organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7,8,10,11,13,14,16-Octa­hydro-6,15-(ethanoxyethanoxyethano)-1,4:17,20-dietheno[9,12,6,15]benzodioxadi­aza­cyclo­docosine

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 8 October 2012; accepted 23 October 2012; online 31 October 2012)

The title compound, C32H40N2O4, is a 1,10-diaza-18-crown-6 cryptand with an o-terphenyl bridge. In the polyether ring, two adjacent –CH2– groups are disordered with very nearly equal populations of two conformers. The ordered bond lengths are normal, with average C—C = 1.511 (3) Å, C—O = 1.421 (3) Å, and C—N = 1.466 (4) Å. The r.m.s. deviations of the three rings of the terphenyl bridge vary from 0.007 to 0.009 Å and the two rings ortho to one another are twisted by 50.75 (5) and 47.76 (4)° with respect to the third ring. The N⋯N distance is 5.408 (1) Å.

Related literature

For the synthesis of the title compound, see: Rossa & Vögtle (1981[Rossa, L. & Vögtle, F. (1981). Liebigs Ann. Chem. pp. 459-466.]). For the structure of the NaSCN complex, see: Weber (1981[Weber, G. (1981). Acta Cryst. B37, 1832-1835.]). For a related structure, see: Vögtle et al. (1983[Vögtle, F., Muller, W. M., Puff, H. & Friedrichs, E. (1983). Chem. Ber. 116, 2344-2354.]). For the synthesis of cryptands, see: Dietrich et al. (1969a[Dietrich, B., Lehn, J. M. & Sauvage, J. P. (1969a). Tetrahedron Lett. 34, 2885-2888.],b[Dietrich, B., Lehn, J. M. & Sauvage, J. P. (1969b). Tetrahedron Lett. 34, 2889-2892.]). For a background to guest–host inter­actions, see: Dunitz et al. (1974[Dunitz, J. D., Dobler, M., Seiler, P. & Phizackerley, R. P. (1974). Acta Cryst. B30, 2733-2738.]); Cram & Trueblood (1981[Cram, D. J. & Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43-106.]); Cram (1988[Cram, D. J. (1988). J. Inclusion Phenom. 6, 397-413.]).

[Scheme 1]

Experimental

Crystal data
  • C32H40N2O4

  • Mr = 516.66

  • Triclinic, [P \overline 1]

  • a = 9.6757 (3) Å

  • b = 12.1582 (4) Å

  • c = 12.5129 (5) Å

  • α = 88.178 (2)°

  • β = 82.616 (2)°

  • γ = 78.072 (2)°

  • V = 1428.26 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.33 × 0.32 × 0.22 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.975, Tmax = 0.983

  • 10763 measured reflections

  • 10763 independent reflections

  • 5346 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 0.81

  • 10763 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cryptands, first synthesized in Lehn's laboratories (Dietrich et al. 1969a,b) have been designed for many years as supramolecular hosts for complexation of metal ions and other guests (Cram, 1988). Dunitz et al. (1974) and Cram & Trueblood (1981) emphasized the cavity size of the host matching the size of the guest, both by construction of the host and by its organization by the guest. In the title compound, C32H40N2O4, an o-terphenyl bridge was inserted into the macrobicyclic framework by Rossa & Vögtle (1981) to control the cavity size of cryptand-[2.2.2]. We report here the structure of the altered cryptand.

The molecule has approximate C2 symmetry, with the central ring of the terphenyl group forming dihedral angles of 50.75 (5) and 47.76 (4)° with the other two benzene rings. The three rings of the terphenyl bridge are essentially planar, with r.m.s. deviations ranging from 0.007 to 0.009 Å. In the diaza-18-crown-6 ring, one –(CH2)2– group (C5 and C6) is disordered with very nearly equal populations of the two conformers [0.490 (3) and 0.510 (3)]. The bond lengths in the ordered part of the molecule are normal, with average C—C = 1.511 (3) Å, C—O = 1.421 (3) Å, and C—N = 1.466 (4) Å.

The Na+ complex of the title cryptand has been reported (Weber, 1981) as the thiocyanate salt, methanol solvate. In that structure, the conformation of the terphenyl subunit is quite similar to that in the title cryptand, with the central phenyl group forming dihedral angles of 49.2 and 54.9° with the other two. The N···N distance in the Na+ complex, 5.341 (1) Å, is also not much different from that in the uncomplexed cryptand, 5.408 (1) Å.

Related literature top

For the synthesis of the title compound, see: Rossa & Vögtle (1981). For the structure of the NaSCN complex, see: Weber (1981). For a related structure, see: Vögtle et al. (1983). For the synthesis of cryptands, see: Dietrich et al. (1969a,b). For a background to guest–host interactions, see: Dunitz et al. (1974); Cram & Trueblood (1981); Cram (1988).

Experimental top

The title compound was prepared as decribed by Rossa & Vögtle (1981), and the sample was kindly provided by Professor Vögtle. Crystals were grown from chloroform.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps. The C—H bond distances were restrained to the range 0.95 to 0.99 Å, with Uiso=1.2Ueq and thereafter refined as riding.

Two carbon atoms, C5 and C6, and their attached hydrogen atoms, are disordered and were treated as separately attached groups (A and B) using the PART command in SHELXL97 (Sheldrick, 2008). Their occupation factors were refined as parameter x and 1 - x, with x = 0.490 (3).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
21,24,29,32-Tetraoxa-1,18- diazapentacyclo[16.8.8.23,6.213,16.07,12]octatriaconta- 3,5,7(12),8,10,13,15,35,37-nonaene top
Crystal data top
C32H40N2O4Z = 2
Mr = 516.66F(000) = 556
Triclinic, P1Dx = 1.201 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6757 (3) ÅCell parameters from 10814 reflections
b = 12.1582 (4) Åθ = 2.6–33.1°
c = 12.5129 (5) ŵ = 0.08 mm1
α = 88.178 (2)°T = 100 K
β = 82.616 (2)°Fragment, colorless
γ = 78.072 (2)°0.33 × 0.32 × 0.22 mm
V = 1428.26 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
10763 independent reflections
Radiation source: sealed tube5346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0
Detector resolution: 9 pixels mm-1θmax = 33.1°, θmin = 2.6°
ω and ϕ scansh = 1414
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1818
Tmin = 0.975, Tmax = 0.983l = 019
10763 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.0637P]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.001
10763 reflectionsΔρmax = 0.30 e Å3
351 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0078 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C32H40N2O4γ = 78.072 (2)°
Mr = 516.66V = 1428.26 (9) Å3
Triclinic, P1Z = 2
a = 9.6757 (3) ÅMo Kα radiation
b = 12.1582 (4) ŵ = 0.08 mm1
c = 12.5129 (5) ÅT = 100 K
α = 88.178 (2)°0.33 × 0.32 × 0.22 mm
β = 82.616 (2)°
Data collection top
Nonius KappaCCD
diffractometer
10763 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5346 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0
10763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.81Δρmax = 0.30 e Å3
10763 reflectionsΔρmin = 0.22 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.23215 (9)0.53384 (7)0.19296 (7)0.0211 (2)
C20.37788 (11)0.58008 (10)0.24093 (9)0.0247 (2)
H2A0.43470.52080.24330.03*
H2B0.4210.6420.19470.03*
C30.38478 (11)0.62427 (10)0.35394 (9)0.0270 (3)
H3A0.33550.56540.40030.032*
H3B0.33930.69020.35240.032*
O40.53150 (8)0.65506 (7)0.39325 (6)0.02816 (19)
C5A0.5774 (2)0.7325 (2)0.47940 (19)0.0250 (7)0.490 (3)
H5A10.68270.74880.49070.03*0.490 (3)
H5A20.54730.80370.45690.03*0.490 (3)
C6A0.5257 (3)0.6977 (4)0.5841 (3)0.0393 (7)0.490 (3)
H6AA0.58530.74480.64260.047*0.490 (3)
H6AB0.53120.61820.59960.047*0.490 (3)
C5B0.5732 (2)0.6471 (2)0.50314 (18)0.0268 (7)0.510 (3)
H5B10.52770.57180.5280.032*0.510 (3)
H5B20.67740.65170.51440.032*0.510 (3)
C6B0.54004 (7)0.73216 (6)0.57237 (5)0.0393 (7)0.510 (3)
H6BA0.57150.80830.54240.047*0.510 (3)
H6BB0.59170.72890.64560.047*0.510 (3)
O70.38556 (7)0.71046 (6)0.57801 (5)0.0337 (2)
C80.35602 (7)0.80673 (6)0.62382 (5)0.0246 (2)
H8A0.37430.8030.70340.03*
H8B0.4180.87550.59890.03*
C90.20174 (11)0.80985 (9)0.58898 (8)0.0224 (2)
H9A0.1720.86310.63520.027*
H9B0.14260.73440.59920.027*
N100.17621 (9)0.84405 (7)0.47596 (7)0.02067 (19)
C110.02881 (11)0.80186 (9)0.42935 (9)0.0227 (2)
H11A0.03590.81440.48090.027*
H11B0.00790.84490.36280.027*
C120.00009 (11)0.67766 (9)0.40272 (9)0.0239 (2)
H12A0.01930.63290.46830.029*
H12B0.06070.66360.34890.029*
O130.14635 (8)0.64881 (6)0.36029 (7)0.02792 (19)
C140.20675 (12)0.53217 (9)0.35947 (10)0.0274 (3)
H14A0.17650.49940.42990.033*
H14B0.31170.52220.35150.033*
C150.16638 (11)0.46794 (9)0.27126 (9)0.0259 (2)
H15A0.17030.51140.20310.031*
H15B0.23440.39520.25980.031*
O160.02643 (7)0.44884 (6)0.30085 (6)0.02359 (18)
C170.02009 (12)0.38896 (10)0.22075 (9)0.0268 (3)
H17A0.01210.3070.23090.032*
H17B0.02050.40970.1480.032*
C180.18012 (12)0.41909 (9)0.23150 (9)0.0235 (2)
H18A0.21530.36520.18960.028*
H18B0.21880.41260.30810.028*
C190.22206 (12)0.53917 (9)0.07518 (9)0.0237 (2)
H19A0.30090.50940.05130.028*
H19B0.13120.49130.04380.028*
C200.22940 (11)0.65830 (9)0.03457 (8)0.0217 (2)
C210.33622 (11)0.71247 (9)0.02373 (9)0.0240 (2)
H210.40510.6730.04180.029*
C220.34428 (11)0.82403 (9)0.05634 (8)0.0237 (2)
H220.41830.85950.09650.028*
C230.24558 (11)0.88407 (9)0.03088 (8)0.0216 (2)
C240.13529 (11)0.82843 (9)0.02581 (9)0.0224 (2)
H240.06480.86710.04210.027*
C250.12808 (11)0.71798 (9)0.05823 (8)0.0225 (2)
H250.05310.68190.09720.027*
C260.25954 (11)1.00549 (9)0.06088 (9)0.0224 (2)
C270.27508 (12)1.03916 (10)0.16710 (9)0.0293 (3)
H270.28080.98460.21820.035*
C280.28245 (13)1.15045 (11)0.20031 (10)0.0329 (3)
H280.2931.17140.27310.039*
C290.27428 (12)1.23011 (10)0.12599 (10)0.0321 (3)
H290.2771.3060.14780.039*
C300.26221 (12)1.19882 (10)0.01984 (10)0.0279 (3)
H300.25811.25440.03060.033*
C310.25585 (11)1.08767 (9)0.01550 (9)0.0221 (2)
C320.24813 (11)1.06006 (9)0.13170 (9)0.0213 (2)
C330.15041 (11)1.09725 (9)0.18699 (9)0.0241 (2)
H330.08991.14270.15080.029*
C340.14044 (12)1.06865 (9)0.29445 (9)0.0244 (2)
H340.07291.09480.33060.029*
C350.22686 (11)1.00284 (9)0.34998 (9)0.0222 (2)
C360.32687 (11)0.96731 (9)0.29568 (9)0.0229 (2)
H360.38830.9230.33260.027*
C370.33787 (11)0.99569 (9)0.18866 (9)0.0216 (2)
H370.40730.97120.15340.026*
C380.21402 (12)0.96682 (9)0.46525 (9)0.0244 (2)
H38A0.14031.00040.49210.029*
H38B0.30570.99530.51020.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (5)0.0195 (5)0.0185 (5)0.0034 (4)0.0008 (4)0.0012 (4)
C20.0226 (5)0.0265 (6)0.0246 (6)0.0044 (5)0.0022 (4)0.0001 (5)
C30.0194 (5)0.0364 (7)0.0251 (6)0.0069 (5)0.0009 (4)0.0047 (5)
O40.0193 (4)0.0385 (5)0.0254 (4)0.0042 (3)0.0005 (3)0.0042 (4)
C5A0.0188 (11)0.0283 (16)0.0270 (13)0.0040 (10)0.0011 (9)0.0065 (11)
C6A0.0244 (8)0.063 (2)0.0326 (9)0.0174 (10)0.0067 (6)0.0113 (11)
C5B0.0221 (11)0.0331 (16)0.0250 (12)0.0092 (10)0.0027 (9)0.0036 (10)
C6B0.0244 (8)0.063 (2)0.0326 (9)0.0174 (10)0.0067 (6)0.0113 (11)
O70.0271 (4)0.0398 (5)0.0357 (5)0.0136 (4)0.0049 (4)0.0161 (4)
C80.0291 (6)0.0230 (6)0.0196 (6)0.0025 (5)0.0010 (4)0.0034 (4)
C90.0272 (6)0.0219 (6)0.0184 (5)0.0043 (4)0.0045 (4)0.0006 (4)
N100.0240 (5)0.0177 (4)0.0193 (5)0.0026 (4)0.0017 (4)0.0001 (4)
C110.0226 (5)0.0200 (5)0.0257 (6)0.0059 (4)0.0016 (4)0.0000 (4)
C120.0200 (5)0.0216 (6)0.0297 (6)0.0051 (4)0.0002 (4)0.0023 (5)
O130.0200 (4)0.0189 (4)0.0424 (5)0.0028 (3)0.0030 (3)0.0011 (3)
C140.0196 (5)0.0204 (6)0.0411 (7)0.0020 (5)0.0033 (5)0.0007 (5)
C150.0222 (5)0.0235 (6)0.0298 (6)0.0029 (5)0.0022 (5)0.0013 (5)
O160.0230 (4)0.0249 (4)0.0235 (4)0.0064 (3)0.0016 (3)0.0037 (3)
C170.0315 (6)0.0226 (6)0.0253 (6)0.0008 (5)0.0065 (5)0.0045 (5)
C180.0298 (6)0.0196 (5)0.0227 (6)0.0077 (5)0.0051 (5)0.0000 (4)
C190.0274 (6)0.0214 (6)0.0215 (6)0.0037 (5)0.0018 (4)0.0012 (4)
C200.0249 (5)0.0220 (6)0.0156 (5)0.0018 (4)0.0021 (4)0.0019 (4)
C210.0252 (6)0.0254 (6)0.0216 (6)0.0059 (5)0.0022 (4)0.0020 (5)
C220.0249 (6)0.0252 (6)0.0196 (6)0.0013 (5)0.0048 (4)0.0013 (4)
C230.0227 (5)0.0221 (6)0.0180 (5)0.0022 (4)0.0015 (4)0.0000 (4)
C240.0203 (5)0.0245 (6)0.0214 (6)0.0038 (4)0.0006 (4)0.0014 (4)
C250.0210 (5)0.0241 (6)0.0204 (6)0.0001 (4)0.0018 (4)0.0011 (4)
C260.0202 (5)0.0232 (6)0.0224 (6)0.0033 (4)0.0004 (4)0.0035 (4)
C270.0316 (6)0.0320 (7)0.0230 (6)0.0050 (5)0.0021 (5)0.0023 (5)
C280.0367 (7)0.0373 (7)0.0244 (6)0.0082 (6)0.0041 (5)0.0114 (5)
C290.0341 (7)0.0266 (6)0.0365 (7)0.0093 (5)0.0054 (5)0.0127 (5)
C300.0286 (6)0.0253 (6)0.0310 (7)0.0090 (5)0.0040 (5)0.0047 (5)
C310.0188 (5)0.0231 (6)0.0237 (6)0.0042 (4)0.0012 (4)0.0039 (4)
C320.0215 (5)0.0171 (5)0.0231 (6)0.0009 (4)0.0003 (4)0.0005 (4)
C330.0263 (6)0.0193 (5)0.0275 (6)0.0080 (5)0.0010 (5)0.0013 (4)
C340.0265 (6)0.0217 (6)0.0260 (6)0.0062 (5)0.0048 (5)0.0022 (5)
C350.0266 (6)0.0163 (5)0.0214 (6)0.0006 (4)0.0005 (4)0.0017 (4)
C360.0238 (5)0.0186 (5)0.0245 (6)0.0036 (4)0.0022 (4)0.0005 (4)
C370.0198 (5)0.0204 (5)0.0239 (6)0.0033 (4)0.0015 (4)0.0014 (4)
C380.0307 (6)0.0183 (5)0.0235 (6)0.0033 (5)0.0035 (5)0.0016 (4)
Geometric parameters (Å, º) top
N1—C21.4632 (14)O16—C171.4265 (13)
N1—C191.4647 (15)C17—C181.5050 (16)
N1—C181.4703 (14)C17—H17A0.99
C2—C31.5173 (16)C17—H17B0.99
C2—H2A0.99C18—H18A0.99
C2—H2B0.99C18—H18B0.99
C3—O41.4178 (13)C19—C201.5104 (16)
C3—H3A0.99C19—H19A0.99
C3—H3B0.99C19—H19B0.99
O4—C5B1.389 (2)C20—C211.3842 (16)
O4—C5A1.419 (2)C20—C251.3992 (15)
C5A—C6A1.480 (5)C21—C221.3934 (16)
C5A—H5A10.99C21—H210.95
C5A—H5A20.99C22—C231.3884 (16)
C6A—O71.389 (3)C22—H220.95
C6A—H6AA0.99C23—C241.4018 (15)
C6A—H6AB0.99C23—C261.4945 (16)
C5B—C6B1.479 (2)C24—C251.3808 (16)
C5B—H5B10.99C24—H240.95
C5B—H5B20.99C25—H250.95
C6B—O71.4737C26—C271.3957 (16)
C6B—H6BA0.99C26—C311.4133 (15)
C6B—H6BB0.99C27—C281.3930 (17)
O7—C81.4153C27—H270.95
C8—C91.5084 (13)C28—C291.3845 (17)
C8—H8A0.99C28—H280.95
C8—H8B0.99C29—C301.3827 (17)
C9—N101.4660 (15)C29—H290.95
C9—H9A0.99C30—C311.4001 (16)
C9—H9B0.99C30—H300.95
N10—C111.4630 (14)C31—C321.4896 (16)
N10—C381.4677 (14)C32—C331.3935 (15)
C11—C121.5175 (15)C32—C371.4003 (15)
C11—H11A0.99C33—C341.3885 (16)
C11—H11B0.99C33—H330.95
C12—O131.4217 (13)C34—C351.3836 (16)
C12—H12A0.99C34—H340.95
C12—H12B0.99C35—C361.3947 (15)
O13—C141.4176 (14)C35—C381.5069 (16)
C14—C151.5074 (16)C36—C371.3842 (16)
C14—H14A0.99C36—H360.95
C14—H14B0.99C37—H370.95
C15—O161.4215 (13)C38—H38A0.99
C15—H15A0.99C38—H38B0.99
C15—H15B0.99
C2—N1—C19110.31 (8)C14—C15—H15B109.8
C2—N1—C18112.01 (9)H15A—C15—H15B108.2
C19—N1—C18111.70 (8)C15—O16—C17112.76 (9)
N1—C2—C3112.64 (9)O16—C17—C18108.22 (9)
N1—C2—H2A109.1O16—C17—H17A110.1
C3—C2—H2A109.1C18—C17—H17A110.1
N1—C2—H2B109.1O16—C17—H17B110.1
C3—C2—H2B109.1C18—C17—H17B110.1
H2A—C2—H2B107.8H17A—C17—H17B108.4
O4—C3—C2105.97 (9)N1—C18—C17111.99 (9)
O4—C3—H3A110.5N1—C18—H18A109.2
C2—C3—H3A110.5C17—C18—H18A109.2
O4—C3—H3B110.5N1—C18—H18B109.2
C2—C3—H3B110.5C17—C18—H18B109.2
H3A—C3—H3B108.7H18A—C18—H18B107.9
C5B—O4—C3118.81 (12)N1—C19—C20111.27 (8)
C3—O4—C5A119.96 (11)N1—C19—H19A109.4
O4—C5A—C6A116.8 (3)C20—C19—H19A109.4
O4—C5A—H5A1108.1N1—C19—H19B109.4
C6A—C5A—H5A1108.1C20—C19—H19B109.4
O4—C5A—H5A2108.1H19A—C19—H19B108
C6A—C5A—H5A2108.1C21—C20—C25118.19 (10)
H5A1—C5A—H5A2107.3C21—C20—C19122.03 (10)
O7—C6A—C5A108.2 (3)C25—C20—C19119.76 (10)
O7—C6A—H6AA110.1C20—C21—C22120.98 (10)
C5A—C6A—H6AA110.1C20—C21—H21119.5
O7—C6A—H6AB110.1C22—C21—H21119.5
C5A—C6A—H6AB110.1C23—C22—C21120.87 (10)
H6AA—C6A—H6AB108.4C23—C22—H22119.6
O4—C5B—C6B116.73 (18)C21—C22—H22119.6
O4—C5B—H5B1108.1C22—C23—C24118.18 (10)
C6B—C5B—H5B1108.1C22—C23—C26120.55 (10)
O4—C5B—H5B2108.1C24—C23—C26121.25 (10)
C6B—C5B—H5B2108.1C25—C24—C23120.68 (10)
H5B1—C5B—H5B2107.3C25—C24—H24119.7
O7—C6B—C5B109.69 (9)C23—C24—H24119.7
O7—C6B—H6BA109.7C24—C25—C20121.07 (10)
C5B—C6B—H6BA109.7C24—C25—H25119.5
O7—C6B—H6BB109.7C20—C25—H25119.5
C5B—C6B—H6BB109.7C27—C26—C31118.76 (10)
H6BA—C6B—H6BB108.2C27—C26—C23119.57 (10)
C6A—O7—C8119.25 (18)C31—C26—C23121.67 (10)
C8—O7—C6B107.2C28—C27—C26121.87 (11)
O7—C8—C9108.1C28—C27—H27119.1
O7—C8—H8A110.1C26—C27—H27119.1
C9—C8—H8A110.1C29—C28—C27119.19 (11)
O7—C8—H8B110.1C29—C28—H28120.4
C9—C8—H8B110.1C27—C28—H28120.4
H8A—C8—H8B108.4C30—C29—C28119.76 (12)
N10—C9—C8112.30 (8)C30—C29—H29120.1
N10—C9—H9A109.1C28—C29—H29120.1
C8—C9—H9A109.1C29—C30—C31122.00 (11)
N10—C9—H9B109.1C29—C30—H30119
C8—C9—H9B109.1C31—C30—H30119
H9A—C9—H9B107.9C30—C31—C26118.36 (10)
C11—N10—C9111.85 (8)C30—C31—C32119.43 (10)
C11—N10—C38110.53 (9)C26—C31—C32122.19 (10)
C9—N10—C38110.63 (8)C33—C32—C37117.92 (10)
N10—C11—C12112.35 (9)C33—C32—C31120.80 (10)
N10—C11—H11A109.1C37—C32—C31121.29 (10)
C12—C11—H11A109.1C34—C33—C32120.74 (11)
N10—C11—H11B109.1C34—C33—H33119.6
C12—C11—H11B109.1C32—C33—H33119.6
H11A—C11—H11B107.9C35—C34—C33121.31 (10)
O13—C12—C11105.86 (9)C35—C34—H34119.3
O13—C12—H12A110.6C33—C34—H34119.3
C11—C12—H12A110.6C34—C35—C36118.20 (11)
O13—C12—H12B110.6C34—C35—C38122.29 (10)
C11—C12—H12B110.6C36—C35—C38119.50 (10)
H12A—C12—H12B108.7C37—C36—C35120.89 (11)
C14—O13—C12115.10 (9)C37—C36—H36119.6
O13—C14—C15114.27 (10)C35—C36—H36119.6
O13—C14—H14A108.7C36—C37—C32120.92 (10)
C15—C14—H14A108.7C36—C37—H37119.5
O13—C14—H14B108.7C32—C37—H37119.5
C15—C14—H14B108.7N10—C38—C35111.78 (8)
H14A—C14—H14B107.6N10—C38—H38A109.3
O16—C15—C14109.39 (9)C35—C38—H38A109.3
O16—C15—H15A109.8N10—C38—H38B109.3
C14—C15—H15A109.8C35—C38—H38B109.3
O16—C15—H15B109.8H38A—C38—H38B107.9
C19—N1—C2—C3154.83 (10)C21—C22—C23—C26176.63 (10)
C18—N1—C2—C380.09 (12)C22—C23—C24—C252.00 (15)
N1—C2—C3—O4174.14 (9)C26—C23—C24—C25176.41 (9)
C2—C3—O4—C5B149.61 (15)C23—C24—C25—C200.65 (16)
C2—C3—O4—C5A158.83 (15)C21—C20—C25—C240.93 (15)
C5B—O4—C5A—C6A38.8 (2)C19—C20—C25—C24177.45 (9)
C3—O4—C5A—C6A63.2 (3)C22—C23—C26—C2752.09 (14)
O4—C5A—C6A—O777.2 (4)C24—C23—C26—C27129.53 (11)
C3—O4—C5B—C6B72.7 (2)C22—C23—C26—C31128.64 (11)
C5A—O4—C5B—C6B31.95 (16)C24—C23—C26—C3149.74 (15)
O4—C5B—C6B—O771.37 (18)C31—C26—C27—C282.06 (16)
C5A—C6A—O7—C8100.0 (2)C23—C26—C27—C28177.23 (10)
C5A—C6A—O7—C6B51.1 (4)C26—C27—C28—C290.05 (18)
C5B—C6B—O7—C6A56.4 (4)C27—C28—C29—C301.45 (18)
C5B—C6B—O7—C8167.06 (11)C28—C29—C30—C310.92 (18)
C6A—O7—C8—C9170.1 (2)C29—C30—C31—C261.10 (16)
C6B—O7—C8—C9156.45 (5)C29—C30—C31—C32177.80 (10)
O7—C8—C9—N1074.35 (8)C27—C26—C31—C302.53 (15)
C8—C9—N10—C11155.18 (8)C23—C26—C31—C30176.75 (10)
C8—C9—N10—C3881.14 (10)C27—C26—C31—C32176.33 (10)
C9—N10—C11—C1276.27 (11)C23—C26—C31—C324.39 (15)
C38—N10—C11—C12159.99 (9)C30—C31—C32—C3348.86 (14)
N10—C11—C12—O13179.07 (8)C26—C31—C32—C33132.28 (11)
C11—C12—O13—C14162.24 (9)C30—C31—C32—C37131.47 (11)
C12—O13—C14—C1576.42 (13)C26—C31—C32—C3747.38 (14)
O13—C14—C15—O1678.05 (12)C37—C32—C33—C341.60 (15)
C14—C15—O16—C17179.56 (9)C31—C32—C33—C34178.07 (10)
C15—O16—C17—C18153.77 (9)C32—C33—C34—C350.13 (16)
C2—N1—C18—C17156.80 (9)C33—C34—C35—C361.17 (16)
C19—N1—C18—C1778.88 (11)C33—C34—C35—C38177.48 (10)
O16—C17—C18—N172.81 (12)C34—C35—C36—C370.97 (15)
C2—N1—C19—C2073.08 (11)C38—C35—C36—C37177.73 (9)
C18—N1—C19—C20161.66 (9)C35—C36—C37—C320.53 (15)
N1—C19—C20—C21119.16 (11)C33—C32—C37—C361.80 (15)
N1—C19—C20—C2559.15 (13)C31—C32—C37—C36177.87 (9)
C25—C20—C21—C221.15 (15)C11—N10—C38—C3570.84 (11)
C19—C20—C21—C22177.19 (10)C9—N10—C38—C35164.72 (9)
C20—C21—C22—C230.23 (16)C34—C35—C38—N10118.41 (11)
C21—C22—C23—C241.79 (15)C36—C35—C38—N1060.23 (13)

Experimental details

Crystal data
Chemical formulaC32H40N2O4
Mr516.66
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6757 (3), 12.1582 (4), 12.5129 (5)
α, β, γ (°)88.178 (2), 82.616 (2), 78.072 (2)
V3)1428.26 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.32 × 0.22
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10763, 10763, 5346
Rint0
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 0.81
No. of reflections10763
No. of parameters351
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

CAS 77968–08–2.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationCram, D. J. (1988). J. Inclusion Phenom. 6, 397–413.  CrossRef CAS Web of Science Google Scholar
First citationCram, D. J. & Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43–106.  CrossRef CAS Google Scholar
First citationDietrich, B., Lehn, J. M. & Sauvage, J. P. (1969a). Tetrahedron Lett. 34, 2885–2888.  CrossRef Google Scholar
First citationDietrich, B., Lehn, J. M. & Sauvage, J. P. (1969b). Tetrahedron Lett. 34, 2889–2892.  CrossRef Google Scholar
First citationDunitz, J. D., Dobler, M., Seiler, P. & Phizackerley, R. P. (1974). Acta Cryst. B30, 2733–2738.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRossa, L. & Vögtle, F. (1981). Liebigs Ann. Chem. pp. 459–466.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVögtle, F., Muller, W. M., Puff, H. & Friedrichs, E. (1983). Chem. Ber. 116, 2344–2354.  Google Scholar
First citationWeber, G. (1981). Acta Cryst. B37, 1832–1835.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds