metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1335-m1336

Bis[2,3,4-tri­methyl-5-[(3,4,5-tri­methyl-2H-pyrrol-2-yl­­idene-κN)meth­yl]-1H-pyrrolato-κN]copper(II)

aDepartment of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804 USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 27 August 2012; accepted 28 September 2012; online 6 October 2012)

In the title complex, [Cu(C15H19N2)2] or [Cu(L2)] (HL is 3,3′,4,4′,5,5′-hexa­methyl­pyrromethene), the CuII atom is coordinated by four N atoms [Cu—N 1.939 (2)–1.976 (2) Å] from two L ligands in a distorted tetra­hedral geometry. The mean planes of the CuN2C3 metallocyclic rings form a dihedral angle of 72.73 (6)°. In the L ligands, the pyrrole rings are inclined to each other at dihedral angles of 3.03 (7) and 9.83 (7)°. The crystal packing exhibits weak inter­molecular C—H⋯π inter­actions, which form chains in [100].

Related literature

For the structure of the neutral ligand, see: Mroginski et al. (2005[Mroginski, M.-A., Nemeth, K., Bauschlicher, T., Klotzbucher, W., Goddard, R., Heinemann, O., Hildebrandt, P. & Mark, F. (2005). J. Phys. Chem. A, 109, 2139-2150.]). For the structures of related organometallic complexes, see: Elder & Penfold (1969[Elder, M. & Penfold, B. R. (1969). J. Chem. Soc. A, pp. 2556-2559.]); Cotton et al. (1970[Cotton, F. A., DeBoer, B. G. & Pipal, J. R. (1970). Inorg. Chem. 9, 783-788.]); Fergusson et al. (1971[Fergusson, J. E., March, F. C., Couch, D. A., Emerson, K. & Robinson, W. T. (1971). J. Chem. Soc. A, pp. 440-448.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For transition metal complexes of dipyrromethenes, see: Bruckner et al. (1997[Bruckner, C., Zhang, Y., Rettig, S. J. & Dolphin, D. (1997). Inorg. Chim. Acta, 263, 279-286.]); Zhang et al. (1998[Zhang, Y., Thompson, A., Retting, S. J. & Dolphin, D. (1998). J. Am. Chem. Soc. 120, 13537-13538.]). For the chemistry and applications of pyrrole derivatives, see: Dolphin (1979[Dolphin, D. (1979). The porphyrins, New York: Academic Press.]); Falk (1989[Falk, H. (1989). The Chemistry of Linear Oligopyrroles and Bile Pigments, Vienna: Springer-Verlag.]). For the synthesis of the title compound, see: Murakami & Sakata (1968[Murakami, Y. & Sakata, K. (1968). Inorg. Chim. Acta, 2, 273-279.]). For IDEAL software, see: Gould et al. (1988[Gould, R. O., Moulden, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H19N2)2]

  • Mr = 518.18

  • Triclinic, [P \overline 1]

  • a = 7.9737 (1) Å

  • b = 12.0896 (3) Å

  • c = 13.9411 (4) Å

  • α = 92.8065 (8)°

  • β = 105.4205 (8)°

  • γ = 91.9772 (18)°

  • V = 1292.39 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 120 K

  • 0.18 × 0.10 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.859, Tmax = 0.983

  • 20968 measured reflections

  • 7342 independent reflections

  • 5581 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.117

  • S = 1.02

  • 7342 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N3/C16–C19 pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29CCgi 0.98 2.78 3.551 (3) 136
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dipyrromethenes are fully conjugated anionic ligands which create stable transition metal complexes (Bruckner et al., 1997, Zhang et al., 1998). The high chemical stability of the title compound (I) is associated with its extended aromatic structure. Pyrroles also form crucial building blocks for bile pigments, linear polypyrroles and porphyrins, and have been investigated for treatment of cancer by photodynamic therapy (Dolphin, 1979; Falk, 1989).

The structure of the neutral protonated ligand, C15H20N2, has been determined (Mroginski et al., 2005, CCDC refcode PALFEO, Allen, 2002). Comparison of the ligated anions in I with the neutral species shows excellent structural coincidence for all non-hydrogen atoms, with δr.m.s. = 0.091 Å (IDEAL, Gould et al., 1988).

Intermolecular interactions include weak C—H···π contacts involving methyl group C15 and the pyrrole ring N3/C16-C19 (Table 1), thus forming chains in the [100] direction.

Related literature top

For the structure of the neutral ligand, see: Mroginski et al. (2005). For the structures of related organometallic complexes, see: Elder & Penfold (1969); Cotton et al. (1970); Fergusson et al. (1971). For a description of the Cambridge Structural Database, see: Allen (2002). For transition metal complexes of dipyrromethenes, see: Bruckner et al. (1997); Zhang et al. (1998). For the chemistry and applications of pyrrole derivatives, see: Dolphin (1979); Falk (1989). For the synthesis of the title compound, see: Murakami & Sakata (1968). For IDEAL software, see: Gould et al. (1988).

Experimental top

The title compound was synthesized by heating a suspension of dipyrromethene hydrochloride, copper acetate monohydrate and sodium acetate in ethanol-water (Murakami & Sakata, 1968).

Refinement top

H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.98 Å, Uiso = 1.2Ueq of the attached carbon atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms are not shown.
Bis[2,3,4-trimethyl-5-[(3,4,5-trimethyl-2H-pyrrol-2-ylidene-κN)methyl]-1H-pyrrolato-κN]copper(II) top
Crystal data top
[Cu(C15H19N2)2]Z = 2
Mr = 518.18F(000) = 550
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9737 (1) ÅCell parameters from 6313 reflections
b = 12.0896 (3) Åθ = 2.5–30°
c = 13.9411 (4) ŵ = 0.87 mm1
α = 92.8065 (8)°T = 120 K
β = 105.4205 (8)°Lath fragment, metallic green
γ = 91.9772 (18)°0.18 × 0.10 × 0.02 mm
V = 1292.39 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
7342 independent reflections
Radiation source: sealed tube5581 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.6°
ϕ and ω scansh = 1110
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
k = 1716
Tmin = 0.859, Tmax = 0.983l = 019
20968 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.301P]
where P = (Fo2 + 2Fc2)/3
7342 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
0 constraints
Crystal data top
[Cu(C15H19N2)2]γ = 91.9772 (18)°
Mr = 518.18V = 1292.39 (5) Å3
Triclinic, P1Z = 2
a = 7.9737 (1) ÅMo Kα radiation
b = 12.0896 (3) ŵ = 0.87 mm1
c = 13.9411 (4) ÅT = 120 K
α = 92.8065 (8)°0.18 × 0.10 × 0.02 mm
β = 105.4205 (8)°
Data collection top
Nonius KappaCCD
diffractometer
7342 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
5581 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.983Rint = 0.052
20968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
7342 reflectionsΔρmin = 0.48 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0551 (3)0.30099 (19)0.06874 (18)0.0170 (4)
C20.1508 (3)0.3865 (2)0.03636 (18)0.0182 (5)
C30.2301 (3)0.45455 (19)0.11937 (18)0.0177 (5)
C40.1808 (3)0.41018 (18)0.20159 (18)0.0163 (4)
C50.2270 (3)0.45235 (19)0.30043 (18)0.0166 (4)
H50.2930.5210.3130.02*
C60.1901 (3)0.40808 (18)0.38310 (18)0.0161 (4)
C70.2300 (3)0.45367 (19)0.48376 (18)0.0182 (5)
C80.1726 (3)0.3752 (2)0.53829 (18)0.0180 (5)
C90.0982 (3)0.28389 (19)0.47050 (18)0.0167 (4)
C100.0506 (3)0.2066 (2)0.00526 (19)0.0228 (5)
H10A0.05810.14440.04670.034*
H10B0.0050.18320.04670.034*
H10C0.1680.23020.02590.034*
C110.1629 (3)0.3977 (2)0.06840 (19)0.0246 (5)
H11A0.16080.47620.08310.037*
H11B0.0640.35660.1150.037*
H11C0.27190.36770.07550.037*
C120.3503 (4)0.5533 (2)0.1225 (2)0.0278 (6)
H12A0.45910.52890.11020.042*
H12B0.37560.59280.18820.042*
H12C0.2950.6030.07110.042*
C130.3121 (3)0.5663 (2)0.5217 (2)0.0239 (5)
H13A0.2210.61790.52410.036*
H13B0.37910.59270.4770.036*
H13C0.390.56190.58870.036*
C140.1815 (3)0.3850 (2)0.64745 (19)0.0273 (6)
H14A0.28340.43240.6830.041*
H14B0.19110.31130.6740.041*
H14C0.07560.41790.65650.041*
C150.0127 (3)0.1785 (2)0.49176 (19)0.0206 (5)
H15A0.11340.18640.47720.031*
H15B0.05910.16370.56210.031*
H15C0.03650.11690.44980.031*
C160.3462 (3)0.07330 (19)0.34173 (17)0.0149 (4)
C170.4012 (3)0.03756 (19)0.35150 (16)0.0155 (4)
C180.2537 (3)0.10652 (19)0.31410 (17)0.0152 (4)
C190.1112 (3)0.03552 (18)0.28089 (16)0.0133 (4)
C200.0604 (3)0.06651 (18)0.23318 (16)0.0146 (4)
H200.08810.14410.2250.018*
C210.1988 (3)0.00086 (18)0.19539 (17)0.0150 (4)
C220.3776 (3)0.03267 (19)0.15404 (17)0.0161 (4)
C230.4672 (3)0.0633 (2)0.13321 (17)0.0169 (4)
C240.3418 (3)0.15334 (19)0.16063 (17)0.0169 (4)
C250.4632 (3)0.1757 (2)0.37120 (19)0.0205 (5)
H25A0.40760.23760.33430.031*
H25B0.57410.16320.35570.031*
H25C0.48440.19340.44290.031*
C260.5858 (3)0.0683 (2)0.39435 (18)0.0202 (5)
H26A0.59030.14910.39480.03*
H26B0.62880.03570.46270.03*
H26C0.65880.040.35360.03*
C270.2415 (3)0.23026 (19)0.3073 (2)0.0211 (5)
H27A0.35890.25840.32520.032*
H27B0.18060.2570.2390.032*
H27C0.17690.25660.35320.032*
C280.4551 (3)0.1488 (2)0.13782 (19)0.0221 (5)
H28A0.55560.15350.16560.033*
H28B0.36770.19950.1710.033*
H28C0.49270.16950.06620.033*
C290.6605 (3)0.0712 (2)0.09145 (19)0.0234 (5)
H29A0.69250.05220.01950.035*
H29B0.6930.1470.10370.035*
H29C0.72210.01960.12390.035*
C300.3737 (3)0.2739 (2)0.1535 (2)0.0235 (5)
H30A0.31210.3140.21650.035*
H30B0.49890.28460.14020.035*
H30C0.3310.30230.09930.035*
N10.0723 (2)0.31450 (16)0.16751 (15)0.0158 (4)
N20.1078 (2)0.30305 (15)0.37825 (14)0.0150 (4)
N30.1743 (2)0.07482 (15)0.30066 (14)0.0141 (4)
N40.1810 (2)0.11631 (16)0.19835 (15)0.0154 (4)
Cu10.03402 (3)0.20344 (2)0.25992 (2)0.01496 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0148 (10)0.0179 (11)0.0179 (11)0.0046 (8)0.0028 (8)0.0022 (9)
C20.0173 (11)0.0181 (11)0.0208 (12)0.0059 (8)0.0071 (9)0.0030 (9)
C30.0178 (11)0.0155 (11)0.0209 (12)0.0026 (8)0.0063 (9)0.0036 (9)
C40.0165 (11)0.0118 (10)0.0217 (12)0.0026 (8)0.0064 (8)0.0034 (9)
C50.0148 (10)0.0116 (10)0.0223 (12)0.0016 (8)0.0028 (8)0.0012 (9)
C60.0146 (10)0.0118 (10)0.0202 (12)0.0015 (8)0.0019 (8)0.0008 (9)
C70.0151 (11)0.0169 (11)0.0208 (12)0.0030 (8)0.0018 (8)0.0012 (9)
C80.0159 (11)0.0203 (12)0.0166 (11)0.0027 (8)0.0026 (8)0.0009 (9)
C90.0126 (10)0.0179 (11)0.0193 (12)0.0041 (8)0.0027 (8)0.0033 (9)
C100.0208 (12)0.0254 (13)0.0203 (13)0.0014 (9)0.0030 (9)0.0015 (10)
C110.0264 (13)0.0280 (14)0.0229 (13)0.0025 (10)0.0117 (10)0.0067 (11)
C120.0325 (14)0.0204 (13)0.0333 (15)0.0065 (10)0.0147 (11)0.0030 (11)
C130.0266 (13)0.0182 (12)0.0233 (13)0.0004 (9)0.0016 (10)0.0059 (10)
C140.0287 (14)0.0321 (15)0.0194 (13)0.0012 (11)0.0044 (10)0.0015 (11)
C150.0218 (12)0.0202 (12)0.0211 (12)0.0001 (9)0.0080 (9)0.0025 (10)
C160.0157 (10)0.0170 (11)0.0126 (10)0.0000 (8)0.0053 (8)0.0003 (8)
C170.0187 (11)0.0186 (11)0.0104 (10)0.0029 (8)0.0057 (8)0.0017 (8)
C180.0193 (11)0.0141 (10)0.0132 (11)0.0019 (8)0.0058 (8)0.0016 (8)
C190.0150 (10)0.0126 (10)0.0126 (10)0.0011 (8)0.0042 (8)0.0015 (8)
C200.0193 (11)0.0133 (10)0.0131 (10)0.0014 (8)0.0080 (8)0.0003 (8)
C210.0173 (11)0.0150 (11)0.0128 (11)0.0013 (8)0.0044 (8)0.0005 (8)
C220.0165 (11)0.0197 (11)0.0126 (11)0.0027 (8)0.0057 (8)0.0017 (9)
C230.0139 (11)0.0246 (12)0.0120 (11)0.0003 (8)0.0034 (8)0.0001 (9)
C240.0172 (11)0.0191 (11)0.0146 (11)0.0030 (8)0.0042 (8)0.0014 (9)
C250.0164 (11)0.0206 (12)0.0235 (13)0.0031 (9)0.0048 (9)0.0015 (10)
C260.0183 (11)0.0258 (13)0.0166 (12)0.0058 (9)0.0039 (9)0.0028 (10)
C270.0240 (12)0.0149 (11)0.0262 (13)0.0051 (9)0.0091 (10)0.0028 (10)
C280.0174 (11)0.0235 (13)0.0235 (13)0.0063 (9)0.0037 (9)0.0030 (10)
C290.0168 (12)0.0332 (14)0.0200 (12)0.0023 (10)0.0046 (9)0.0010 (11)
C300.0227 (12)0.0205 (12)0.0270 (14)0.0047 (9)0.0054 (10)0.0030 (10)
N10.0166 (9)0.0128 (9)0.0174 (10)0.0012 (7)0.0032 (7)0.0025 (7)
N20.0142 (9)0.0142 (9)0.0155 (10)0.0008 (7)0.0024 (7)0.0001 (7)
N30.0151 (9)0.0130 (9)0.0145 (9)0.0002 (7)0.0045 (7)0.0005 (7)
N40.0144 (9)0.0139 (9)0.0175 (10)0.0009 (7)0.0035 (7)0.0018 (7)
Cu10.01634 (14)0.01081 (13)0.01597 (15)0.00039 (9)0.00133 (10)0.00120 (10)
Geometric parameters (Å, º) top
C1—N11.348 (3)C16—C251.496 (3)
C1—C21.425 (3)C17—C181.384 (3)
C1—C101.495 (3)C17—C261.501 (3)
C2—C31.378 (3)C18—C191.438 (3)
C2—C111.501 (4)C18—C271.493 (3)
C3—C41.429 (3)C19—C201.383 (3)
C3—C121.497 (3)C19—N31.397 (3)
C4—C51.394 (3)C20—C211.397 (3)
C4—N11.404 (3)C20—H200.95
C5—C61.390 (3)C21—N41.395 (3)
C5—H50.95C21—C221.425 (3)
C6—N21.399 (3)C22—C231.386 (3)
C6—C71.431 (3)C22—C281.496 (3)
C7—C81.384 (3)C23—C241.418 (3)
C7—C131.499 (3)C23—C291.504 (3)
C8—C91.420 (3)C24—N41.351 (3)
C8—C141.503 (4)C24—C301.492 (3)
C9—N21.339 (3)C25—H25A0.98
C9—C151.503 (3)C25—H25B0.98
C10—H10A0.98C25—H25C0.98
C10—H10B0.98C26—H26A0.98
C10—H10C0.98C26—H26B0.98
C11—H11A0.98C26—H26C0.98
C11—H11B0.98C27—H27A0.98
C11—H11C0.98C27—H27B0.98
C12—H12A0.98C27—H27C0.98
C12—H12B0.98C28—H28A0.98
C12—H12C0.98C28—H28B0.98
C13—H13A0.98C28—H28C0.98
C13—H13B0.98C29—H29A0.98
C13—H13C0.98C29—H29B0.98
C14—H14A0.98C29—H29C0.98
C14—H14B0.98C30—H30A0.98
C14—H14C0.98C30—H30B0.98
C15—H15A0.98C30—H30C0.98
C15—H15B0.98N1—Cu11.9762 (19)
C15—H15C0.98N2—Cu11.9385 (19)
C16—N31.339 (3)N3—Cu11.9650 (19)
C16—C171.426 (3)N4—Cu11.9471 (19)
N1—C1—C2110.9 (2)C20—C19—N3123.4 (2)
N1—C1—C10122.6 (2)C20—C19—C18127.7 (2)
C2—C1—C10126.5 (2)N3—C19—C18108.78 (18)
C3—C2—C1106.8 (2)C19—C20—C21128.7 (2)
C3—C2—C11127.4 (2)C19—C20—H20115.6
C1—C2—C11125.8 (2)C21—C20—H20115.6
C2—C3—C4106.9 (2)N4—C21—C20123.4 (2)
C2—C3—C12126.1 (2)N4—C21—C22108.86 (19)
C4—C3—C12127.0 (2)C20—C21—C22127.6 (2)
C5—C4—N1123.5 (2)C23—C22—C21106.8 (2)
C5—C4—C3127.6 (2)C23—C22—C28126.4 (2)
N1—C4—C3108.9 (2)C21—C22—C28126.8 (2)
C6—C5—C4129.1 (2)C22—C23—C24106.8 (2)
C6—C5—H5115.5C22—C23—C29126.8 (2)
C4—C5—H5115.5C24—C23—C29126.4 (2)
C5—C6—N2122.2 (2)N4—C24—C23110.6 (2)
C5—C6—C7129.2 (2)N4—C24—C30122.1 (2)
N2—C6—C7108.6 (2)C23—C24—C30127.3 (2)
C8—C7—C6106.7 (2)C16—C25—H25A109.5
C8—C7—C13126.8 (2)C16—C25—H25B109.5
C6—C7—C13126.5 (2)H25A—C25—H25B109.5
C7—C8—C9106.7 (2)C16—C25—H25C109.5
C7—C8—C14127.0 (2)H25A—C25—H25C109.5
C9—C8—C14126.2 (2)H25B—C25—H25C109.5
N2—C9—C8110.9 (2)C17—C26—H26A109.5
N2—C9—C15121.2 (2)C17—C26—H26B109.5
C8—C9—C15127.9 (2)H26A—C26—H26B109.5
C1—C10—H10A109.5C17—C26—H26C109.5
C1—C10—H10B109.5H26A—C26—H26C109.5
H10A—C10—H10B109.5H26B—C26—H26C109.5
C1—C10—H10C109.5C18—C27—H27A109.5
H10A—C10—H10C109.5C18—C27—H27B109.5
H10B—C10—H10C109.5H27A—C27—H27B109.5
C2—C11—H11A109.5C18—C27—H27C109.5
C2—C11—H11B109.5H27A—C27—H27C109.5
H11A—C11—H11B109.5H27B—C27—H27C109.5
C2—C11—H11C109.5C22—C28—H28A109.5
H11A—C11—H11C109.5C22—C28—H28B109.5
H11B—C11—H11C109.5H28A—C28—H28B109.5
C3—C12—H12A109.5C22—C28—H28C109.5
C3—C12—H12B109.5H28A—C28—H28C109.5
H12A—C12—H12B109.5H28B—C28—H28C109.5
C3—C12—H12C109.5C23—C29—H29A109.5
H12A—C12—H12C109.5C23—C29—H29B109.5
H12B—C12—H12C109.5H29A—C29—H29B109.5
C7—C13—H13A109.5C23—C29—H29C109.5
C7—C13—H13B109.5H29A—C29—H29C109.5
H13A—C13—H13B109.5H29B—C29—H29C109.5
C7—C13—H13C109.5C24—C30—H30A109.5
H13A—C13—H13C109.5C24—C30—H30B109.5
H13B—C13—H13C109.5H30A—C30—H30B109.5
C8—C14—H14A109.5C24—C30—H30C109.5
C8—C14—H14B109.5H30A—C30—H30C109.5
H14A—C14—H14B109.5H30B—C30—H30C109.5
C8—C14—H14C109.5C1—N1—C4106.43 (19)
H14A—C14—H14C109.5C1—N1—Cu1128.71 (16)
H14B—C14—H14C109.5C4—N1—Cu1121.56 (15)
C9—C15—H15A109.5C9—N2—C6107.10 (19)
C9—C15—H15B109.5C9—N2—Cu1127.50 (16)
H15A—C15—H15B109.5C6—N2—Cu1125.33 (16)
C9—C15—H15C109.5C16—N3—C19106.97 (18)
H15A—C15—H15C109.5C16—N3—Cu1128.25 (15)
H15B—C15—H15C109.5C19—N3—Cu1124.45 (14)
N3—C16—C17111.2 (2)C24—N4—C21106.98 (18)
N3—C16—C25123.5 (2)C24—N4—Cu1127.95 (16)
C17—C16—C25125.3 (2)C21—N4—Cu1124.74 (15)
C18—C17—C16106.57 (19)N2—Cu1—N4133.10 (8)
C18—C17—C26128.8 (2)N2—Cu1—N3101.81 (8)
C16—C17—C26124.7 (2)N4—Cu1—N395.11 (8)
C17—C18—C19106.50 (19)N2—Cu1—N195.00 (8)
C17—C18—C27127.7 (2)N4—Cu1—N1109.25 (8)
C19—C18—C27125.8 (2)N3—Cu1—N1126.54 (8)
N1—C1—C2—C30.3 (3)C2—C1—N1—C40.0 (2)
C10—C1—C2—C3179.1 (2)C10—C1—N1—C4179.4 (2)
N1—C1—C2—C11179.5 (2)C2—C1—N1—Cu1159.31 (16)
C10—C1—C2—C110.2 (4)C10—C1—N1—Cu120.1 (3)
C1—C2—C3—C40.4 (2)C5—C4—N1—C1179.0 (2)
C11—C2—C3—C4179.7 (2)C3—C4—N1—C10.3 (2)
C1—C2—C3—C12177.4 (2)C5—C4—N1—Cu119.9 (3)
C11—C2—C3—C121.8 (4)C3—C4—N1—Cu1160.86 (15)
C2—C3—C4—C5178.8 (2)C8—C9—N2—C60.2 (2)
C12—C3—C4—C53.4 (4)C15—C9—N2—C6178.6 (2)
C2—C3—C4—N10.4 (3)C8—C9—N2—Cu1177.39 (15)
C12—C3—C4—N1177.4 (2)C15—C9—N2—Cu14.3 (3)
N1—C4—C5—C65.1 (4)C5—C6—N2—C9177.6 (2)
C3—C4—C5—C6175.8 (2)C7—C6—N2—C90.5 (2)
C4—C5—C6—N25.8 (4)C5—C6—N2—Cu10.3 (3)
C4—C5—C6—C7176.6 (2)C7—C6—N2—Cu1177.68 (14)
C5—C6—C7—C8177.3 (2)C17—C16—N3—C190.8 (3)
N2—C6—C7—C80.5 (2)C25—C16—N3—C19178.2 (2)
C5—C6—C7—C134.7 (4)C17—C16—N3—Cu1174.31 (15)
N2—C6—C7—C13177.5 (2)C25—C16—N3—Cu14.6 (3)
C6—C7—C8—C90.3 (2)C20—C19—N3—C16176.4 (2)
C13—C7—C8—C9177.6 (2)C18—C19—N3—C161.2 (2)
C6—C7—C8—C14178.6 (2)C20—C19—N3—Cu12.5 (3)
C13—C7—C8—C140.6 (4)C18—C19—N3—Cu1175.09 (15)
C7—C8—C9—N20.1 (3)C23—C24—N4—C210.5 (3)
C14—C8—C9—N2178.3 (2)C30—C24—N4—C21179.0 (2)
C7—C8—C9—C15178.1 (2)C23—C24—N4—Cu1173.08 (16)
C14—C8—C9—C150.2 (4)C30—C24—N4—Cu15.5 (3)
N3—C16—C17—C180.0 (3)C20—C21—N4—C24176.6 (2)
C25—C16—C17—C18178.9 (2)C22—C21—N4—C240.1 (3)
N3—C16—C17—C26179.8 (2)C20—C21—N4—Cu12.8 (3)
C25—C16—C17—C260.8 (4)C22—C21—N4—Cu1173.90 (15)
C16—C17—C18—C190.8 (2)C9—N2—Cu1—N450.3 (2)
C26—C17—C18—C19179.0 (2)C6—N2—Cu1—N4133.06 (17)
C16—C17—C18—C27179.9 (2)C9—N2—Cu1—N358.40 (19)
C26—C17—C18—C270.2 (4)C6—N2—Cu1—N3118.25 (18)
C17—C18—C19—C20176.2 (2)C9—N2—Cu1—N1172.63 (18)
C27—C18—C19—C203.0 (4)C6—N2—Cu1—N110.71 (18)
C17—C18—C19—N31.2 (3)C24—N4—Cu1—N262.3 (2)
C27—C18—C19—N3179.6 (2)C21—N4—Cu1—N2110.21 (19)
N3—C19—C20—C211.0 (4)C24—N4—Cu1—N3173.7 (2)
C18—C19—C20—C21176.1 (2)C21—N4—Cu1—N31.21 (19)
C19—C20—C21—N41.9 (4)C24—N4—Cu1—N154.6 (2)
C19—C20—C21—C22174.2 (2)C21—N4—Cu1—N1132.85 (18)
N4—C21—C22—C230.6 (3)C16—N3—Cu1—N250.2 (2)
C20—C21—C22—C23175.9 (2)C19—N3—Cu1—N2137.32 (18)
N4—C21—C22—C28179.6 (2)C16—N3—Cu1—N4173.8 (2)
C20—C21—C22—C283.0 (4)C19—N3—Cu1—N41.31 (19)
C21—C22—C23—C240.9 (3)C16—N3—Cu1—N155.3 (2)
C28—C22—C23—C24179.8 (2)C19—N3—Cu1—N1117.27 (18)
C21—C22—C23—C29178.0 (2)C1—N1—Cu1—N2176.26 (19)
C28—C22—C23—C290.9 (4)C4—N1—Cu1—N219.68 (18)
C22—C23—C24—N40.9 (3)C1—N1—Cu1—N444.5 (2)
C29—C23—C24—N4178.1 (2)C4—N1—Cu1—N4158.88 (16)
C22—C23—C24—C30179.3 (2)C1—N1—Cu1—N367.6 (2)
C29—C23—C24—C300.4 (4)C4—N1—Cu1—N389.01 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/C16–C19 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C29—H29C···Cgi0.982.783.551 (3)136
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C15H19N2)2]
Mr518.18
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.9737 (1), 12.0896 (3), 13.9411 (4)
α, β, γ (°)92.8065 (8), 105.4205 (8), 91.9772 (18)
V3)1292.39 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.18 × 0.10 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.859, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20968, 7342, 5581
Rint0.052
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.117, 1.02
No. of reflections7342
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/C16–C19 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C29—H29C···Cgi0.982.783.551 (3)136
Symmetry code: (i) x1, y, z.
 

Footnotes

CAS 38504-29-9 and 21710-26-9.

Current address: Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St, Suite 5.210, Boston, MA 02114, USA.

Acknowledgements

Purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruckner, C., Zhang, Y., Rettig, S. J. & Dolphin, D. (1997). Inorg. Chim. Acta, 263, 279–286.  CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., DeBoer, B. G. & Pipal, J. R. (1970). Inorg. Chem. 9, 783–788.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolphin, D. (1979). The porphyrins, New York: Academic Press.  Google Scholar
First citationElder, M. & Penfold, B. R. (1969). J. Chem. Soc. A, pp. 2556–2559.  CrossRef Google Scholar
First citationFalk, H. (1989). The Chemistry of Linear Oligopyrroles and Bile Pigments, Vienna: Springer-Verlag.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFergusson, J. E., March, F. C., Couch, D. A., Emerson, K. & Robinson, W. T. (1971). J. Chem. Soc. A, pp. 440–448.  Google Scholar
First citationGould, R. O., Moulden, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.  Google Scholar
First citationMroginski, M.-A., Nemeth, K., Bauschlicher, T., Klotzbucher, W., Goddard, R., Heinemann, O., Hildebrandt, P. & Mark, F. (2005). J. Phys. Chem. A, 109, 2139–2150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMurakami, Y. & Sakata, K. (1968). Inorg. Chim. Acta, 2, 273–279.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Thompson, A., Retting, S. J. & Dolphin, D. (1998). J. Am. Chem. Soc. 120, 13537–13538.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1335-m1336
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds