organic compounds
3-Oxo-2,3-dihydro-1H-inden-4-yl acetate
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound, C11H10O3, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.036 Å). In the crystal, molecules are linked by non-classical C—H⋯O hydrogen bonds, forming a C(6) chain along [010].
Related literature
For the preparation of the title compound, see: Rahimizadeh et al. (2010). For applications of indanone derivatives, see: Borbone et al. (2011); Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Tang et al. (2011); Yu et al. (2011). For related structures, see: Ali et al. (2010a,b,c,d); Chen et al. (2011a,b). For C—H⋯O hydrogen bonds, see: Li et al. (2011a,b); Wang & Chen (2011); Xi et al. (2010). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536812041293/ff2083sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812041293/ff2083Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812041293/ff2083Isup3.cml
The title compound was synthesized by the acetylation of 7-hydroxyindan-1-one with acetyl chloride (Rahimizadeh et al., 2010). Colorless parallelepiped-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.
The C bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C11H10O3 | F(000) = 800 |
Mr = 190.19 | Dx = 1.304 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2935 reflections |
a = 9.8514 (10) Å | θ = 3.1–29.2° |
b = 8.9757 (7) Å | µ = 0.10 mm−1 |
c = 21.917 (3) Å | T = 297 K |
V = 1938.0 (3) Å3 | Parallelepiped, colourless |
Z = 8 | 0.76 × 0.60 × 0.28 mm |
Bruker SMART CCD area-detector diffractometer | 2339 independent reflections |
Radiation source: fine-focus sealed tube | 1302 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 29.3°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→13 |
Tmin = 0.761, Tmax = 1.000 | k = −12→12 |
8705 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.087 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.231 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.074P)2 + 2.2948P] where P = (Fo2 + 2Fc2)/3 |
2339 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C11H10O3 | V = 1938.0 (3) Å3 |
Mr = 190.19 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.8514 (10) Å | µ = 0.10 mm−1 |
b = 8.9757 (7) Å | T = 297 K |
c = 21.917 (3) Å | 0.76 × 0.60 × 0.28 mm |
Bruker SMART CCD area-detector diffractometer | 2339 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1302 reflections with I > 2σ(I) |
Tmin = 0.761, Tmax = 1.000 | Rint = 0.036 |
8705 measured reflections |
R[F2 > 2σ(F2)] = 0.087 | 0 restraints |
wR(F2) = 0.231 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.23 e Å−3 |
2339 reflections | Δρmin = −0.21 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4675 (3) | −0.1591 (3) | 0.54019 (14) | 0.0748 (9) | |
O2 | 0.4074 (2) | 0.0430 (2) | 0.64503 (12) | 0.0495 (7) | |
O3 | 0.4063 (3) | −0.1886 (3) | 0.68244 (16) | 0.0790 (10) | |
C1 | 0.6245 (3) | −0.0223 (3) | 0.60176 (15) | 0.0398 (8) | |
C2 | 0.5807 (4) | −0.1175 (4) | 0.55084 (17) | 0.0525 (9) | |
C3 | 0.7066 (5) | −0.1530 (5) | 0.5139 (2) | 0.0708 (12) | |
H3A | 0.7156 | −0.2598 | 0.5086 | 0.085* | |
H3B | 0.7013 | −0.1067 | 0.4740 | 0.085* | |
C4 | 0.8266 (4) | −0.0918 (5) | 0.5494 (2) | 0.0703 (13) | |
H4A | 0.8833 | −0.1720 | 0.5645 | 0.084* | |
H4B | 0.8812 | −0.0269 | 0.5239 | 0.084* | |
C5 | 0.7649 (3) | −0.0065 (4) | 0.60117 (17) | 0.0495 (9) | |
C6 | 0.8271 (4) | 0.0804 (5) | 0.6447 (2) | 0.0670 (12) | |
H6A | 0.9208 | 0.0928 | 0.6442 | 0.080* | |
C7 | 0.7502 (5) | 0.1487 (5) | 0.6887 (2) | 0.0715 (12) | |
H7A | 0.7929 | 0.2063 | 0.7183 | 0.086* | |
C8 | 0.6107 (4) | 0.1338 (4) | 0.68999 (18) | 0.0566 (10) | |
H8A | 0.5596 | 0.1815 | 0.7198 | 0.068* | |
C9 | 0.5494 (3) | 0.0480 (3) | 0.64677 (16) | 0.0398 (8) | |
C10 | 0.3463 (4) | −0.0857 (4) | 0.66149 (19) | 0.0551 (10) | |
C11 | 0.1978 (4) | −0.0793 (5) | 0.6504 (3) | 0.0788 (14) | |
H11A | 0.1572 | −0.1721 | 0.6623 | 0.118* | |
H11B | 0.1813 | −0.0620 | 0.6078 | 0.118* | |
H11C | 0.1590 | 0.0002 | 0.6739 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0656 (19) | 0.0770 (19) | 0.082 (2) | −0.0191 (16) | −0.0143 (16) | −0.0153 (16) |
O2 | 0.0343 (13) | 0.0359 (12) | 0.0784 (18) | 0.0037 (10) | 0.0070 (12) | 0.0055 (12) |
O3 | 0.0662 (19) | 0.0619 (18) | 0.109 (3) | 0.0096 (15) | 0.0190 (18) | 0.0358 (17) |
C1 | 0.0376 (17) | 0.0323 (15) | 0.0494 (19) | 0.0003 (13) | −0.0006 (15) | 0.0039 (14) |
C2 | 0.059 (2) | 0.0463 (19) | 0.052 (2) | 0.0001 (18) | −0.0060 (19) | 0.0029 (17) |
C3 | 0.083 (3) | 0.065 (3) | 0.065 (3) | 0.019 (2) | 0.014 (2) | −0.004 (2) |
C4 | 0.055 (2) | 0.066 (3) | 0.090 (3) | 0.011 (2) | 0.024 (2) | 0.000 (2) |
C5 | 0.0359 (18) | 0.0455 (18) | 0.067 (2) | 0.0046 (15) | 0.0031 (17) | 0.0047 (17) |
C6 | 0.039 (2) | 0.064 (2) | 0.098 (3) | −0.0033 (19) | −0.014 (2) | −0.001 (2) |
C7 | 0.065 (3) | 0.065 (3) | 0.084 (3) | −0.005 (2) | −0.025 (2) | −0.021 (2) |
C8 | 0.057 (2) | 0.055 (2) | 0.058 (2) | 0.0073 (19) | −0.0038 (19) | −0.0119 (19) |
C9 | 0.0329 (17) | 0.0351 (15) | 0.051 (2) | 0.0057 (13) | −0.0009 (14) | 0.0054 (15) |
C10 | 0.047 (2) | 0.048 (2) | 0.071 (3) | 0.0038 (17) | 0.0154 (19) | 0.0047 (19) |
C11 | 0.048 (2) | 0.065 (3) | 0.123 (4) | −0.005 (2) | 0.012 (3) | 0.003 (3) |
O1—C2 | 1.200 (4) | C4—H4B | 0.9700 |
O2—C10 | 1.351 (4) | C5—C6 | 1.376 (6) |
O2—C9 | 1.399 (4) | C6—C7 | 1.371 (6) |
O3—C10 | 1.189 (4) | C6—H6A | 0.9300 |
C1—C5 | 1.391 (5) | C7—C8 | 1.381 (6) |
C1—C9 | 1.385 (4) | C7—H7A | 0.9300 |
C1—C2 | 1.470 (5) | C8—C9 | 1.362 (5) |
C2—C3 | 1.514 (6) | C8—H8A | 0.9300 |
C3—C4 | 1.518 (6) | C10—C11 | 1.484 (5) |
C3—H3A | 0.9700 | C11—H11A | 0.9600 |
C3—H3B | 0.9700 | C11—H11B | 0.9600 |
C4—C5 | 1.497 (5) | C11—H11C | 0.9600 |
C4—H4A | 0.9700 | ||
C10—O2—C9 | 117.7 (3) | C5—C6—C7 | 119.7 (4) |
C5—C1—C9 | 119.4 (3) | C5—C6—H6A | 120.2 |
C5—C1—C2 | 110.1 (3) | C7—C6—H6A | 120.2 |
C9—C1—C2 | 130.5 (3) | C6—C7—C8 | 121.4 (4) |
O1—C2—C1 | 127.0 (4) | C6—C7—H7A | 119.3 |
O1—C2—C3 | 126.3 (4) | C8—C7—H7A | 119.3 |
C1—C2—C3 | 106.7 (3) | C9—C8—C7 | 118.8 (4) |
C4—C3—C2 | 106.7 (3) | C9—C8—H8A | 120.6 |
C4—C3—H3A | 110.4 | C7—C8—H8A | 120.6 |
C2—C3—H3A | 110.4 | C8—C9—C1 | 121.1 (3) |
C4—C3—H3B | 110.4 | C8—C9—O2 | 118.7 (3) |
C2—C3—H3B | 110.4 | C1—C9—O2 | 120.0 (3) |
H3A—C3—H3B | 108.6 | O3—C10—O2 | 123.1 (3) |
C5—C4—C3 | 104.9 (3) | O3—C10—C11 | 125.7 (4) |
C5—C4—H4A | 110.8 | O2—C10—C11 | 111.2 (3) |
C3—C4—H4A | 110.8 | C10—C11—H11A | 109.5 |
C5—C4—H4B | 110.8 | C10—C11—H11B | 109.5 |
C3—C4—H4B | 110.8 | H11A—C11—H11B | 109.5 |
H4A—C4—H4B | 108.8 | C10—C11—H11C | 109.5 |
C6—C5—C1 | 119.6 (4) | H11A—C11—H11C | 109.5 |
C6—C5—C4 | 129.4 (4) | H11B—C11—H11C | 109.5 |
C1—C5—C4 | 111.0 (3) | ||
C5—C1—C2—O1 | 176.0 (4) | C4—C5—C6—C7 | −179.7 (4) |
C9—C1—C2—O1 | −3.9 (6) | C5—C6—C7—C8 | −0.8 (7) |
C5—C1—C2—C3 | −4.2 (4) | C6—C7—C8—C9 | 0.6 (7) |
C9—C1—C2—C3 | 175.9 (3) | C7—C8—C9—C1 | −0.6 (6) |
O1—C2—C3—C4 | −173.2 (4) | C7—C8—C9—O2 | −174.7 (3) |
C1—C2—C3—C4 | 7.0 (4) | C5—C1—C9—C8 | 0.8 (5) |
C2—C3—C4—C5 | −7.0 (4) | C2—C1—C9—C8 | −179.3 (3) |
C9—C1—C5—C6 | −1.0 (5) | C5—C1—C9—O2 | 174.8 (3) |
C2—C1—C5—C6 | 179.1 (3) | C2—C1—C9—O2 | −5.2 (5) |
C9—C1—C5—C4 | 179.6 (3) | C10—O2—C9—C8 | −110.5 (4) |
C2—C1—C5—C4 | −0.4 (4) | C10—O2—C9—C1 | 75.4 (4) |
C3—C4—C5—C6 | −174.7 (4) | C9—O2—C10—O3 | 7.1 (6) |
C3—C4—C5—C1 | 4.7 (5) | C9—O2—C10—C11 | −173.3 (3) |
C1—C5—C6—C7 | 1.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O3i | 0.93 | 2.46 | 3.223 (5) | 139 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C11H10O3 |
Mr | 190.19 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 297 |
a, b, c (Å) | 9.8514 (10), 8.9757 (7), 21.917 (3) |
V (Å3) | 1938.0 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.76 × 0.60 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.761, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8705, 2339, 1302 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.688 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.087, 0.231, 1.10 |
No. of reflections | 2339 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.21 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O3i | 0.93 | 2.46 | 3.223 (5) | 139 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University in providing fabrication and measurement facilities.
References
Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295. Web of Science CSD CrossRef CAS Google Scholar
Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595. Web of Science CrossRef CAS Google Scholar
Li, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539–542. Web of Science CSD CrossRef CAS Google Scholar
Li, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293–298. Web of Science CrossRef CAS Google Scholar
Li, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280–283. Web of Science CSD CrossRef CAS Google Scholar
Rahimizadeh, M., Pordel, M., Bakavoli, M. & Eshghi, H. (2010). Dyes Pigm. 86, 266–270. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541. Web of Science CrossRef Google Scholar
Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847–850. Web of Science CSD CrossRef CAS Google Scholar
Xi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633–636. Web of Science CSD CrossRef CAS Google Scholar
Yu, S. B., Liu, H. M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264–267. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indanone derivatives are some of the most widely used organic compounds (Tang et al., 2011). They are used as pigments and dyes (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Borbone et al., 2011; Borge et al., 2010; Fu & Wang, 2008; Yu et al., 2011) and exhibit a wide variety of biological activities (Sousa et al., 2011). Furthermore, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).
The molecular structure of the title compound is shown in Figure 1. The 1-indaneone moiety is essentially planar (r.m.s. deviation = 0.036 Å), which is consistent with previous studies (Ali et al., 2010a,b,c,d; Chen et al., 2011a,b). In the crystal (Fig. 2), molecules are linked by nonclassical intermolecular C—H···O (Li et al., 2011a,b; Wang et al., 2011; Xi et al., 2010) hydrogen bonds (Table 1) to form an infinite one-dimensional chain along [010], generating a C(6) motif (Bernstein et al., 1995).