organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thiazol-2-ylsulfanyl)-N-(2-methylphenyl)acetamide

aSchool of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and bPolytechnic Institute of Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: zhengpw@126.com

(Received 9 September 2012; accepted 8 October 2012; online 20 October 2012)

In the title mol­ecule, C16H14N2OS2, the benzene ring and the benzo[d]thia­zole mean plane form a dihedral angle of 75.5 (1)°. The acetamide group is twisted by 47.7 (1)° from the attached benzene ring. In the crystal, mol­ecules related by translation along the a axis are linked into chains through N—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar compounds, see: Gao et al. (2007[Gao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854.]); Zhao et al. (2009[Zhao, B., Wang, H., Li, Q., Gao, Y. & Liang, D. (2009). Acta Cryst. E65, o958.]). For the medical activity of heterocyclic derivatives containing the acetamide group, see: Fallah-Tafti et al. (2011[Fallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853-4858.]); Shams et al. (2011[Shams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52-73.])

[Scheme 1]

Experimental

Crystal data
  • C16H14N2OS2

  • Mr = 314.41

  • Monoclinic, P 21 /n

  • a = 4.7957 (8) Å

  • b = 27.496 (4) Å

  • c = 10.9906 (13) Å

  • β = 97.048 (4)°

  • V = 1438.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 113 K

  • 0.22 × 0.06 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.923, Tmax = 0.978

  • 14718 measured reflections

  • 3421 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.100

  • S = 1.06

  • 3421 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.81 (2) 2.10 (2) 2.906 (2) 168 (2)
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acylamide compounds have gained widely attention due to their the important medical activity. Recently, the synthesis and medical activities of some heterocyclic derivatives containing the acylamide moiety have been reported (Fallah-Tafti et al., 2011; Shams et al., 2011). Now the title compound, 2-(benzo[d]thiazol-2-ylthio)-N-o-tolylacetamide, was synthesized and its crystal structure was reported.

The molecular structure of title compound and the atom-mumbering scheme are shown in Fig. 1. The molecule contain a benzene ring and benzo[d]thiazole ring. The dihedral angle between the benzene ring and benzo[d]thiazole ring is 75.5°. The acetamide group is twisted at 47.7 (1)° from the attached benzene ring. C1 atom attached to the benzene ring is coplanar to the benzene ring with an r.m.s deviation of 0.0046 Å. As a result of ππ conjugation, the Csp2—S bond [S1—C10 = 1.745 (2) Å] is significantly shorter than the Csp3—S bond [S1—C9 = 1.812 (2) Å]. These values compare with the values of 1.772 (3) and 1.801 (2) Å reported in the literature (Gao et al., 2007; Zhao et al., 2009).

The crystal structure is stablized by the intermolecular N—H···O hydrogen bond (Table 1) interaction.

Related literature top

For the crystal structures of similar compounds, see: Gao et al. (2007); Zhao et al. (2009). For the medical activity of heterocyclic derivatives containing the acetamide group, see: Fallah-Tafti et al. (2011); Shams et al. (2011)

Experimental top

The title compound was synthesized by the reaction of the benzo[d]thiazol-2-thiol with 2-methylphenyl carbamic chloride in the refluxing ethanol. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform–ethanol (1:1).

Refinement top

Atom H1 attached to N atom was located on a difference map and refined isotropically. Other H atoms were positioned geometrically (C—H = 0.95–0.99 Å), and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.
2-(1,3-Benzothiazol-2-ylsulfanyl)-N-(2-methylphenyl)acetamide top
Crystal data top
C16H14N2OS2F(000) = 656
Mr = 314.41Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4445 reflections
a = 4.7957 (8) Åθ = 1.5–27.9°
b = 27.496 (4) ŵ = 0.37 mm1
c = 10.9906 (13) ÅT = 113 K
β = 97.048 (4)°Prism, colourless
V = 1438.3 (4) Å30.22 × 0.06 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3421 independent reflections
Radiation source: rotating anode2923 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.055
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.5°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 3636
Tmin = 0.923, Tmax = 0.978l = 1414
14718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.5795P]
where P = (Fo2 + 2Fc2)/3
3421 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H14N2OS2V = 1438.3 (4) Å3
Mr = 314.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.7957 (8) ŵ = 0.37 mm1
b = 27.496 (4) ÅT = 113 K
c = 10.9906 (13) Å0.22 × 0.06 × 0.06 mm
β = 97.048 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2923 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.978Rint = 0.055
14718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
3421 reflectionsΔρmin = 0.27 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48672 (11)0.112141 (18)0.29125 (5)0.02069 (14)
S20.16105 (11)0.158557 (18)0.47479 (5)0.01966 (14)
O10.1342 (3)0.09883 (5)0.03414 (14)0.0233 (3)
N10.5406 (4)0.08369 (6)0.04653 (15)0.0162 (4)
N20.1583 (3)0.19259 (6)0.25292 (15)0.0168 (3)
C10.6969 (4)0.10401 (7)0.2868 (2)0.0224 (5)
H1A0.71190.10640.37470.034*
H1B0.88190.09650.24240.034*
H1C0.62950.13500.25730.034*
C20.4933 (4)0.06418 (7)0.26509 (18)0.0170 (4)
C30.3715 (4)0.03516 (7)0.36122 (19)0.0212 (4)
H30.41830.04070.44160.025*
C40.1835 (4)0.00162 (7)0.3421 (2)0.0230 (5)
H40.10100.02060.40920.028*
C50.1159 (4)0.01059 (7)0.2249 (2)0.0216 (4)
H50.01190.03590.21150.026*
C60.2356 (4)0.01747 (7)0.12783 (19)0.0181 (4)
H60.19160.01120.04730.022*
C70.4210 (4)0.05501 (7)0.14794 (18)0.0157 (4)
C80.3912 (4)0.10278 (7)0.03867 (18)0.0174 (4)
C90.5622 (4)0.13057 (7)0.14044 (18)0.0203 (4)
H9A0.52280.16580.12960.024*
H9B0.76450.12540.13460.024*
C100.2600 (4)0.15837 (7)0.32579 (18)0.0171 (4)
C110.0382 (4)0.21033 (7)0.43540 (18)0.0172 (4)
C120.2001 (4)0.23768 (8)0.50696 (19)0.0221 (4)
H120.21470.22900.58960.026*
C130.3391 (4)0.27784 (8)0.4536 (2)0.0243 (5)
H130.45180.29700.50040.029*
C140.3167 (4)0.29069 (8)0.3323 (2)0.0243 (5)
H140.41400.31850.29800.029*
C150.1551 (4)0.26352 (7)0.26125 (19)0.0217 (4)
H150.14120.27240.17860.026*
C160.0131 (4)0.22287 (7)0.31355 (18)0.0157 (4)
H10.710 (5)0.0869 (8)0.034 (2)0.019 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0214 (3)0.0197 (3)0.0205 (3)0.0055 (2)0.0010 (2)0.0037 (2)
S20.0230 (3)0.0202 (3)0.0161 (3)0.0031 (2)0.0038 (2)0.00153 (19)
O10.0109 (7)0.0304 (8)0.0289 (9)0.0010 (6)0.0032 (6)0.0092 (7)
N10.0101 (8)0.0202 (9)0.0186 (9)0.0016 (7)0.0025 (7)0.0035 (7)
N20.0168 (8)0.0176 (8)0.0163 (8)0.0011 (6)0.0029 (7)0.0007 (7)
C10.0207 (11)0.0236 (11)0.0238 (11)0.0007 (8)0.0068 (9)0.0036 (9)
C20.0151 (10)0.0168 (9)0.0193 (10)0.0035 (7)0.0032 (8)0.0004 (8)
C30.0252 (11)0.0211 (10)0.0175 (10)0.0063 (8)0.0026 (9)0.0001 (8)
C40.0268 (11)0.0177 (10)0.0223 (11)0.0021 (8)0.0059 (9)0.0055 (8)
C50.0179 (10)0.0170 (10)0.0292 (12)0.0022 (8)0.0003 (9)0.0004 (9)
C60.0156 (10)0.0184 (10)0.0205 (10)0.0009 (8)0.0032 (8)0.0015 (8)
C70.0129 (9)0.0148 (9)0.0191 (10)0.0031 (7)0.0003 (8)0.0021 (8)
C80.0156 (10)0.0167 (9)0.0199 (10)0.0000 (8)0.0027 (8)0.0022 (8)
C90.0139 (10)0.0233 (10)0.0243 (11)0.0013 (8)0.0051 (9)0.0074 (8)
C100.0151 (9)0.0182 (9)0.0178 (10)0.0023 (8)0.0019 (8)0.0027 (8)
C110.0158 (10)0.0177 (9)0.0179 (10)0.0000 (8)0.0017 (8)0.0015 (8)
C120.0214 (11)0.0269 (11)0.0189 (10)0.0001 (9)0.0070 (9)0.0041 (9)
C130.0196 (11)0.0253 (11)0.0284 (12)0.0023 (9)0.0050 (9)0.0088 (9)
C140.0229 (11)0.0201 (10)0.0294 (12)0.0062 (8)0.0010 (9)0.0004 (9)
C150.0226 (11)0.0217 (10)0.0215 (11)0.0025 (8)0.0056 (9)0.0026 (8)
C160.0137 (9)0.0159 (9)0.0179 (10)0.0013 (7)0.0027 (8)0.0021 (7)
Geometric parameters (Å, º) top
S1—C101.745 (2)C4—H40.9500
S1—C91.812 (2)C5—C61.383 (3)
S2—C111.739 (2)C5—H50.9500
S2—C101.760 (2)C6—C71.398 (3)
O1—C81.232 (2)C6—H60.9500
N1—C81.353 (2)C8—C91.511 (3)
N1—C71.427 (2)C9—H9A0.9900
N1—H10.81 (2)C9—H9B0.9900
N2—C101.292 (2)C11—C121.392 (3)
N2—C161.395 (2)C11—C161.402 (3)
C1—C21.505 (3)C12—C131.382 (3)
C1—H1A0.9800C12—H120.9500
C1—H1B0.9800C13—C141.396 (3)
C1—H1C0.9800C13—H130.9500
C2—C31.394 (3)C14—C151.385 (3)
C2—C71.397 (3)C14—H140.9500
C3—C41.388 (3)C15—C161.395 (3)
C3—H30.9500C15—H150.9500
C4—C51.388 (3)
C10—S1—C9101.26 (9)O1—C8—N1123.37 (18)
C11—S2—C1088.47 (9)O1—C8—C9121.60 (17)
C8—N1—C7123.97 (16)N1—C8—C9115.02 (16)
C8—N1—H1116.7 (16)C8—C9—S1112.61 (14)
C7—N1—H1119.1 (16)C8—C9—H9A109.1
C10—N2—C16109.77 (16)S1—C9—H9A109.1
C2—C1—H1A109.5C8—C9—H9B109.1
C2—C1—H1B109.5S1—C9—H9B109.1
H1A—C1—H1B109.5H9A—C9—H9B107.8
C2—C1—H1C109.5N2—C10—S1126.43 (15)
H1A—C1—H1C109.5N2—C10—S2116.76 (14)
H1B—C1—H1C109.5S1—C10—S2116.81 (11)
C3—C2—C7117.84 (18)C12—C11—C16121.74 (18)
C3—C2—C1121.07 (18)C12—C11—S2128.98 (16)
C7—C2—C1121.10 (18)C16—C11—S2109.27 (14)
C4—C3—C2121.46 (19)C13—C12—C11117.73 (19)
C4—C3—H3119.3C13—C12—H12121.1
C2—C3—H3119.3C11—C12—H12121.1
C3—C4—C5119.99 (19)C12—C13—C14121.17 (19)
C3—C4—H4120.0C12—C13—H13119.4
C5—C4—H4120.0C14—C13—H13119.4
C6—C5—C4119.65 (19)C15—C14—C13121.1 (2)
C6—C5—H5120.2C15—C14—H14119.5
C4—C5—H5120.2C13—C14—H14119.5
C5—C6—C7120.11 (19)C14—C15—C16118.57 (19)
C5—C6—H6119.9C14—C15—H15120.7
C7—C6—H6119.9C16—C15—H15120.7
C2—C7—C6120.93 (18)N2—C16—C15124.56 (18)
C2—C7—N1119.92 (17)N2—C16—C11115.72 (17)
C6—C7—N1119.15 (17)C15—C16—C11119.72 (17)
C7—C2—C3—C40.2 (3)C9—S1—C10—N26.5 (2)
C1—C2—C3—C4179.95 (18)C9—S1—C10—S2173.28 (11)
C2—C3—C4—C50.9 (3)C11—S2—C10—N20.15 (16)
C3—C4—C5—C60.4 (3)C11—S2—C10—S1179.60 (12)
C4—C5—C6—C70.7 (3)C10—S2—C11—C12179.2 (2)
C3—C2—C7—C60.9 (3)C10—S2—C11—C160.11 (15)
C1—C2—C7—C6178.92 (17)C16—C11—C12—C130.5 (3)
C3—C2—C7—N1179.88 (17)S2—C11—C12—C13179.73 (16)
C1—C2—C7—N10.1 (3)C11—C12—C13—C140.3 (3)
C5—C6—C7—C21.4 (3)C12—C13—C14—C150.2 (3)
C5—C6—C7—N1179.61 (17)C13—C14—C15—C160.2 (3)
C8—N1—C7—C2134.3 (2)C10—N2—C16—C15179.80 (19)
C8—N1—C7—C646.7 (3)C10—N2—C16—C110.1 (2)
C7—N1—C8—O13.0 (3)C14—C15—C16—N2179.45 (18)
C7—N1—C8—C9178.09 (17)C14—C15—C16—C110.4 (3)
O1—C8—C9—S150.5 (2)C12—C11—C16—N2179.32 (17)
N1—C8—C9—S1130.60 (16)S2—C11—C16—N20.1 (2)
C10—S1—C9—C8100.06 (15)C12—C11—C16—C150.5 (3)
C16—N2—C10—S1179.59 (14)S2—C11—C16—C15179.92 (15)
C16—N2—C10—S20.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.10 (2)2.906 (2)168 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14N2OS2
Mr314.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)4.7957 (8), 27.496 (4), 10.9906 (13)
β (°) 97.048 (4)
V3)1438.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.22 × 0.06 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.923, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14718, 3421, 2923
Rint0.055
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.06
No. of reflections3421
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.10 (2)2.906 (2)168 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Support from the Science and Technology Project of Jiangxi Provincial Office of Eduction (grant No. GJJ11008) and the Science and Technology Project of Jiangxi Provincial Department of Science and Technology (grant No. 20111BBE50009) is gratefully acknowledged.

References

First citationFallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853–4858.  Web of Science CAS PubMed Google Scholar
First citationGao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Wang, H., Li, Q., Gao, Y. & Liang, D. (2009). Acta Cryst. E65, o958.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds