 167, pp. 433–450.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Frechet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds