metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2,4-di­bromo-6-[(E)-(4-fluoro­benz­yl)imino­meth­yl]phenolato-κ2N,O}zinc

aLanzhou University of Technology, State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou 730000, Gansu Province, People's Republic of China, and bState Key Lab. Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 17 August 2012; accepted 23 October 2012; online 31 October 2012)

In the title Schiff base complex, [Zn(C14H9Br2FNO)2], the ZnII atom is located on a twofold rotation axis and is coordinated by two O and two N atoms from two symmetry-related bidentate Schiff base ligands in a compressed tetrahedral geometry. The bond lengths and bond angles are within normal ranges. The dihedral angle between the least-squares planes of the aromatic rings within each ligand is 82.76 (17)°.

Related literature

For the coordination ability of Schiff bases ligands, see: Rodriguez Barbarin et al. (1994[Rodriguez Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205-207.]). For photochromism and thermochromism in Schiff bases, see: Cohen (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2043.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H9Br2FNO)2]

  • Mr = 837.43

  • Monoclinic, C 2

  • a = 14.6277 (11) Å

  • b = 9.8273 (3) Å

  • c = 13.0879 (10) Å

  • β = 133.490 (13)°

  • V = 1364.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.80 mm−1

  • T = 293 K

  • 0.33 × 0.21 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.197, Tmax = 0.442

  • 16865 measured reflections

  • 2785 independent reflections

  • 2733 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.041

  • S = 1.05

  • 2785 reflections

  • 177 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1307 Friedel pairs

  • Flack parameter: −0.009 (7)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases ligands have been used with remarkable success in the field of coordination chemistry over past decades (Rodriguez Barbarin et al., 1994). Schiff bases complexs show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al.,1964). Here we report on a new Schiff bases complex.

The molecular structure of title complex as illustrated in Fig.1. The dihedral angle between two benzenes rings is 83.281 (4)°. The Zn2+ atom is located on a twofold rotation axis in a compressed tetrahedral geometry and is is coordinated by two O atoms and two N atoms. The Zn1-O1 distance of 1.9311 (1)Å is shorter than the distance of Zn1-N1[2.0268 (4)Å](table 1) The bond lengths and bond angles in title complex are within normal ranges.

Related literature top

For the coordination ability of Schiff bases ligands, see: Rodriguez Barbarin et al. (1994). For photochromism and thermochromism in Schiff bases, see: Cohen (1964).

Experimental top

1 mmol(0.29g) of Zn(NO3)2 were added to 20 ml ethanol solution containing 2 mmol(0.77g) 2-((E)-(4-fluorobenzylimino) methyl)-4,6-dibromophenol.The resulting mixture was stirred for about 10 minute.The slow vaporisation of the solvent yielded after about 2 d yellow product.Yield:87.1%. Calcd.for C28 H18 Br4 F2 N2 O2 Zn: C,43.44;H,2.60;O,4.13;N,3.62; Found:C,43.50;H,2.61;O,14.15;N,3.61%

3,5-dibromo-2-hydroxybenzal dehyde(10mmol,2.80g) and (4-fluorophenyl)methanamine (10mmol,1.25g) dissolved in ethanol respectively. Then put them together and the solution was refluxed for 0.5h. After evaporation,a crude product was recrystallized twice from ethanol to give a pure yellow product.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 %A) and Uiso(H) values equal to 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis{2,4-dibromo-6-[(E)-(4-fluorobenzyl)iminomethyl]phenolato- κ2N,O}zinc top
Crystal data top
[Zn(C14H9Br2FNO)2]Z = 2
Mr = 837.43F(000) = 808
Monoclinic, C2Dx = 2.038 Mg m3
Hall symbol: C 2YMo Kα radiation, λ = 0.71073 Å
a = 14.6277 (11) Åθ = 2.8–26.4°
b = 9.8273 (3) ŵ = 6.80 mm1
c = 13.0879 (10) ÅT = 293 K
β = 133.490 (13)°Block, yellow
V = 1364.9 (3) Å30.33 × 0.21 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube2733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.197, Tmax = 0.442k = 1212
16865 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.6898P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2785 reflectionsΔρmax = 0.22 e Å3
177 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1307 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (7)
Crystal data top
[Zn(C14H9Br2FNO)2]V = 1364.9 (3) Å3
Mr = 837.43Z = 2
Monoclinic, C2Mo Kα radiation
a = 14.6277 (11) ŵ = 6.80 mm1
b = 9.8273 (3) ÅT = 293 K
c = 13.0879 (10) Å0.33 × 0.21 × 0.12 mm
β = 133.490 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2785 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2733 reflections with I > 2σ(I)
Tmin = 0.197, Tmax = 0.442Rint = 0.025
16865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.041Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.24 e Å3
2785 reflectionsAbsolute structure: Flack (1983), 1307 Friedel pairs
177 parametersAbsolute structure parameter: 0.009 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.04547 (2)0.46777 (3)1.37836 (3)0.04434 (8)
Br20.66508 (3)0.09397 (3)1.20503 (3)0.05004 (8)
Zn11.00000.30224 (4)1.00000.03419 (10)
F11.0457 (3)0.1547 (3)0.6672 (3)0.1080 (9)
O10.97414 (16)0.36983 (17)1.11706 (18)0.0347 (4)
N10.83087 (19)0.2066 (2)0.8654 (2)0.0366 (5)
C10.9037 (2)0.3095 (2)1.1302 (2)0.0281 (4)
C20.9183 (2)0.3416 (2)1.2459 (3)0.0310 (5)
C30.8483 (2)0.2810 (3)1.2690 (3)0.0346 (5)
H30.86090.30471.34670.042*
C40.7589 (2)0.1838 (3)1.1733 (3)0.0360 (5)
C50.7374 (2)0.1507 (3)1.0573 (3)0.0356 (5)
H50.67540.08740.99330.043*
C60.8086 (2)0.2117 (2)1.0336 (3)0.0314 (5)
C70.7726 (2)0.1769 (3)0.9027 (3)0.0364 (5)
H70.69860.12710.83840.044*
C80.7676 (2)0.1760 (3)0.7192 (3)0.0445 (6)
H8A0.74850.26080.67000.053*
H8B0.68830.13050.67250.053*
C90.8450 (2)0.0878 (3)0.7088 (3)0.0373 (5)
C100.9129 (3)0.0210 (4)0.7977 (3)0.0583 (8)
H100.91330.03920.86770.070*
C110.9809 (4)0.1039 (4)0.7839 (5)0.0726 (11)
H111.02680.17760.84380.087*
C120.9785 (3)0.0746 (4)0.6806 (4)0.0613 (9)
C130.9123 (3)0.0310 (4)0.5906 (3)0.0547 (8)
H130.91200.04790.52050.066*
C140.8450 (2)0.1132 (3)0.6051 (3)0.0419 (6)
H140.79930.18630.54430.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04587 (15)0.05435 (16)0.03650 (13)0.01934 (12)0.02976 (12)0.01577 (12)
Br20.05293 (16)0.06223 (18)0.05420 (17)0.01660 (14)0.04423 (15)0.00359 (13)
Zn10.0318 (2)0.0480 (2)0.0308 (2)0.0000.02466 (19)0.000
F10.117 (2)0.1067 (19)0.136 (2)0.0427 (17)0.101 (2)0.0050 (17)
O10.0378 (9)0.0428 (9)0.0360 (9)0.0102 (7)0.0302 (8)0.0072 (7)
N10.0344 (11)0.0514 (12)0.0280 (11)0.0005 (9)0.0230 (10)0.0038 (9)
C10.0265 (11)0.0328 (11)0.0279 (11)0.0017 (9)0.0198 (10)0.0031 (9)
C20.0289 (12)0.0357 (12)0.0282 (12)0.0034 (9)0.0196 (11)0.0021 (9)
C30.0388 (13)0.0420 (12)0.0345 (13)0.0029 (10)0.0296 (12)0.0015 (10)
C40.0349 (12)0.0438 (13)0.0406 (14)0.0041 (11)0.0303 (12)0.0030 (11)
C50.0342 (13)0.0404 (12)0.0356 (13)0.0066 (10)0.0253 (12)0.0041 (10)
C60.0300 (11)0.0383 (12)0.0300 (12)0.0030 (9)0.0222 (11)0.0023 (9)
C70.0304 (12)0.0444 (14)0.0329 (13)0.0078 (11)0.0212 (11)0.0106 (11)
C80.0353 (14)0.0686 (17)0.0274 (13)0.0040 (13)0.0207 (12)0.0035 (12)
C90.0359 (12)0.0437 (13)0.0307 (12)0.0058 (11)0.0222 (11)0.0080 (11)
C100.0658 (19)0.0631 (18)0.0575 (18)0.0062 (17)0.0469 (17)0.0110 (16)
C110.074 (2)0.060 (2)0.083 (3)0.0224 (18)0.054 (2)0.019 (2)
C120.061 (2)0.063 (2)0.068 (2)0.0075 (17)0.0479 (18)0.0103 (18)
C130.0561 (18)0.073 (2)0.0455 (16)0.0029 (16)0.0389 (15)0.0098 (16)
C140.0401 (14)0.0511 (15)0.0349 (13)0.0004 (12)0.0260 (12)0.0039 (11)
Geometric parameters (Å, º) top
Br1—C21.888 (2)C5—H50.9300
Br2—C41.902 (2)C6—C71.446 (3)
Zn1—O11.9311 (16)C7—H70.9300
Zn1—O1i1.9311 (17)C8—C91.505 (4)
Zn1—N12.027 (2)C8—H8A0.9700
Zn1—N1i2.027 (2)C8—H8B0.9700
F1—C121.361 (4)C9—C101.375 (4)
O1—C11.299 (3)C9—C141.380 (4)
N1—C71.274 (3)C10—C111.390 (5)
N1—C81.473 (3)C10—H100.9300
C1—C21.412 (3)C11—C121.360 (5)
C1—C61.427 (3)C11—H110.9300
C2—C31.384 (3)C12—C131.353 (5)
C3—C41.392 (4)C13—C141.384 (4)
C3—H30.9300C13—H130.9300
C4—C51.362 (3)C14—H140.9300
C5—C61.408 (3)
O1—Zn1—O1i139.77 (10)N1—C7—C6127.3 (2)
O1—Zn1—N193.47 (7)N1—C7—H7116.3
O1i—Zn1—N1104.97 (8)C6—C7—H7116.3
O1—Zn1—N1i104.97 (8)N1—C8—C9113.3 (2)
O1i—Zn1—N1i93.47 (7)N1—C8—H8A108.9
N1—Zn1—N1i124.76 (13)C9—C8—H8A108.9
C1—O1—Zn1123.68 (15)N1—C8—H8B108.9
C7—N1—C8117.5 (2)C9—C8—H8B108.9
C7—N1—Zn1120.79 (17)H8A—C8—H8B107.7
C8—N1—Zn1121.59 (16)C10—C9—C14118.9 (3)
O1—C1—C2119.5 (2)C10—C9—C8121.4 (2)
O1—C1—C6124.7 (2)C14—C9—C8119.7 (2)
C2—C1—C6115.9 (2)C9—C10—C11120.7 (3)
C3—C2—C1123.3 (2)C9—C10—H10119.6
C3—C2—Br1119.44 (18)C11—C10—H10119.6
C1—C2—Br1117.22 (16)C12—C11—C10118.3 (3)
C2—C3—C4118.5 (2)C12—C11—H11120.9
C2—C3—H3120.7C10—C11—H11120.9
C4—C3—H3120.7C13—C12—C11122.7 (3)
C5—C4—C3121.3 (2)C13—C12—F1118.6 (3)
C5—C4—Br2119.04 (19)C11—C12—F1118.7 (3)
C3—C4—Br2119.68 (18)C12—C13—C14118.6 (3)
C4—C5—C6120.4 (2)C12—C13—H13120.7
C4—C5—H5119.8C14—C13—H13120.7
C6—C5—H5119.8C9—C14—C13120.8 (3)
C5—C6—C1120.6 (2)C9—C14—H14119.6
C5—C6—C7116.0 (2)C13—C14—H14119.6
C1—C6—C7123.2 (2)
O1i—Zn1—O1—C1145.92 (19)O1—C1—C6—C5179.5 (2)
N1—Zn1—O1—C127.73 (19)C2—C1—C6—C51.4 (3)
N1i—Zn1—O1—C199.68 (19)O1—C1—C6—C75.3 (4)
O1—Zn1—N1—C720.3 (2)C2—C1—C6—C7173.8 (2)
O1i—Zn1—N1—C7164.2 (2)C8—N1—C7—C6172.0 (3)
N1i—Zn1—N1—C790.6 (2)Zn1—N1—C7—C64.6 (4)
O1—Zn1—N1—C8156.2 (2)C5—C6—C7—N1171.5 (3)
O1i—Zn1—N1—C812.3 (2)C1—C6—C7—N113.1 (4)
N1i—Zn1—N1—C892.9 (2)C7—N1—C8—C9124.7 (3)
Zn1—O1—C1—C2161.59 (16)Zn1—N1—C8—C958.7 (3)
Zn1—O1—C1—C619.3 (3)N1—C8—C9—C1041.3 (4)
O1—C1—C2—C3179.2 (2)N1—C8—C9—C14140.9 (3)
C6—C1—C2—C31.7 (3)C14—C9—C10—C110.2 (5)
O1—C1—C2—Br12.1 (3)C8—C9—C10—C11178.0 (3)
C6—C1—C2—Br1178.73 (17)C9—C10—C11—C120.1 (6)
C1—C2—C3—C40.2 (4)C10—C11—C12—C130.4 (6)
Br1—C2—C3—C4177.20 (19)C10—C11—C12—F1179.5 (3)
C2—C3—C4—C51.7 (4)C11—C12—C13—C140.5 (5)
C2—C3—C4—Br2177.87 (19)F1—C12—C13—C14179.4 (3)
C3—C4—C5—C61.9 (4)C10—C9—C14—C130.1 (4)
Br2—C4—C5—C6177.63 (19)C8—C9—C14—C13178.0 (3)
C4—C5—C6—C10.3 (4)C12—C13—C14—C90.2 (4)
C4—C5—C6—C7175.8 (2)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C14H9Br2FNO)2]
Mr837.43
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)14.6277 (11), 9.8273 (3), 13.0879 (10)
β (°) 133.490 (13)
V3)1364.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.80
Crystal size (mm)0.33 × 0.21 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.197, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
16865, 2785, 2733
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.05
No. of reflections2785
No. of parameters177
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structureFlack (1983), 1307 Friedel pairs
Absolute structure parameter0.009 (7)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

References

First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRodriguez Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds