metal-organic compounds
(Acetylacetonato-κ2O,O′)dichloridobis(methanolato-κO)niobium(V)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: HerbstL@ufs.ac.za
In the title compound, [Nb(CH3O)2(C5H7O2)Cl2], a slightly distorted octahedral coordination geometry is observed around the NbV atom with Nb—O distances in the range of 1.8254 (16)–2.0892 (16) Å and Nb—Cl distances of 2.3997 (14) and 2.4023 (12) Å. The O—Nb—O angles vary between 81.36 (7) and 172.65 (7) °, while the trans Cl—Nb—Cl angle is 167.34 (2)°. There are no hydrogen bonds observed.
Related literature
For synthetic background, see: Herbst et al. (2010; 2011); Davies et al. (1999). For applications of acetylacetone-type ligands in industry, see: Steyn et al. (1992, 1997, 2008); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a,b, 2010). For related niobium complexes, see: Sokolov et al. (1999, 2005); Antinolo et al. (2000); Dahan et al. (1976).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812042638/bt6846sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042638/bt6846Isup2.hkl
NbCl5 (0.3134 g; 1.16 mmol) was carefully dissolved in absolute methanol (5 ml) (Care: exothermic reaction). Acetylacetone (0.119 ml; 1.16 mmol) was added to the solution. The colourless solution was stirred for 1 h at room temperature and the solution was left to stand at 252 K for 24 h after which pale-yellow crystals, suitable for X-ray diffraction were obtained.
The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The highest peak is located 0.74 Å from Nb1 and the deepest hole is situated 0.65 Å from Nb1.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. |
[Nb(CH3O)2(C5H7O2)Cl2] | F(000) = 648 |
Mr = 324.98 | Dx = 1.744 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 9867 reflections |
a = 7.7985 (2) Å | θ = 2.3–32.9° |
b = 11.6028 (3) Å | µ = 1.39 mm−1 |
c = 14.6819 (2) Å | T = 100 K |
β = 111.279 (1)° | Cubiod, yellow |
V = 1237.91 (5) Å3 | 0.38 × 0.13 × 0.08 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2873 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 28°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −10→9 |
Tmin = 0.810, Tmax = 0.895 | k = −14→15 |
25521 measured reflections | l = −19→19 |
2995 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0177P)2 + 2.6018P] where P = (Fo2 + 2Fc2)/3 |
2995 reflections | (Δ/σ)max = 0.001 |
131 parameters | Δρmax = 1.90 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
[Nb(CH3O)2(C5H7O2)Cl2] | V = 1237.91 (5) Å3 |
Mr = 324.98 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7985 (2) Å | µ = 1.39 mm−1 |
b = 11.6028 (3) Å | T = 100 K |
c = 14.6819 (2) Å | 0.38 × 0.13 × 0.08 mm |
β = 111.279 (1)° |
Bruker APEXII CCD diffractometer | 2995 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2873 reflections with I > 2σ(I) |
Tmin = 0.810, Tmax = 0.895 | Rint = 0.024 |
25521 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.90 e Å−3 |
2995 reflections | Δρmin = −1.14 e Å−3 |
131 parameters |
Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1033 frames were collected with a frame width of 0.5° covering up to θ = 28.32° with 99.8% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5973 (4) | 0.0556 (2) | 0.41589 (19) | 0.0291 (5) | |
H1A | 0.5041 | 0.0091 | 0.3698 | 0.044* | |
H1B | 0.5461 | 0.0949 | 0.4577 | 0.044* | |
H1C | 0.697 | 0.0073 | 0.4547 | 0.044* | |
C2 | 0.6671 (3) | 0.14217 (19) | 0.36226 (16) | 0.0209 (4) | |
C3 | 0.6842 (3) | 0.25776 (19) | 0.38971 (15) | 0.0217 (4) | |
H3 | 0.6428 | 0.2801 | 0.439 | 0.026* | |
C4 | 0.7590 (3) | 0.34165 (18) | 0.34795 (15) | 0.0189 (4) | |
C5 | 0.7749 (3) | 0.4644 (2) | 0.38144 (17) | 0.0256 (5) | |
H5A | 0.8962 | 0.4925 | 0.3915 | 0.038* | |
H5B | 0.7531 | 0.4689 | 0.4416 | 0.038* | |
H5C | 0.6856 | 0.5104 | 0.3326 | 0.038* | |
C6 | 1.0638 (4) | 0.3334 (2) | 0.1093 (2) | 0.0351 (6) | |
H6A | 1.0417 | 0.4104 | 0.1263 | 0.053* | |
H6B | 1.0441 | 0.3302 | 0.0409 | 0.053* | |
H6C | 1.1884 | 0.3119 | 0.1467 | 0.053* | |
C7 | 0.7155 (4) | −0.0737 (2) | 0.12959 (19) | 0.0315 (5) | |
H7A | 0.6627 | −0.0836 | 0.1788 | 0.047* | |
H7B | 0.8087 | −0.131 | 0.1379 | 0.047* | |
H7C | 0.6213 | −0.0817 | 0.0661 | 0.047* | |
O1 | 0.7114 (2) | 0.10264 (14) | 0.29243 (12) | 0.0260 (3) | |
O2 | 0.8199 (2) | 0.32042 (13) | 0.27942 (12) | 0.0236 (3) | |
O3 | 0.9420 (2) | 0.25678 (14) | 0.12973 (12) | 0.0249 (3) | |
O4 | 0.7944 (2) | 0.03654 (13) | 0.13835 (12) | 0.0235 (3) | |
Cl1 | 1.11377 (9) | 0.13058 (6) | 0.32569 (5) | 0.03473 (14) | |
Cl2 | 0.51757 (8) | 0.23365 (5) | 0.10144 (4) | 0.02774 (12) | |
Nb1 | 0.82643 (3) | 0.178209 (17) | 0.198700 (15) | 0.02255 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0387 (13) | 0.0244 (11) | 0.0336 (12) | 0.0020 (10) | 0.0241 (11) | 0.0074 (9) |
C2 | 0.0234 (10) | 0.0220 (10) | 0.0208 (10) | 0.0033 (8) | 0.0122 (8) | 0.0047 (8) |
C3 | 0.0271 (11) | 0.0233 (10) | 0.0194 (10) | 0.0032 (8) | 0.0142 (9) | 0.0006 (8) |
C4 | 0.0204 (10) | 0.0202 (10) | 0.0166 (9) | 0.0022 (8) | 0.0074 (8) | −0.0015 (7) |
C5 | 0.0325 (12) | 0.0212 (10) | 0.0277 (11) | −0.0021 (9) | 0.0162 (10) | −0.0065 (9) |
C6 | 0.0348 (13) | 0.0404 (14) | 0.0344 (13) | −0.0160 (11) | 0.0177 (11) | −0.0021 (11) |
C7 | 0.0391 (14) | 0.0204 (11) | 0.0358 (13) | −0.0076 (10) | 0.0145 (11) | −0.0050 (10) |
O1 | 0.0399 (9) | 0.0187 (7) | 0.0296 (8) | −0.0034 (7) | 0.0247 (8) | −0.0019 (6) |
O2 | 0.0349 (9) | 0.0186 (7) | 0.0246 (8) | −0.0050 (6) | 0.0194 (7) | −0.0042 (6) |
O3 | 0.0307 (8) | 0.0245 (8) | 0.0274 (8) | −0.0071 (7) | 0.0199 (7) | −0.0046 (6) |
O4 | 0.0291 (8) | 0.0184 (7) | 0.0279 (8) | −0.0037 (6) | 0.0161 (7) | −0.0059 (6) |
Cl1 | 0.0379 (3) | 0.0295 (3) | 0.0374 (3) | −0.0022 (2) | 0.0144 (3) | −0.0032 (2) |
Cl2 | 0.0297 (3) | 0.0293 (3) | 0.0283 (3) | −0.0040 (2) | 0.0154 (2) | −0.0029 (2) |
Nb1 | 0.03316 (12) | 0.01790 (10) | 0.02524 (11) | −0.00586 (8) | 0.02096 (9) | −0.00534 (7) |
C1—C2 | 1.495 (3) | C6—H6A | 0.96 |
C1—H1A | 0.96 | C6—H6B | 0.96 |
C1—H1B | 0.96 | C6—H6C | 0.96 |
C1—H1C | 0.96 | C7—O4 | 1.405 (3) |
C2—O1 | 1.280 (3) | C7—H7A | 0.96 |
C2—C3 | 1.393 (3) | C7—H7B | 0.96 |
C3—C4 | 1.387 (3) | C7—H7C | 0.96 |
C3—H3 | 0.93 | O1—Nb1 | 2.0892 (16) |
C4—O2 | 1.283 (3) | O2—Nb1 | 2.0429 (16) |
C4—C5 | 1.497 (3) | O3—Nb1 | 1.8254 (16) |
C5—H5A | 0.96 | O4—Nb1 | 1.8410 (17) |
C5—H5B | 0.96 | Cl1—Nb1 | 2.4023 (12) |
C5—H5C | 0.96 | Cl2—Nb1 | 2.3997 (14) |
C6—O3 | 1.411 (3) | ||
C2—C1—H1A | 109.5 | H6B—C6—H6C | 109.5 |
C2—C1—H1B | 109.5 | O4—C7—H7A | 109.5 |
H1A—C1—H1B | 109.5 | O4—C7—H7B | 109.5 |
C2—C1—H1C | 109.5 | H7A—C7—H7B | 109.5 |
H1A—C1—H1C | 109.5 | O4—C7—H7C | 109.5 |
H1B—C1—H1C | 109.5 | H7A—C7—H7C | 109.5 |
O1—C2—C3 | 123.49 (19) | H7B—C7—H7C | 109.5 |
O1—C2—C1 | 115.9 (2) | C2—O1—Nb1 | 133.05 (15) |
C3—C2—C1 | 120.6 (2) | C4—O2—Nb1 | 134.78 (14) |
C4—C3—C2 | 124.00 (19) | C6—O3—Nb1 | 159.91 (16) |
C4—C3—H3 | 118 | C7—O4—Nb1 | 146.66 (15) |
C2—C3—H3 | 118 | O3—Nb1—O4 | 100.77 (7) |
O2—C4—C3 | 123.2 (2) | O3—Nb1—O2 | 92.28 (7) |
O2—C4—C5 | 115.49 (19) | O4—Nb1—O2 | 166.62 (7) |
C3—C4—C5 | 121.35 (19) | O3—Nb1—O1 | 172.65 (7) |
C4—C5—H5A | 109.5 | O4—Nb1—O1 | 85.79 (7) |
C4—C5—H5B | 109.5 | O2—Nb1—O1 | 81.36 (7) |
H5A—C5—H5B | 109.5 | O3—Nb1—Cl2 | 97.31 (7) |
C4—C5—H5C | 109.5 | O4—Nb1—Cl2 | 91.23 (6) |
H5A—C5—H5C | 109.5 | O2—Nb1—Cl2 | 84.13 (5) |
H5B—C5—H5C | 109.5 | O1—Nb1—Cl2 | 85.76 (6) |
O3—C6—H6A | 109.5 | O3—Nb1—Cl1 | 92.06 (7) |
O3—C6—H6B | 109.5 | O4—Nb1—Cl1 | 95.37 (6) |
H6A—C6—H6B | 109.5 | O2—Nb1—Cl1 | 87.03 (5) |
O3—C6—H6C | 109.5 | O1—Nb1—Cl1 | 83.97 (7) |
H6A—C6—H6C | 109.5 | Cl2—Nb1—Cl1 | 167.34 (2) |
Experimental details
Crystal data | |
Chemical formula | [Nb(CH3O)2(C5H7O2)Cl2] |
Mr | 324.98 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.7985 (2), 11.6028 (3), 14.6819 (2) |
β (°) | 111.279 (1) |
V (Å3) | 1237.91 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.39 |
Crystal size (mm) | 0.38 × 0.13 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.810, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25521, 2995, 2873 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.060, 1.04 |
No. of reflections | 2995 |
No. of parameters | 131 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.90, −1.14 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WinGX (Farrugia, 1999).
Acknowledgements
Financial assistance from the Advanced Metals Initiative (AMI) of the Department of Science and Technology (DST) of South Africa, through the New Metals Development Network (NMDN) coordinated by the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.
References
Antinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem. 603, 194–198. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202–2209. CSD CrossRef Web of Science Google Scholar
Davies, H. O., Leedham, T. J., Jones, A. C., O'Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165–3172. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Herbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801–m802. Web of Science CSD CrossRef IUCr Journals Google Scholar
Herbst, L., Visser, H. G., Roodt, A. & Muller, T. J. (2011). Acta Cryst. E67, m1669–m1670. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453. Web of Science CSD CrossRef CAS Google Scholar
Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). Inorg. Chim. Acta, 358, 2371–2376. Web of Science CSD CrossRef CAS Google Scholar
Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–92. Web of Science CSD CrossRef Google Scholar
Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481. CSD CrossRef CAS Web of Science Google Scholar
Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536–537, 197–205. CSD CrossRef Web of Science Google Scholar
Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetylacetone and other β-diketones are strong chelating agents that find applications in homogenous catalysis and the separations industry (Steyn et al., 1992; 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the interaction of transition metals used in the nuclear industry, specifically zirconium, hafnium, niobium and tantalum, with O,O'- and N,O-bidentate ligands. (Steyn et al., 2008; Viljoen et al., 2008; 2009a,b; 2010; Herbst et al., 2010; 2011).
The title complex crystallizes in the monoclinic space group P21/c with Z = 4. The assymetric unit consists of a niobium(V) atom surrounded by two methanolate groups, two chlorido ligands and an O,O'-bonded acetylacetonato ligand (Figure 1). The octahedral environment around the niobium metal centre is slightly disordered with Nb—O distances varying between 1.8254 (16) and 2.0892 (16) Å, while the Nb—Cl distances are 2.3997 (14) and 2.4023 (12) Å respectively. The O—Nb—O angles vary between and 81.36 (7) and 172.65 (7) °, while the trans Cl—Nb—Cl angle is 167.34 (2) °. All the bond distances and angles are similar to other relevant niobium(V) structures (Herbst et al., 2010; 2011; Sokolov et al., 1999; 2005; Antinolo et al., 2000 and Dahan et al., 1976).