organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3075-o3076

3-Oxo-2,3-di­hydro-1H-inden-4-yl acetate

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 27 September 2012; accepted 2 October 2012; online 6 October 2012)

In the title compound, C11H10O3, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.036 Å). In the crystal, mol­ecules are linked by non-classical C—H⋯O hydrogen bonds, forming a C(6) chain along [010].

Related literature

For the preparation of the title compound, see: Rahimizadeh et al. (2010[Rahimizadeh, M., Pordel, M., Bakavoli, M. & Eshghi, H. (2010). Dyes Pigm. 86, 266-270.]). For applications of indanone derivatives, see: Borbone et al. (2011[Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290-295.]); Borge et al. (2010[Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209-217.]); Cai et al. (2005[Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.]); Cui et al. (2009[Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53-57.]); Fu & Wang (2008[Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590-595.]); Li et al. (2009[Li, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293-298.]); Sousa et al. (2011[Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537-541.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]); Yu et al. (2011[Yu, S. B., Liu, H. M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264-267.]). For related structures, see: Ali et al. (2010a[Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878.],b[Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875.],c[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753.],d[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864.]); Chen et al. (2011a[Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.],b[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.]). For C—H⋯O hydrogen bonds, see: Li et al. (2011a[Li, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539-542.],b[Li, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280-283.]); Wang & Chen (2011[Wang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847-850.]); Xi et al. (2010[Xi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633-636.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O3

  • Mr = 190.19

  • Orthorhombic, P b c a

  • a = 9.8514 (10) Å

  • b = 8.9757 (7) Å

  • c = 21.917 (3) Å

  • V = 1938.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.76 × 0.60 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.761, Tmax = 1.000

  • 8705 measured reflections

  • 2339 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.231

  • S = 1.10

  • 2339 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.93 2.46 3.223 (5) 139
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indanone derivatives are some of the most widely used organic compounds (Tang et al., 2011). They are used as pigments and dyes (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Borbone et al., 2011; Borge et al., 2010; Fu & Wang, 2008; Yu et al., 2011) and exhibit a wide variety of biological activities (Sousa et al., 2011). Furthermore, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).

The molecular structure of the title compound is shown in Figure 1. The 1-indaneone moiety is essentially planar (r.m.s. deviation = 0.036 Å), which is consistent with previous studies (Ali et al., 2010a,b,c,d; Chen et al., 2011a,b). In the crystal (Fig. 2), molecules are linked by nonclassical intermolecular C—H···O (Li et al., 2011a,b; Wang et al., 2011; Xi et al., 2010) hydrogen bonds (Table 1) to form an infinite one-dimensional chain along [010], generating a C(6) motif (Bernstein et al., 1995).

Related literature top

For the preparation of the title compound, see: Rahimizadeh et al. (2010). For applications of indanone derivatives, see: Borbone et al. (2011); Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Tang et al. (2011); Yu et al. (2011). For related structures, see: Ali et al. (2010a,b,c,d); Chen et al. (2011a,b). For C—H···O hydrogen bonds, see: Li et al. (2011a,b); Wang & Chen (2011); Xi et al. (2010). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the acetylation of 7-hydroxyindan-1-one with acetyl chloride (Rahimizadeh et al., 2010). Colorless parallelepiped-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement top

The C bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the a axis. Green dashed lines denote the intermolecular C8—H8A···O3 hydrogen bonds.
3-Oxo-2,3-dihydro-1H-inden-4-yl acetate top
Crystal data top
C11H10O3F(000) = 800
Mr = 190.19Dx = 1.304 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2935 reflections
a = 9.8514 (10) Åθ = 3.1–29.2°
b = 8.9757 (7) ŵ = 0.10 mm1
c = 21.917 (3) ÅT = 297 K
V = 1938.0 (3) Å3Parallelepiped, colourless
Z = 80.76 × 0.60 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube1302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 29.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.761, Tmax = 1.000k = 1212
8705 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.074P)2 + 2.2948P]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H10O3V = 1938.0 (3) Å3
Mr = 190.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8514 (10) ŵ = 0.10 mm1
b = 8.9757 (7) ÅT = 297 K
c = 21.917 (3) Å0.76 × 0.60 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1302 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.036
8705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
2339 reflectionsΔρmin = 0.21 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4675 (3)0.1591 (3)0.54019 (14)0.0748 (9)
O20.4074 (2)0.0430 (2)0.64503 (12)0.0495 (7)
O30.4063 (3)0.1886 (3)0.68244 (16)0.0790 (10)
C10.6245 (3)0.0223 (3)0.60176 (15)0.0398 (8)
C20.5807 (4)0.1175 (4)0.55084 (17)0.0525 (9)
C30.7066 (5)0.1530 (5)0.5139 (2)0.0708 (12)
H3A0.71560.25980.50860.085*
H3B0.70130.10670.47400.085*
C40.8266 (4)0.0918 (5)0.5494 (2)0.0703 (13)
H4A0.88330.17200.56450.084*
H4B0.88120.02690.52390.084*
C50.7649 (3)0.0065 (4)0.60117 (17)0.0495 (9)
C60.8271 (4)0.0804 (5)0.6447 (2)0.0670 (12)
H6A0.92080.09280.64420.080*
C70.7502 (5)0.1487 (5)0.6887 (2)0.0715 (12)
H7A0.79290.20630.71830.086*
C80.6107 (4)0.1338 (4)0.68999 (18)0.0566 (10)
H8A0.55960.18150.71980.068*
C90.5494 (3)0.0480 (3)0.64677 (16)0.0398 (8)
C100.3463 (4)0.0857 (4)0.66149 (19)0.0551 (10)
C110.1978 (4)0.0793 (5)0.6504 (3)0.0788 (14)
H11A0.15720.17210.66230.118*
H11B0.18130.06200.60780.118*
H11C0.15900.00020.67390.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0656 (19)0.0770 (19)0.082 (2)0.0191 (16)0.0143 (16)0.0153 (16)
O20.0343 (13)0.0359 (12)0.0784 (18)0.0037 (10)0.0070 (12)0.0055 (12)
O30.0662 (19)0.0619 (18)0.109 (3)0.0096 (15)0.0190 (18)0.0358 (17)
C10.0376 (17)0.0323 (15)0.0494 (19)0.0003 (13)0.0006 (15)0.0039 (14)
C20.059 (2)0.0463 (19)0.052 (2)0.0001 (18)0.0060 (19)0.0029 (17)
C30.083 (3)0.065 (3)0.065 (3)0.019 (2)0.014 (2)0.004 (2)
C40.055 (2)0.066 (3)0.090 (3)0.011 (2)0.024 (2)0.000 (2)
C50.0359 (18)0.0455 (18)0.067 (2)0.0046 (15)0.0031 (17)0.0047 (17)
C60.039 (2)0.064 (2)0.098 (3)0.0033 (19)0.014 (2)0.001 (2)
C70.065 (3)0.065 (3)0.084 (3)0.005 (2)0.025 (2)0.021 (2)
C80.057 (2)0.055 (2)0.058 (2)0.0073 (19)0.0038 (19)0.0119 (19)
C90.0329 (17)0.0351 (15)0.051 (2)0.0057 (13)0.0009 (14)0.0054 (15)
C100.047 (2)0.048 (2)0.071 (3)0.0038 (17)0.0154 (19)0.0047 (19)
C110.048 (2)0.065 (3)0.123 (4)0.005 (2)0.012 (3)0.003 (3)
Geometric parameters (Å, º) top
O1—C21.200 (4)C4—H4B0.9700
O2—C101.351 (4)C5—C61.376 (6)
O2—C91.399 (4)C6—C71.371 (6)
O3—C101.189 (4)C6—H6A0.9300
C1—C51.391 (5)C7—C81.381 (6)
C1—C91.385 (4)C7—H7A0.9300
C1—C21.470 (5)C8—C91.362 (5)
C2—C31.514 (6)C8—H8A0.9300
C3—C41.518 (6)C10—C111.484 (5)
C3—H3A0.9700C11—H11A0.9600
C3—H3B0.9700C11—H11B0.9600
C4—C51.497 (5)C11—H11C0.9600
C4—H4A0.9700
C10—O2—C9117.7 (3)C5—C6—C7119.7 (4)
C5—C1—C9119.4 (3)C5—C6—H6A120.2
C5—C1—C2110.1 (3)C7—C6—H6A120.2
C9—C1—C2130.5 (3)C6—C7—C8121.4 (4)
O1—C2—C1127.0 (4)C6—C7—H7A119.3
O1—C2—C3126.3 (4)C8—C7—H7A119.3
C1—C2—C3106.7 (3)C9—C8—C7118.8 (4)
C4—C3—C2106.7 (3)C9—C8—H8A120.6
C4—C3—H3A110.4C7—C8—H8A120.6
C2—C3—H3A110.4C8—C9—C1121.1 (3)
C4—C3—H3B110.4C8—C9—O2118.7 (3)
C2—C3—H3B110.4C1—C9—O2120.0 (3)
H3A—C3—H3B108.6O3—C10—O2123.1 (3)
C5—C4—C3104.9 (3)O3—C10—C11125.7 (4)
C5—C4—H4A110.8O2—C10—C11111.2 (3)
C3—C4—H4A110.8C10—C11—H11A109.5
C5—C4—H4B110.8C10—C11—H11B109.5
C3—C4—H4B110.8H11A—C11—H11B109.5
H4A—C4—H4B108.8C10—C11—H11C109.5
C6—C5—C1119.6 (4)H11A—C11—H11C109.5
C6—C5—C4129.4 (4)H11B—C11—H11C109.5
C1—C5—C4111.0 (3)
C5—C1—C2—O1176.0 (4)C4—C5—C6—C7179.7 (4)
C9—C1—C2—O13.9 (6)C5—C6—C7—C80.8 (7)
C5—C1—C2—C34.2 (4)C6—C7—C8—C90.6 (7)
C9—C1—C2—C3175.9 (3)C7—C8—C9—C10.6 (6)
O1—C2—C3—C4173.2 (4)C7—C8—C9—O2174.7 (3)
C1—C2—C3—C47.0 (4)C5—C1—C9—C80.8 (5)
C2—C3—C4—C57.0 (4)C2—C1—C9—C8179.3 (3)
C9—C1—C5—C61.0 (5)C5—C1—C9—O2174.8 (3)
C2—C1—C5—C6179.1 (3)C2—C1—C9—O25.2 (5)
C9—C1—C5—C4179.6 (3)C10—O2—C9—C8110.5 (4)
C2—C1—C5—C40.4 (4)C10—O2—C9—C175.4 (4)
C3—C4—C5—C6174.7 (4)C9—O2—C10—O37.1 (6)
C3—C4—C5—C14.7 (5)C9—O2—C10—C11173.3 (3)
C1—C5—C6—C71.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.463.223 (5)139
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H10O3
Mr190.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)297
a, b, c (Å)9.8514 (10), 8.9757 (7), 21.917 (3)
V3)1938.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.76 × 0.60 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.761, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8705, 2339, 1302
Rint0.036
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.231, 1.10
No. of reflections2339
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.463.223 (5)139
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University in providing fabrication and measurement facilities.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationBorge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595.  Web of Science CrossRef CAS Google Scholar
First citationLi, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293–298.  Web of Science CrossRef CAS Google Scholar
First citationLi, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationRahimizadeh, M., Pordel, M., Bakavoli, M. & Eshghi, H. (2010). Dyes Pigm. 86, 266–270.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541.  Web of Science CrossRef Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847–850.  Web of Science CSD CrossRef CAS Google Scholar
First citationXi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, S. B., Liu, H. M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264–267.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3075-o3076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds