organic compounds
Quinolin-3-amine
aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bManipal Institute of Technology, Department of Chemistry, Manipal 576 104, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
In the crystal structur of the achiral title compound, C9H8N2, N—H⋯N hydrogen bonds connect the molecules into zigzag chains in [100]. Weak intermolecular N–H⋯π interactions further consolidate the crystal packing.
Related literature
For novel applications of quinolin-3-amine and its derivatives, see: Rohmer et al. (2010); Kaneshiro et al. (2011). For the of a rhodium coordination compound featuring the title compound as a ligand, see: Garralda et al. (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812042626/cv5347sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812042626/cv5347Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812042626/cv5347Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812042626/cv5347Isup4.cml
To a solution of 3-nitroquinoline (1 g, 0.0057 mol) in methanol (20 ml) 10% palladium on carbon (0.10 g) was added. The batch was hydrogenated at a pressure of 10 bar for 12 h. Subsequently, the reaction mixture was filtered and concentrated under reduced pressure to afford the title compound as a pale yellow solid. The solid was dissolved in absolute ethanol and allowed to stand and evaporate at room temperature overnight. The crystalline solid that developed was filtered and dried under high vacuum (yield: 0.8 g, 97.5%).
C-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). Both amino H atoms were located on a difference Fourier map and refined freely. In the absence of strong anomalous scatterers, 737 Friedel pairs were merged before the final refinement.Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C9H8N2 | Dx = 1.297 Mg m−3 |
Mr = 144.17 | Melting point = 366–368 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5242 reflections |
a = 7.6223 (3) Å | θ = 2.7–28.3° |
b = 7.6289 (3) Å | µ = 0.08 mm−1 |
c = 12.6967 (4) Å | T = 200 K |
V = 738.31 (5) Å3 | Block, colourless |
Z = 4 | 0.55 × 0.52 × 0.15 mm |
F(000) = 304 |
Bruker APEXII CCD diffractometer | 1077 independent reflections |
Radiation source: fine-focus sealed tube | 1015 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ϕ and ω scans | θmax = 28.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→10 |
Tmin = 0.950, Tmax = 0.988 | k = −9→10 |
6898 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1011P] where P = (Fo2 + 2Fc2)/3 |
1077 reflections | (Δ/σ)max < 0.001 |
108 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C9H8N2 | V = 738.31 (5) Å3 |
Mr = 144.17 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.6223 (3) Å | µ = 0.08 mm−1 |
b = 7.6289 (3) Å | T = 200 K |
c = 12.6967 (4) Å | 0.55 × 0.52 × 0.15 mm |
Bruker APEXII CCD diffractometer | 1077 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1015 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.988 | Rint = 0.013 |
6898 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.23 e Å−3 |
1077 reflections | Δρmin = −0.20 e Å−3 |
108 parameters |
Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (737 pairs) have been merged and the item was removed from the CIF. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.25487 (15) | 0.26319 (16) | 0.38612 (8) | 0.0280 (3) | |
N2 | −0.18546 (17) | 0.08305 (19) | 0.39280 (11) | 0.0359 (3) | |
H2A | −0.258 (3) | 0.023 (3) | 0.3568 (15) | 0.056 (6)* | |
H2B | −0.198 (2) | 0.098 (3) | 0.4628 (17) | 0.043 (5)* | |
C1 | 0.30327 (17) | 0.23241 (17) | 0.28353 (9) | 0.0249 (3) | |
C2 | 0.09884 (17) | 0.21121 (18) | 0.41581 (9) | 0.0277 (3) | |
H2 | 0.0663 | 0.2323 | 0.4869 | 0.033* | |
C3 | −0.02593 (17) | 0.12565 (16) | 0.35016 (9) | 0.0253 (3) | |
C4 | 0.02155 (18) | 0.09412 (17) | 0.24707 (10) | 0.0265 (3) | |
H4 | −0.0576 | 0.0376 | 0.2003 | 0.032* | |
C5 | 0.18933 (16) | 0.14693 (17) | 0.21189 (9) | 0.0244 (3) | |
C6 | 0.24840 (19) | 0.11883 (19) | 0.10713 (10) | 0.0299 (3) | |
H6 | 0.1743 | 0.0609 | 0.0580 | 0.036* | |
C7 | 0.4113 (2) | 0.17449 (19) | 0.07635 (10) | 0.0344 (3) | |
H7 | 0.4488 | 0.1553 | 0.0059 | 0.041* | |
C8 | 0.52397 (19) | 0.2599 (2) | 0.14793 (11) | 0.0353 (3) | |
H8 | 0.6366 | 0.2982 | 0.1256 | 0.042* | |
C9 | 0.47097 (17) | 0.28794 (19) | 0.25005 (11) | 0.0313 (3) | |
H9 | 0.5474 | 0.3448 | 0.2982 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0323 (5) | 0.0323 (6) | 0.0193 (5) | −0.0026 (5) | −0.0030 (4) | −0.0003 (4) |
N2 | 0.0318 (6) | 0.0443 (7) | 0.0316 (6) | −0.0081 (5) | 0.0052 (5) | −0.0086 (6) |
C1 | 0.0277 (6) | 0.0263 (6) | 0.0207 (5) | 0.0017 (5) | −0.0018 (5) | 0.0009 (5) |
C2 | 0.0340 (6) | 0.0299 (6) | 0.0191 (5) | −0.0004 (5) | −0.0012 (5) | −0.0007 (5) |
C3 | 0.0279 (6) | 0.0238 (5) | 0.0243 (6) | 0.0009 (5) | −0.0004 (5) | −0.0006 (5) |
C4 | 0.0306 (6) | 0.0264 (6) | 0.0226 (5) | −0.0013 (5) | −0.0021 (5) | −0.0045 (5) |
C5 | 0.0303 (6) | 0.0228 (6) | 0.0202 (5) | 0.0027 (5) | −0.0006 (5) | −0.0003 (5) |
C6 | 0.0382 (7) | 0.0298 (6) | 0.0218 (6) | 0.0032 (5) | 0.0015 (5) | −0.0037 (5) |
C7 | 0.0430 (7) | 0.0348 (7) | 0.0254 (5) | 0.0059 (6) | 0.0084 (6) | −0.0008 (5) |
C8 | 0.0320 (6) | 0.0389 (7) | 0.0350 (7) | 0.0010 (6) | 0.0070 (6) | 0.0052 (6) |
C9 | 0.0294 (7) | 0.0347 (7) | 0.0298 (6) | −0.0008 (5) | −0.0009 (5) | 0.0008 (6) |
N1—C2 | 1.3091 (17) | C4—C5 | 1.4133 (18) |
N1—C1 | 1.3740 (16) | C4—H4 | 0.9500 |
N2—C3 | 1.3701 (17) | C5—C6 | 1.4205 (17) |
N2—H2A | 0.85 (2) | C6—C7 | 1.369 (2) |
N2—H2B | 0.90 (2) | C6—H6 | 0.9500 |
C1—C9 | 1.4122 (18) | C7—C8 | 1.410 (2) |
C1—C5 | 1.4167 (17) | C7—H7 | 0.9500 |
C2—C3 | 1.4231 (17) | C8—C9 | 1.375 (2) |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C3—C4 | 1.3792 (17) | C9—H9 | 0.9500 |
C2—N1—C1 | 117.72 (11) | C4—C5—C1 | 118.88 (11) |
C3—N2—H2A | 119.4 (14) | C4—C5—C6 | 122.66 (12) |
C3—N2—H2B | 116.8 (12) | C1—C5—C6 | 118.45 (12) |
H2A—N2—H2B | 122.1 (18) | C7—C6—C5 | 120.52 (13) |
N1—C1—C9 | 118.50 (12) | C7—C6—H6 | 119.7 |
N1—C1—C5 | 121.52 (12) | C5—C6—H6 | 119.7 |
C9—C1—C5 | 119.98 (11) | C6—C7—C8 | 120.78 (12) |
N1—C2—C3 | 125.27 (11) | C6—C7—H7 | 119.6 |
N1—C2—H2 | 117.4 | C8—C7—H7 | 119.6 |
C3—C2—H2 | 117.4 | C9—C8—C7 | 120.04 (13) |
N2—C3—C4 | 124.50 (12) | C9—C8—H8 | 120.0 |
N2—C3—C2 | 118.07 (11) | C7—C8—H8 | 120.0 |
C4—C3—C2 | 117.42 (12) | C8—C9—C1 | 120.22 (13) |
C3—C4—C5 | 119.19 (12) | C8—C9—H9 | 119.9 |
C3—C4—H4 | 120.4 | C1—C9—H9 | 119.9 |
C5—C4—H4 | 120.4 | ||
C2—N1—C1—C9 | 179.86 (12) | C9—C1—C5—C4 | −179.41 (11) |
C2—N1—C1—C5 | −0.20 (19) | N1—C1—C5—C6 | −179.74 (12) |
C1—N1—C2—C3 | −0.3 (2) | C9—C1—C5—C6 | 0.20 (18) |
N1—C2—C3—N2 | −178.55 (13) | C4—C5—C6—C7 | 179.12 (12) |
N1—C2—C3—C4 | 0.3 (2) | C1—C5—C6—C7 | −0.5 (2) |
N2—C3—C4—C5 | 178.95 (12) | C5—C6—C7—C8 | 0.3 (2) |
C2—C3—C4—C5 | 0.15 (18) | C6—C7—C8—C9 | 0.1 (2) |
C3—C4—C5—C1 | −0.61 (18) | C7—C8—C9—C1 | −0.4 (2) |
C3—C4—C5—C6 | 179.80 (12) | N1—C1—C9—C8 | −179.82 (13) |
N1—C1—C5—C4 | 0.66 (18) | C5—C1—C9—C8 | 0.2 (2) |
Cg is the centroid of the C1/C5–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1i | 0.90 (2) | 2.22 (2) | 3.0761 (17) | 158.2 (18) |
N2—H2A···Cgii | 0.85 (2) | 2.60 (2) | 3.3101 (15) | 142.3 (19) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8N2 |
Mr | 144.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 200 |
a, b, c (Å) | 7.6223 (3), 7.6289 (3), 12.6967 (4) |
V (Å3) | 738.31 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.55 × 0.52 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.950, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6898, 1077, 1015 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.091, 1.03 |
No. of reflections | 1077 |
No. of parameters | 108 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.20 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg is the centroid of the C1/C5–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1i | 0.90 (2) | 2.22 (2) | 3.0761 (17) | 158.2 (18) |
N2—H2A···Cgii | 0.85 (2) | 2.60 (2) | 3.3101 (15) | 142.3 (19) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, the Department of Atomic Energy and the Government of India for a Young Scientist award.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Garralda, M. A., Hernandez, R., Pinilla, E. & Rosario Torres, M. (1999). J. Organomet. Chem. 586, 150–158. Web of Science CSD CrossRef CAS Google Scholar
Kaneshiro, K., Fukuyama, Y., Iwamoto, S., Sekiya, S. & Tanaka, K. (2011). Anal. Chem. 83, 3663–3667. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rohmer, M., Meyer, B., Mank, M., Stahl, B., Bahr, U. & Karas, M. (2010). Anal. Chem. 82, 3719–3726. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Aminoquinoline and its derivatives have found applications in matrix-assisted laser desorption ionization (MALDI) mass-spectrometry of oligosaccharides (Rohmer et al., 2010) and glycans (Kaneshiro et al., 2011). Herewith we present the crystal structure of 3-aminoquinoline, (I).
In (I) (Fig. 1), the molecule bears an amino group in meta position to the intracyclic nitrogen atom. Intracyclic angles in the six-membered ring containing the nitrogen atom cover a range of 117.42 (12)–125.27 (11) ° with the smallest angle found on the carbon atom bearing the amino group and the biggest angle present on the hydrogen-bearing carbon atom in ortho position to the intracyclic nitrogen atom. The molecule is essentially planar (r.m.s. deviation of of all fitted non-hydrogen atoms = 0.0091 Å). The least-squares planes defined by the non-hydrogen atoms of the heterocycle on the one hand and the atoms of the amino group on the other hand intersect at an angle of 11.97(2.58) °.
In the crystal, N–H···N hydrogen bonds (Table 1) are observed between the amino group and the intracyclic nitrogen atom that connect the molecules to zigzag chains along the crystallographic a axis (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(5) on the unary level. In addition, a N–H···π interaction (Table 1) involving the non-heterocyclic moiety of the quinoline core as acceptor contribute to the crystal packing stability.