metal-organic compounds
Bis(2,2′:6′,2′′-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate
aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland
*Correspondence e-mail: k.brzezinski@uwb.edu.pl
The 15H11N3)2](ClO4)2·0.5H2O, contains one ruthenium–terpiridine complex cation, two perchlorate anions and one half-molecule of water. Face-to-face and face-to-edge π-stacking interactions between terpyridine units [centroid–centroid distances = 3.793 (2) and 3.801 (2) Å] stabilize the The partially occupied water molecule interacts with two perchlorate ions via O—H⋯O hydrogen bonds. In the the complex cations, perchlorate ion-water pairs and the second perchlorate anions are arranged into columns along b direction.
of the title compound, [Ru(CRelated literature
For the preparation of terpyridine complexes with transition metals, see: Burstall & Nyholm (1952). For the structures of salts of complexes of ruthenium with terpyridine, see: Craig et al. (1998); Lashgari et al. (1999); Pyo et al. (1999); Tovee et al. (2009); Walstrom et al. (2009). For background to the properties and applications of terpiridine complexes, see: Anders & Schubert (2004); Constable (2007); Plonska et al. (2002); Winkler et al. (2003, 2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812043917/bt6849sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043917/bt6849Isup2.hkl
The transition metal complex salt, [RuII(tpy)2](ClO4)2 was prepared according to the procedure described by Burstall et al. (1952). Crystals suitable for X-ray diffraction study were obtained at room temperature by a slow evaporation of [RuII(tpy)2](ClO4)2 solution in acetonitrile.
During the initial
steps, the occupancy factor for the water molecule was refined and it was in a range of 0.49–0.52. For the final cycles, this occupancy was fixed at 0.5 with isotropic atomic displacement parameters for hydrogen atoms. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C). O—H distances were fixed at 0.85 Å with Uiso(H) = 1.5Ueq(C) and the positions of water hydrogen atoms were refined.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Crystal packing viewed along b direction. Dashed lines represent hydrogen bonds between half-molecule of water and perchlorate anions. |
[Ru(C15H11N3)2](ClO4)2·0.5H2O | F(000) = 1564 |
Mr = 775.51 | Dx = 1.706 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7538 reflections |
a = 8.7676 (2) Å | θ = 2.5–26.3° |
b = 8.8221 (9) Å | µ = 0.76 mm−1 |
c = 39.118 (4) Å | T = 100 K |
β = 93.582 (5)° | Plate, red |
V = 3019.8 (4) Å3 | 0.15 × 0.12 × 0.03 mm |
Z = 4 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 6158 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5858 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4052 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = 0→11 |
Tmin = 0.801, Tmax = 1.000 | l = 0→48 |
16537 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.27 | w = 1/[σ2(Fo2) + (0.0111P)2 + 7.0042P] where P = (Fo2 + 2Fc2)/3 |
6158 reflections | (Δ/σ)max = 0.001 |
439 parameters | Δρmax = 0.65 e Å−3 |
3 restraints | Δρmin = −1.17 e Å−3 |
[Ru(C15H11N3)2](ClO4)2·0.5H2O | V = 3019.8 (4) Å3 |
Mr = 775.51 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7676 (2) Å | µ = 0.76 mm−1 |
b = 8.8221 (9) Å | T = 100 K |
c = 39.118 (4) Å | 0.15 × 0.12 × 0.03 mm |
β = 93.582 (5)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 6158 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 5858 reflections with I > 2σ(I) |
Tmin = 0.801, Tmax = 1.000 | Rint = 0.027 |
16537 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 3 restraints |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.27 | Δρmax = 0.65 e Å−3 |
6158 reflections | Δρmin = −1.17 e Å−3 |
439 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.35193 (3) | 0.33315 (3) | 0.127794 (6) | 0.01027 (7) | |
N1A | 0.2631 (3) | 0.1164 (3) | 0.12359 (7) | 0.0121 (5) | |
N3A | 0.4324 (3) | 0.5408 (3) | 0.11162 (7) | 0.0122 (5) | |
C15A | 0.4968 (3) | 0.6520 (4) | 0.13099 (8) | 0.0142 (6) | |
H15A | 0.5039 | 0.6399 | 0.1552 | 0.017* | |
C1A | 0.2479 (3) | 0.0135 (4) | 0.14867 (8) | 0.0155 (7) | |
H1A | 0.2837 | 0.0386 | 0.1714 | 0.019* | |
C10A | 0.3495 (3) | 0.4333 (4) | 0.05723 (8) | 0.0139 (6) | |
C10B | 0.5227 (3) | 0.3134 (4) | 0.19339 (8) | 0.0145 (6) | |
C11A | 0.4207 (3) | 0.5607 (4) | 0.07649 (8) | 0.0145 (6) | |
C5A | 0.2170 (3) | 0.0758 (4) | 0.09058 (8) | 0.0142 (6) | |
C12A | 0.4743 (4) | 0.6915 (4) | 0.06155 (9) | 0.0179 (7) | |
H12A | 0.4635 | 0.7042 | 0.0374 | 0.022* | |
C2A | 0.1819 (4) | −0.1275 (4) | 0.14247 (9) | 0.0181 (7) | |
H2A | 0.1724 | −0.1975 | 0.1607 | 0.022* | |
C15B | 0.6578 (3) | 0.1840 (4) | 0.11219 (8) | 0.0156 (7) | |
H15B | 0.6228 | 0.1879 | 0.0887 | 0.019* | |
C4A | 0.1491 (4) | −0.0635 (4) | 0.08320 (9) | 0.0174 (7) | |
H4A | 0.1162 | −0.0888 | 0.0603 | 0.021* | |
C12B | 0.7609 (4) | 0.1731 (4) | 0.17951 (9) | 0.0199 (7) | |
H12B | 0.7949 | 0.1700 | 0.2030 | 0.024* | |
C8A | 0.2508 (4) | 0.2943 (4) | 0.00816 (8) | 0.0213 (7) | |
H8A | 0.2296 | 0.2866 | −0.0159 | 0.026* | |
C9A | 0.3187 (4) | 0.4247 (4) | 0.02177 (8) | 0.0184 (7) | |
H9A | 0.3437 | 0.5064 | 0.0073 | 0.022* | |
C14A | 0.5534 (4) | 0.7834 (4) | 0.11718 (9) | 0.0189 (7) | |
H14A | 0.5985 | 0.8594 | 0.1317 | 0.023* | |
C3A | 0.1300 (4) | −0.1650 (4) | 0.10941 (9) | 0.0211 (7) | |
H3A | 0.0816 | −0.2599 | 0.1048 | 0.025* | |
C13A | 0.5437 (4) | 0.8035 (4) | 0.08197 (9) | 0.0205 (7) | |
H13A | 0.5838 | 0.8921 | 0.0720 | 0.025* | |
C4B | 0.0091 (4) | 0.5255 (4) | 0.18713 (9) | 0.0193 (7) | |
H4B | 0.0076 | 0.5521 | 0.2106 | 0.023* | |
C7B | 0.3040 (4) | 0.4475 (4) | 0.23114 (8) | 0.0196 (7) | |
H7B | 0.2281 | 0.4937 | 0.2440 | 0.024* | |
N2B | 0.3874 (3) | 0.3573 (3) | 0.17813 (6) | 0.0124 (5) | |
C6B | 0.2779 (3) | 0.4223 (4) | 0.19610 (8) | 0.0143 (6) | |
C14B | 0.7970 (4) | 0.1152 (4) | 0.12103 (9) | 0.0184 (7) | |
H14B | 0.8565 | 0.0731 | 0.1039 | 0.022* | |
C1B | 0.0186 (4) | 0.4455 (4) | 0.11975 (9) | 0.0163 (7) | |
H1B | 0.0203 | 0.4168 | 0.0964 | 0.020* | |
C13B | 0.8476 (4) | 0.1089 (4) | 0.15514 (9) | 0.0216 (7) | |
H13B | 0.9417 | 0.0606 | 0.1618 | 0.026* | |
C5B | 0.1388 (4) | 0.4593 (4) | 0.17462 (8) | 0.0149 (7) | |
C2B | −0.1131 (4) | 0.5101 (4) | 0.13105 (9) | 0.0208 (7) | |
H2B | −0.1997 | 0.5253 | 0.1156 | 0.025* | |
C3B | −0.1173 (4) | 0.5522 (4) | 0.16509 (9) | 0.0223 (8) | |
H3B | −0.2059 | 0.5988 | 0.1732 | 0.027* | |
C8B | 0.4433 (4) | 0.4036 (4) | 0.24683 (9) | 0.0215 (7) | |
H8B | 0.4625 | 0.4199 | 0.2707 | 0.026* | |
C9B | 0.5547 (4) | 0.3367 (4) | 0.22841 (8) | 0.0192 (7) | |
H9B | 0.6501 | 0.3074 | 0.2393 | 0.023* | |
N1B | 0.1441 (3) | 0.4219 (3) | 0.14059 (7) | 0.0127 (5) | |
N2A | 0.3132 (3) | 0.3157 (3) | 0.07744 (6) | 0.0126 (5) | |
C6A | 0.2464 (3) | 0.1891 (4) | 0.06429 (8) | 0.0142 (6) | |
N3B | 0.5705 (3) | 0.2454 (3) | 0.13564 (6) | 0.0123 (5) | |
C7A | 0.2136 (4) | 0.1753 (4) | 0.02910 (8) | 0.0198 (7) | |
H7A | 0.1668 | 0.0862 | 0.0197 | 0.024* | |
C11B | 0.6234 (3) | 0.2424 (4) | 0.16936 (8) | 0.0146 (7) | |
Cl1A | 0.78661 (9) | 0.20109 (9) | 0.02625 (2) | 0.01935 (18) | |
O2A | 0.8387 (3) | 0.2126 (3) | −0.00779 (6) | 0.0306 (6) | |
O4A | 0.6256 (3) | 0.2268 (4) | 0.02484 (7) | 0.0426 (8) | |
O3A | 0.8209 (4) | 0.0534 (3) | 0.03981 (7) | 0.0383 (7) | |
O1A | 0.8611 (4) | 0.3124 (3) | 0.04797 (7) | 0.0407 (7) | |
Cl1B | 0.52415 (9) | 0.83287 (10) | 0.22156 (2) | 0.02087 (18) | |
O2B | 0.5394 (3) | 0.7741 (3) | 0.25576 (7) | 0.0369 (7) | |
O1B | 0.3911 (3) | 0.7690 (3) | 0.20366 (6) | 0.0279 (6) | |
O3B | 0.5070 (3) | 0.9946 (3) | 0.22300 (7) | 0.0297 (6) | |
O4B | 0.6574 (3) | 0.7965 (4) | 0.20354 (7) | 0.0433 (8) | |
O5 | 0.9985 (6) | 0.6020 (6) | 0.05038 (12) | 0.0266 (11) | 0.50 |
H5A | 1.044 (8) | 0.639 (8) | 0.0339 (13) | 0.040* | 0.50 |
H5B | 0.950 (8) | 0.523 (6) | 0.0438 (18) | 0.040* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.00989 (12) | 0.00929 (12) | 0.01172 (13) | −0.00013 (10) | 0.00132 (9) | −0.00072 (10) |
N1A | 0.0079 (12) | 0.0103 (13) | 0.0179 (13) | 0.0022 (10) | 0.0002 (10) | −0.0004 (11) |
N3A | 0.0100 (12) | 0.0096 (13) | 0.0173 (13) | 0.0017 (10) | 0.0025 (10) | −0.0008 (11) |
C15A | 0.0119 (14) | 0.0129 (16) | 0.0179 (16) | 0.0005 (12) | 0.0008 (12) | −0.0028 (13) |
C1A | 0.0130 (15) | 0.0161 (17) | 0.0171 (16) | 0.0008 (13) | 0.0000 (12) | 0.0015 (13) |
C10A | 0.0114 (15) | 0.0123 (16) | 0.0181 (16) | 0.0039 (12) | 0.0010 (12) | 0.0001 (13) |
C10B | 0.0158 (15) | 0.0109 (16) | 0.0168 (16) | −0.0039 (12) | 0.0002 (12) | 0.0007 (13) |
C11A | 0.0123 (15) | 0.0145 (16) | 0.0171 (16) | 0.0030 (13) | 0.0031 (12) | −0.0005 (13) |
C5A | 0.0101 (15) | 0.0129 (16) | 0.0194 (16) | 0.0024 (12) | 0.0003 (12) | −0.0015 (13) |
C12A | 0.0190 (16) | 0.0153 (17) | 0.0198 (17) | −0.0005 (13) | 0.0031 (13) | 0.0031 (14) |
C2A | 0.0150 (16) | 0.0119 (16) | 0.0273 (18) | 0.0037 (13) | 0.0013 (13) | 0.0053 (14) |
C15B | 0.0171 (16) | 0.0126 (16) | 0.0175 (16) | −0.0028 (13) | 0.0047 (12) | −0.0005 (13) |
C4A | 0.0153 (16) | 0.0145 (17) | 0.0221 (17) | 0.0000 (13) | −0.0012 (13) | −0.0031 (14) |
C12B | 0.0168 (16) | 0.0195 (17) | 0.0228 (17) | −0.0005 (14) | −0.0030 (13) | 0.0026 (15) |
C8A | 0.0236 (18) | 0.028 (2) | 0.0122 (16) | −0.0017 (15) | 0.0000 (13) | −0.0018 (14) |
C9A | 0.0204 (17) | 0.0187 (18) | 0.0162 (16) | 0.0000 (14) | 0.0026 (13) | 0.0009 (14) |
C14A | 0.0165 (16) | 0.0143 (16) | 0.0260 (18) | −0.0020 (13) | 0.0018 (13) | −0.0038 (14) |
C3A | 0.0157 (16) | 0.0118 (16) | 0.036 (2) | −0.0042 (14) | 0.0000 (14) | −0.0010 (15) |
C13A | 0.0193 (17) | 0.0129 (17) | 0.0297 (19) | −0.0023 (13) | 0.0047 (14) | 0.0044 (14) |
C4B | 0.0207 (17) | 0.0141 (17) | 0.0240 (18) | 0.0010 (14) | 0.0093 (14) | 0.0003 (14) |
C7B | 0.0258 (18) | 0.0160 (17) | 0.0178 (17) | −0.0032 (14) | 0.0088 (13) | −0.0030 (14) |
N2B | 0.0133 (13) | 0.0081 (13) | 0.0161 (13) | −0.0015 (10) | 0.0028 (10) | −0.0007 (10) |
C6B | 0.0149 (15) | 0.0089 (15) | 0.0195 (16) | −0.0024 (12) | 0.0044 (12) | −0.0017 (13) |
C14B | 0.0152 (16) | 0.0146 (16) | 0.0262 (18) | 0.0000 (13) | 0.0073 (13) | −0.0003 (14) |
C1B | 0.0159 (16) | 0.0100 (16) | 0.0228 (17) | −0.0028 (13) | 0.0005 (13) | 0.0017 (13) |
C13B | 0.0147 (16) | 0.0184 (18) | 0.032 (2) | 0.0010 (14) | 0.0013 (14) | 0.0041 (15) |
C5B | 0.0184 (16) | 0.0076 (15) | 0.0194 (16) | −0.0023 (12) | 0.0065 (13) | 0.0006 (13) |
C2B | 0.0134 (16) | 0.0159 (17) | 0.033 (2) | 0.0005 (13) | 0.0019 (14) | 0.0046 (15) |
C3B | 0.0167 (17) | 0.0157 (17) | 0.036 (2) | 0.0030 (14) | 0.0111 (14) | 0.0021 (15) |
C8B | 0.0292 (19) | 0.0219 (19) | 0.0134 (16) | −0.0064 (15) | 0.0008 (13) | −0.0018 (14) |
C9B | 0.0212 (17) | 0.0187 (17) | 0.0171 (16) | −0.0012 (14) | −0.0049 (13) | 0.0000 (14) |
N1B | 0.0122 (13) | 0.0083 (13) | 0.0179 (14) | −0.0028 (10) | 0.0030 (10) | −0.0004 (11) |
N2A | 0.0111 (12) | 0.0111 (13) | 0.0155 (13) | 0.0013 (10) | 0.0012 (10) | 0.0000 (11) |
C6A | 0.0116 (14) | 0.0127 (16) | 0.0185 (16) | 0.0030 (12) | 0.0017 (12) | −0.0027 (13) |
N3B | 0.0111 (12) | 0.0101 (13) | 0.0155 (13) | −0.0026 (10) | 0.0000 (10) | 0.0010 (11) |
C7A | 0.0198 (16) | 0.0204 (18) | 0.0190 (17) | −0.0021 (15) | −0.0010 (13) | −0.0044 (14) |
C11B | 0.0144 (15) | 0.0120 (16) | 0.0175 (16) | −0.0049 (13) | 0.0008 (12) | 0.0004 (13) |
Cl1A | 0.0207 (4) | 0.0201 (4) | 0.0172 (4) | 0.0005 (3) | 0.0013 (3) | −0.0022 (3) |
O2A | 0.0369 (15) | 0.0372 (16) | 0.0184 (13) | 0.0012 (13) | 0.0073 (11) | −0.0027 (12) |
O4A | 0.0226 (14) | 0.072 (2) | 0.0337 (16) | 0.0097 (15) | 0.0027 (12) | 0.0139 (16) |
O3A | 0.062 (2) | 0.0264 (15) | 0.0263 (15) | 0.0128 (14) | −0.0007 (13) | 0.0011 (12) |
O1A | 0.0560 (19) | 0.0395 (18) | 0.0263 (15) | −0.0183 (15) | 0.0012 (13) | −0.0127 (13) |
Cl1B | 0.0236 (4) | 0.0194 (4) | 0.0191 (4) | 0.0054 (3) | −0.0023 (3) | −0.0056 (3) |
O2B | 0.0604 (19) | 0.0273 (15) | 0.0211 (14) | 0.0101 (14) | −0.0127 (13) | 0.0005 (12) |
O1B | 0.0301 (14) | 0.0306 (15) | 0.0218 (13) | −0.0036 (12) | −0.0073 (11) | −0.0022 (11) |
O3B | 0.0389 (16) | 0.0187 (13) | 0.0330 (15) | −0.0019 (12) | 0.0143 (12) | −0.0010 (12) |
O4B | 0.0276 (15) | 0.059 (2) | 0.0432 (17) | 0.0136 (14) | 0.0025 (13) | −0.0240 (16) |
O5 | 0.034 (3) | 0.025 (3) | 0.021 (3) | −0.010 (2) | −0.002 (2) | 0.005 (2) |
Ru1—N2A | 1.984 (3) | C14A—C13A | 1.386 (5) |
Ru1—N2B | 1.986 (3) | C14A—H14A | 0.9500 |
Ru1—N1A | 2.067 (3) | C3A—H3A | 0.9500 |
Ru1—N3B | 2.072 (3) | C13A—H13A | 0.9500 |
Ru1—N1B | 2.073 (3) | C4B—C3B | 1.381 (5) |
Ru1—N3A | 2.076 (3) | C4B—C5B | 1.394 (4) |
N1A—C1A | 1.350 (4) | C4B—H4B | 0.9500 |
N1A—C5A | 1.376 (4) | C7B—C8B | 1.388 (5) |
N3A—C15A | 1.342 (4) | C7B—C6B | 1.393 (4) |
N3A—C11A | 1.383 (4) | C7B—H7B | 0.9500 |
C15A—C14A | 1.384 (5) | N2B—C6B | 1.352 (4) |
C15A—H15A | 0.9500 | C6B—C5B | 1.474 (4) |
C1A—C2A | 1.387 (5) | C14B—C13B | 1.381 (5) |
C1A—H1A | 0.9500 | C14B—H14B | 0.9500 |
C10A—N2A | 1.354 (4) | C1B—N1B | 1.345 (4) |
C10A—C9A | 1.399 (4) | C1B—C2B | 1.384 (5) |
C10A—C11A | 1.470 (4) | C1B—H1B | 0.9500 |
C10B—N2B | 1.351 (4) | C13B—H13B | 0.9500 |
C10B—C9B | 1.396 (4) | C5B—N1B | 1.375 (4) |
C10B—C11B | 1.469 (4) | C2B—C3B | 1.385 (5) |
C11A—C12A | 1.389 (4) | C2B—H2B | 0.9500 |
C5A—C4A | 1.388 (4) | C3B—H3B | 0.9500 |
C5A—C6A | 1.468 (4) | C8B—C9B | 1.382 (5) |
C12A—C13A | 1.387 (5) | C8B—H8B | 0.9500 |
C12A—H12A | 0.9500 | C9B—H9B | 0.9500 |
C2A—C3A | 1.384 (5) | N2A—C6A | 1.349 (4) |
C2A—H2A | 0.9500 | C6A—C7A | 1.394 (4) |
C15B—N3B | 1.344 (4) | N3B—C11B | 1.371 (4) |
C15B—C14B | 1.388 (4) | C7A—H7A | 0.9500 |
C15B—H15B | 0.9500 | Cl1A—O4A | 1.427 (3) |
C4A—C3A | 1.380 (5) | Cl1A—O1A | 1.430 (3) |
C4A—H4A | 0.9500 | Cl1A—O3A | 1.432 (3) |
C12B—C13B | 1.378 (5) | Cl1A—O2A | 1.438 (3) |
C12B—C11B | 1.387 (4) | Cl1B—O2B | 1.433 (3) |
C12B—H12B | 0.9500 | Cl1B—O3B | 1.437 (3) |
C8A—C7A | 1.384 (5) | Cl1B—O1B | 1.437 (3) |
C8A—C9A | 1.386 (5) | Cl1B—O4B | 1.438 (3) |
C8A—H8A | 0.9500 | O5—H5A | 0.85 (2) |
C9A—H9A | 0.9500 | O5—H5B | 0.85 (2) |
N2A—Ru1—N2B | 178.09 (11) | C12A—C13A—H13A | 120.7 |
N2A—Ru1—N1A | 78.99 (10) | C3B—C4B—C5B | 119.5 (3) |
N2B—Ru1—N1A | 102.30 (10) | C3B—C4B—H4B | 120.2 |
N2A—Ru1—N3B | 102.56 (10) | C5B—C4B—H4B | 120.2 |
N2B—Ru1—N3B | 78.88 (10) | C8B—C7B—C6B | 118.4 (3) |
N1A—Ru1—N3B | 90.37 (10) | C8B—C7B—H7B | 120.8 |
N2A—Ru1—N1B | 99.82 (10) | C6B—C7B—H7B | 120.8 |
N2B—Ru1—N1B | 78.78 (10) | C6B—N2B—C10B | 121.6 (3) |
N1A—Ru1—N1B | 92.06 (10) | C6B—N2B—Ru1 | 119.3 (2) |
N3B—Ru1—N1B | 157.54 (10) | C10B—N2B—Ru1 | 119.1 (2) |
N2A—Ru1—N3A | 78.81 (10) | N2B—C6B—C7B | 120.1 (3) |
N2B—Ru1—N3A | 99.93 (10) | N2B—C6B—C5B | 112.7 (3) |
N1A—Ru1—N3A | 157.73 (10) | C7B—C6B—C5B | 127.2 (3) |
N3B—Ru1—N3A | 92.65 (10) | C13B—C14B—C15B | 118.9 (3) |
N1B—Ru1—N3A | 93.49 (10) | C13B—C14B—H14B | 120.5 |
C1A—N1A—C5A | 118.1 (3) | C15B—C14B—H14B | 120.5 |
C1A—N1A—Ru1 | 128.2 (2) | N1B—C1B—C2B | 122.5 (3) |
C5A—N1A—Ru1 | 113.7 (2) | N1B—C1B—H1B | 118.7 |
C15A—N3A—C11A | 118.1 (3) | C2B—C1B—H1B | 118.7 |
C15A—N3A—Ru1 | 127.7 (2) | C12B—C13B—C14B | 119.6 (3) |
C11A—N3A—Ru1 | 114.1 (2) | C12B—C13B—H13B | 120.2 |
N3A—C15A—C14A | 122.7 (3) | C14B—C13B—H13B | 120.2 |
N3A—C15A—H15A | 118.7 | N1B—C5B—C4B | 121.2 (3) |
C14A—C15A—H15A | 118.7 | N1B—C5B—C6B | 114.9 (3) |
N1A—C1A—C2A | 122.4 (3) | C4B—C5B—C6B | 123.8 (3) |
N1A—C1A—H1A | 118.8 | C1B—C2B—C3B | 119.4 (3) |
C2A—C1A—H1A | 118.8 | C1B—C2B—H2B | 120.3 |
N2A—C10A—C9A | 120.0 (3) | C3B—C2B—H2B | 120.3 |
N2A—C10A—C11A | 113.2 (3) | C4B—C3B—C2B | 119.1 (3) |
C9A—C10A—C11A | 126.8 (3) | C4B—C3B—H3B | 120.5 |
N2B—C10B—C9B | 120.5 (3) | C2B—C3B—H3B | 120.5 |
N2B—C10B—C11B | 112.7 (3) | C9B—C8B—C7B | 121.3 (3) |
C9B—C10B—C11B | 126.8 (3) | C9B—C8B—H8B | 119.3 |
N3A—C11A—C12A | 121.1 (3) | C7B—C8B—H8B | 119.3 |
N3A—C11A—C10A | 114.5 (3) | C8B—C9B—C10B | 118.0 (3) |
C12A—C11A—C10A | 124.3 (3) | C8B—C9B—H9B | 121.0 |
N1A—C5A—C4A | 121.5 (3) | C10B—C9B—H9B | 121.0 |
N1A—C5A—C6A | 115.2 (3) | C1B—N1B—C5B | 118.3 (3) |
C4A—C5A—C6A | 123.3 (3) | C1B—N1B—Ru1 | 127.6 (2) |
C13A—C12A—C11A | 119.8 (3) | C5B—N1B—Ru1 | 114.1 (2) |
C13A—C12A—H12A | 120.1 | C6A—N2A—C10A | 121.6 (3) |
C11A—C12A—H12A | 120.1 | C6A—N2A—Ru1 | 119.1 (2) |
C3A—C2A—C1A | 119.2 (3) | C10A—N2A—Ru1 | 119.2 (2) |
C3A—C2A—H2A | 120.4 | N2A—C6A—C7A | 120.5 (3) |
C1A—C2A—H2A | 120.4 | N2A—C6A—C5A | 112.8 (3) |
N3B—C15B—C14B | 122.4 (3) | C7A—C6A—C5A | 126.7 (3) |
N3B—C15B—H15B | 118.8 | C15B—N3B—C11B | 118.5 (3) |
C14B—C15B—H15B | 118.8 | C15B—N3B—Ru1 | 127.6 (2) |
C3A—C4A—C5A | 119.4 (3) | C11B—N3B—Ru1 | 113.8 (2) |
C3A—C4A—H4A | 120.3 | C8A—C7A—C6A | 118.5 (3) |
C5A—C4A—H4A | 120.3 | C8A—C7A—H7A | 120.8 |
C13B—C12B—C11B | 119.4 (3) | C6A—C7A—H7A | 120.8 |
C13B—C12B—H12B | 120.3 | N3B—C11B—C12B | 121.3 (3) |
C11B—C12B—H12B | 120.3 | N3B—C11B—C10B | 115.3 (3) |
C7A—C8A—C9A | 120.9 (3) | C12B—C11B—C10B | 123.4 (3) |
C7A—C8A—H8A | 119.5 | O4A—Cl1A—O1A | 109.1 (2) |
C9A—C8A—H8A | 119.5 | O4A—Cl1A—O3A | 110.07 (19) |
C8A—C9A—C10A | 118.5 (3) | O1A—Cl1A—O3A | 109.10 (18) |
C8A—C9A—H9A | 120.7 | O4A—Cl1A—O2A | 108.88 (16) |
C10A—C9A—H9A | 120.7 | O1A—Cl1A—O2A | 109.99 (17) |
C15A—C14A—C13A | 119.6 (3) | O3A—Cl1A—O2A | 109.65 (17) |
C15A—C14A—H14A | 120.2 | O2B—Cl1B—O3B | 109.08 (16) |
C13A—C14A—H14A | 120.2 | O2B—Cl1B—O1B | 109.78 (17) |
C4A—C3A—C2A | 119.4 (3) | O3B—Cl1B—O1B | 108.93 (16) |
C4A—C3A—H3A | 120.3 | O2B—Cl1B—O4B | 110.22 (18) |
C2A—C3A—H3A | 120.3 | O3B—Cl1B—O4B | 109.33 (18) |
C14A—C13A—C12A | 118.6 (3) | O1B—Cl1B—O4B | 109.47 (16) |
C14A—C13A—H13A | 120.7 | H5A—O5—H5B | 110 (5) |
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2Ai | 0.85 (2) | 1.98 (3) | 2.790 (6) | 159 (7) |
O5—H5B···O1A | 0.85 (2) | 2.03 (3) | 2.824 (6) | 157 (7) |
C2B—H2B···Cg1ii | 0.95 | 3.09 (1) | 3.945 (4) | 45 (1) |
C14A—H14A···Cg2iii | 0.95 | 3.01 (1) | 3.878 (4) | 43 (1) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ru(C15H11N3)2](ClO4)2·0.5H2O |
Mr | 775.51 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 8.7676 (2), 8.8221 (9), 39.118 (4) |
β (°) | 93.582 (5) |
V (Å3) | 3019.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.76 |
Crystal size (mm) | 0.15 × 0.12 × 0.03 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.801, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16537, 6158, 5858 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.083, 1.27 |
No. of reflections | 6158 |
No. of parameters | 439 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.65, −1.17 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2Ai | 0.85 (2) | 1.98 (3) | 2.790 (6) | 159 (7) |
O5—H5B···O1A | 0.85 (2) | 2.03 (3) | 2.824 (6) | 157 (7) |
C2B—H2B···Cg1ii | 0.95 | 3.086 (1) | 3.945 (4) | 45.3 (2) |
C14A—H14A···Cg2iii | 0.95 | 3.013 (1) | 3.878 (4) | 42.7 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z; (iii) x, y+1, z. |
Acknowledgements
This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR) and the National Science Center, Poland (grant No. NN204396640). The X-ray diffractometer was funded by EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project POPW.01.03.00–20-034/09–00.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Anders, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068. Google Scholar
Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570–3579. CrossRef Web of Science Google Scholar
Constable, E. C. (2007). Chem. Soc. Rev. 36, 246–253. Web of Science CrossRef PubMed CAS Google Scholar
Craig, D. C., Scudder, M. L., McHale, W.-A. & Goodwin, H. A. (1998). Aust. J. Chem. 51, 1131–1140. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64–67. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77–84. CAS Google Scholar
Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337–3343. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tovee, C. A., Kilner, C. A., Thomas, J. A. & Halcrow, M. A. (2009). CrystEngComm, 11, 2069–2077. Web of Science CSD CrossRef CAS Google Scholar
Walstrom, A. G., Pink, M., Yang, X. & Caulton, K. G. (2009). Dalton Trans. pp. 6001–6006. Web of Science CSD CrossRef Google Scholar
Winkler, K., Plonska, M. E., Basa, A., Lach, M. & Balch, A. L. (2003). Electroanalysis, 15, 55–65. Web of Science CrossRef CAS Google Scholar
Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544–4553. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A 2,2':6',2''-terpyridine (tpy) compound, as chelating N-donor, forms complexes with most of transition metals (Burstall et al., 1952). The polyimine complexes of divalent transition metal cations are well known due to their photophysical and electrochemical properties (Anders et al., 2004; Plonska et al., 2002; Winkler et al., 2003; Winkler et al., 2006). Ruthenium complexes with terpyridyl or bipyridyl ligands might catalyze photochemical water oxidation (Constable, 2007). The metal-to-ligand charge transfer processes in the visible region enable photo- and electroluminescence phenomena and make these applicable in a supramolecular chemistry (Constable, 2007).
The asymmetric unit contains one divalent cation of the ruthenium-terpiridine complex, two perchlorate anions and a water molecule with a half-occupancy (Fig. 1). The crystal lattice is stabilized by terpyridine moieties and respective face-to-face and face-to-edge π-stacking interactions. The partially occupied water molecule and one perchlorate anion are located in a proximity of the inversion center and a symmetry related water-anion pair is generated. Two hydrogen bonds O5—H5A···O1A and H5—H5B···O2A (equivalent anion -x + 2,-y + 1,-z) are formed between water molecule and oxygen atoms of perchlorate units. Geometrical parameters of hydrogen bond interactions are summarized in Table 1. In the crystal lattice each water molecule serves as a bridge between two symmetry dependent perchlorate units (Fig. 2). It is of note, that only one perchlorate unit and its symmetry-mates form hydrogen bonds with water molecules, whereas the second anion interacts with C-bonded hydrogen atoms (Fig 2).