organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,7R)-7,14,16-Trihy­dr­oxy-3-methyl-3,4,5,6,7,8,9,10,11,12-deca­hydro-1H-2-benzoxa­cyclo­tetra­decin-1-one.

aBAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
*Correspondence e-mail: sarah.drzymala@bam.de

(Received 3 September 2012; accepted 1 October 2012; online 6 October 2012)

The asymmetric unit of the title compound, C18H26O5, which is known as α-zearalanol, contains two mol­ecules having the same conformation, with a r.m.s. deviation of less than 0.03 Å for all non-H atoms. In each independent mol­ecule, an intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules, forming infinite chains along [110] and [1-10].

Related literature

For the chemical preparation of α-zearalanol, see: Urry et al. (1966[Urry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). Tetrahedron Lett. 7, 3109-3114.]). For its natural occurrence as a metabolite, see: Baldwin et al. (1983[Baldwin, R. S., Williams, R. D. & Terry, M. K. (1983). Regul. Toxicol. Pharmacol. 3, 9-25.]) and for its use as an animal growth promoter, see: Wang & Wang (2007[Wang, S. & Wang, X. H. (2007). Food Addit. Contam. 24, 573-582.]). For the crystal structures of related derivatives, see: Panneerselvam et al. (1996[Panneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095-3097.]); Gelo-Pujić et al. (1994[Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753-13764.]); Zhao et al. (2008[Zhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, o999.]); Köppen et al. (2012[Köppen, R., Riedel, J., Emmerling, F. & Koch, M. (2012). Acta Cryst. E68, o832.]); Drzymala et al. (2012[Drzymala, S., Kraus, W., Emmerling, F. & Koch, M. (2012). Acta Cryst. E68, o1577.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O5

  • Mr = 322.39

  • Triclinic, P 1

  • a = 5.0734 (11) Å

  • b = 11.618 (2) Å

  • c = 14.718 (3) Å

  • α = 87.388 (13)°

  • β = 86.595 (15)°

  • γ = 89.780 (15)°

  • V = 865.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.43 × 0.22 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.186, Tmax = 0.350

  • 19642 measured reflections

  • 4264 independent reflections

  • 3421 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.147

  • S = 0.95

  • 4264 reflections

  • 431 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.82 1.83 2.549 (3) 146
O5′—H5′A⋯O2′ 0.82 1.82 2.540 (3) 146
O4—H4A⋯O3i 0.83 (2) 1.93 (3) 2.745 (3) 171 (3)
O4′—H4′A⋯O3′ii 0.82 (3) 1.94 (3) 2.740 (3) 163 (4)
O3—H3A⋯O4iii 0.82 (3) 2.29 (3) 3.080 (3) 162 (3)
O3′—H3′A⋯O4′iii 0.82 (3) 2.27 (3) 3.067 (3) 165 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y+1, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-Zearalanol (α-ZAL, generic name Zeranol) is a resorcylic acid lactone (RAL) with estrogenic and anabolic activity. α-ZAL can be obtained chemically by reduction of zearalenone (ZEN) (Urry et al. 1966), a mycotoxin produced by a variety of Fusarium fungi and well known crop contaminant. α-ZAL also occurs naturally as a metabolite of zearalanone (ZAN), another ZEN derivative (Baldwin et al., 1983). Crystal structures of ZEN and ZEN derivatives have been elucidated by Panneerselvam et al. (1996), Gelo-Pujić et al. (1994), Zhao et al. (2008), Köppen et al. (2012) and Drzymala et al. (2012).

ZEN-related structures have a more or less pronounced hormonal activity. Particularly α-ZAL proved to be an effective anabolic hormone. Marketed under the trade name Ralgro, it is widely used as a growth promoter in cattle. In contrast to the U.S.A., Canada and several other countries, α-Zearalanol was banned by the EU in 1985 (Wang & Wang, 2007) resulting in a series of legal issues between the US and the EU. Due to its growth promoting effects α-ZAL also belongs to the list of substances prohibited in sports as classified by the World Anti-Doping Agency.

The compound has a macrocyclic structure and crystallizes in the triclinic space group P1. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. The isomeric purity of the title compound was confirmed by 1H-NMR, HPLC-DAD and –MS/MS data. Fig. 4 shows the difference in conformation between the known β-Zearalanol (Gelo-Pujić et al., 1994) and the title compound. Every molecule in the asymmetric unit builds an infinite chain with the help of hydrogen bonds of the hydroxyl groups. The two chains in relation to the unit cell are depicted in Fig. 2. The analysis of polymeric structures shows two infinite one dimensional chains with the base vectors of [1 1 0] and [1 - 1 0], Fig 3.

Related literature top

For the chemical preparation of α-zearalanol, see: Urry et al. (1966). For its natural occurrence as a metabolite, see: Baldwin et al. (1983) and for its use as an animal growth promoter, see: Wang & Wang (2007). For the crystal structures of related derivatives, see: Panneerselvam et al. (1996); Gelo-Pujić et al. (1994); Zhao et al. (2008); Köppen et al. (2012); Drzymala et al. (2012).

Experimental top

α-Zearalanol was obtained from Sigma-Aldrich Chemie GmbH (Germany, purity 97.0%). 5 mg (15.5 µmol) were weighed in a 1.5 ml HPLC glass vial and solved in 0.6 ml diethyl ether. Subsequently, 0.2 ml of n-hexane were added. Colorless crystals of the title compound were formed after 14 days of slow solvent evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms, and 0.82 Å, Uiso = 1.5Ueq (C) for hydroxyl group of O5. The hydrogen atoms from the other hydroxyl groups were treated independently. In the absence of significant anomalous dispersion effects 3785 Friedel pairs were merged. The absolute configuration has not been determined by anomalous-dispersion effects in diffraction measurements of the crystal. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : View of the unit cell of the title compound, showing the hydrogen-bonded chains of the two independent molecules. Hydrogen bonds are drawn as dashed red lines.
[Figure 3] Fig. 3. : View of the unit cell of the title compound, showing the two chains with planes of the basevectors. Turquoise for [1 1 0] and lime for [1 - 1 0]. Hydrogen bonds are drawn as dashed red lines.
[Figure 4] Fig. 4. : The difference in conformation between the known β-Zearalanol (yellow, Gelo-Pujić et al., 1994) and the title compound.
(3S,7R)-7,14,16-Trihydroxy-3-methyl-3,4,5,6,7,8,9,10,11,12- decahydro-1H-2-benzoxacyclotetradecin-1-one. top
Crystal data top
C18H26O5Z = 2
Mr = 322.39F(000) = 348
Triclinic, P1Dx = 1.238 Mg m3
a = 5.0734 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.618 (2) ÅCell parameters from 6563 reflections
c = 14.718 (3) Åθ = 2.3–26.4°
α = 87.388 (13)°µ = 0.09 mm1
β = 86.595 (15)°T = 296 K
γ = 89.780 (15)°Block, colourless
V = 865.0 (3) Å30.43 × 0.22 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4264 independent reflections
Radiation source: fine-focus sealed tube3421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.186, Tmax = 0.350k = 1515
19642 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
4264 reflections(Δ/σ)max < 0.001
431 parametersΔρmax = 0.24 e Å3
7 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H26O5γ = 89.780 (15)°
Mr = 322.39V = 865.0 (3) Å3
Triclinic, P1Z = 2
a = 5.0734 (11) ÅMo Kα radiation
b = 11.618 (2) ŵ = 0.09 mm1
c = 14.718 (3) ÅT = 296 K
α = 87.388 (13)°0.43 × 0.22 × 0.10 mm
β = 86.595 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
4264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3421 reflections with I > 2σ(I)
Tmin = 0.186, Tmax = 0.350Rint = 0.095
19642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0597 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.24 e Å3
4264 reflectionsΔρmin = 0.16 e Å3
431 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1448 (4)0.89233 (14)0.65863 (11)0.0465 (4)
O20.0413 (4)0.99572 (16)0.76207 (12)0.0555 (5)
O30.3004 (5)0.45828 (17)0.45181 (16)0.0618 (6)
O40.2440 (5)1.34395 (16)0.41989 (13)0.0570 (5)
O50.3693 (4)1.15285 (17)0.70652 (13)0.0578 (5)
H5A0.30151.10380.74230.087*
C10.0231 (5)0.9872 (2)0.68358 (16)0.0409 (5)
C20.4309 (7)0.8317 (3)0.7915 (2)0.0683 (8)
H2A0.39010.90000.82220.102*
H2B0.46940.76980.83560.102*
H2C0.58170.84590.75610.102*
C30.1985 (5)0.7995 (2)0.72962 (16)0.0435 (6)
H3B0.04290.78820.76540.052*
C40.2456 (5)0.6918 (2)0.67829 (18)0.0469 (6)
H4B0.31920.63290.72110.056*
H4C0.37630.70930.63410.056*
C50.0035 (6)0.6437 (2)0.6292 (2)0.0526 (7)
H5B0.12270.62150.67380.063*
H5C0.07670.70420.58930.063*
C60.0549 (7)0.5390 (2)0.5722 (2)0.0580 (7)
H6A0.11350.50810.55000.070*
H6B0.14240.47970.61150.070*
C70.2229 (6)0.5653 (2)0.49103 (19)0.0493 (6)
H7A0.38460.60330.51400.059*
C80.0915 (6)0.6456 (2)0.41628 (19)0.0535 (7)
H8A0.03510.69370.44350.064*
H8B0.00530.59910.37250.064*
C90.2828 (6)0.7229 (2)0.36581 (18)0.0563 (7)
H9A0.19330.75320.30970.068*
H9B0.42940.67630.34930.068*
C100.3925 (6)0.8235 (2)0.41891 (19)0.0482 (6)
H10A0.48310.79350.47490.058*
H10B0.52180.86370.38330.058*
C110.1827 (5)0.9100 (2)0.44291 (17)0.0444 (6)
H11A0.05300.87010.47870.053*
H11B0.09250.94080.38710.053*
C120.2995 (5)1.0093 (2)0.49636 (17)0.0411 (5)
H12A0.40170.97850.54970.049*
H12B0.41821.05320.45870.049*
C130.0089 (5)1.1798 (2)0.46580 (17)0.0438 (6)
H13A0.09181.18910.41130.053*
C140.1884 (5)1.2568 (2)0.48410 (17)0.0437 (6)
C150.3129 (6)1.2462 (2)0.56527 (18)0.0457 (6)
H15A0.44481.29770.57750.055*
C160.2384 (5)1.1575 (2)0.62849 (16)0.0415 (5)
C170.0383 (5)1.07732 (19)0.61033 (16)0.0372 (5)
C180.0857 (5)1.08946 (19)0.52648 (16)0.0377 (5)
O1'0.5442 (4)0.37345 (14)0.94217 (11)0.0462 (4)
O2'0.3680 (4)0.48975 (16)0.83705 (12)0.0549 (5)
O3'0.6823 (5)0.08133 (17)1.15210 (15)0.0602 (5)
O4'0.1425 (4)0.79967 (16)1.17536 (14)0.0567 (5)
O5'0.0323 (4)0.63890 (17)0.89001 (13)0.0608 (5)
H5'A0.10340.59410.85470.091*
C1'0.4249 (5)0.4708 (2)0.91655 (17)0.0414 (5)
C2'0.8444 (7)0.3297 (3)0.8122 (3)0.0726 (9)
H2'A0.80520.40140.78070.109*
H2'B0.89040.27290.76860.109*
H2'C0.98970.34030.84980.109*
C3'0.6061 (5)0.2899 (2)0.87071 (17)0.0436 (6)
H3'B0.45480.28320.83290.052*
C4'0.6511 (6)0.1755 (2)0.92215 (19)0.0484 (6)
H4'B0.77330.18780.96900.058*
H4'C0.73380.12240.88010.058*
C5'0.4010 (6)0.1196 (2)0.96673 (18)0.0497 (6)
H5'B0.28530.10090.91940.060*
H5'C0.30990.17501.00470.060*
C6'0.4513 (6)0.0096 (2)1.02532 (19)0.0548 (7)
H6'A0.28270.02631.04320.066*
H6'B0.55240.04370.98820.066*
C7'0.5984 (6)0.0283 (2)1.11146 (18)0.0472 (6)
H7'A0.75750.07331.09330.057*
C8'0.4374 (6)0.0953 (2)1.18242 (19)0.0511 (6)
H8'A0.33080.04151.22100.061*
H8'B0.31830.14711.15140.061*
C9'0.6079 (7)0.1660 (2)1.24287 (19)0.0594 (8)
H9'A0.49820.19051.29470.071*
H9'B0.74550.11661.26600.071*
C10'0.7366 (6)0.2724 (2)1.1937 (2)0.0537 (7)
H10C0.85320.30731.23450.064*
H10D0.84400.24791.14140.064*
C11'0.5409 (6)0.3635 (2)1.16147 (18)0.0491 (6)
H11C0.43880.39091.21400.059*
H11D0.41940.32811.12270.059*
C12'0.6742 (5)0.4672 (2)1.10867 (18)0.0440 (6)
H12C0.79030.50501.14800.053*
H12D0.78100.44011.05710.053*
C13'0.3928 (6)0.6373 (2)1.13423 (18)0.0456 (6)
H13B0.47040.64011.18980.055*
C14'0.1995 (5)0.7179 (2)1.11290 (17)0.0444 (6)
C15'0.0797 (6)0.7162 (2)1.03129 (18)0.0450 (6)
H15B0.05230.76901.01800.054*
C16'0.1590 (5)0.6347 (2)0.96934 (16)0.0417 (6)
C17'0.3551 (5)0.55111 (19)0.98913 (16)0.0376 (5)
C18'0.4720 (5)0.55347 (19)1.07492 (16)0.0389 (5)
H4A0.388 (4)1.371 (3)0.431 (2)0.073 (11)*
H3'A0.543 (5)0.113 (4)1.169 (3)0.108 (17)*
H3A0.175 (5)0.418 (3)0.436 (3)0.087 (14)*
H4'A0.005 (5)0.823 (4)1.163 (4)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (12)0.0364 (9)0.0408 (9)0.0108 (8)0.0077 (8)0.0041 (7)
O20.0760 (13)0.0506 (10)0.0408 (9)0.0087 (10)0.0120 (9)0.0022 (8)
O30.0717 (16)0.0379 (11)0.0762 (14)0.0139 (11)0.0031 (12)0.0090 (9)
O40.0772 (15)0.0375 (10)0.0557 (11)0.0172 (10)0.0011 (11)0.0022 (8)
O50.0702 (13)0.0535 (11)0.0519 (11)0.0147 (10)0.0194 (10)0.0050 (9)
C10.0458 (14)0.0372 (12)0.0393 (13)0.0009 (10)0.0025 (10)0.0048 (9)
C20.066 (2)0.0638 (19)0.072 (2)0.0032 (16)0.0199 (16)0.0031 (15)
C30.0473 (14)0.0422 (13)0.0400 (12)0.0025 (11)0.0010 (10)0.0090 (10)
C40.0490 (15)0.0413 (14)0.0494 (14)0.0106 (11)0.0020 (11)0.0078 (11)
C50.0513 (16)0.0489 (15)0.0584 (16)0.0009 (13)0.0098 (13)0.0034 (12)
C60.072 (2)0.0400 (14)0.0628 (17)0.0007 (13)0.0070 (15)0.0040 (12)
C70.0560 (16)0.0319 (12)0.0593 (16)0.0116 (11)0.0059 (13)0.0059 (11)
C80.0623 (18)0.0402 (14)0.0568 (16)0.0132 (13)0.0130 (14)0.0098 (12)
C90.078 (2)0.0482 (15)0.0433 (13)0.0210 (14)0.0054 (13)0.0057 (11)
C100.0565 (16)0.0425 (13)0.0466 (13)0.0088 (12)0.0128 (12)0.0004 (10)
C110.0509 (15)0.0368 (12)0.0456 (13)0.0098 (11)0.0031 (11)0.0029 (10)
C120.0397 (13)0.0377 (12)0.0462 (13)0.0041 (10)0.0068 (10)0.0001 (10)
C130.0559 (16)0.0344 (12)0.0420 (13)0.0015 (11)0.0082 (11)0.0033 (10)
C140.0554 (15)0.0291 (11)0.0461 (13)0.0034 (11)0.0019 (11)0.0035 (10)
C150.0515 (14)0.0356 (12)0.0506 (14)0.0083 (11)0.0005 (11)0.0105 (10)
C160.0462 (14)0.0379 (13)0.0413 (13)0.0012 (11)0.0031 (11)0.0091 (10)
C170.0438 (13)0.0297 (11)0.0384 (11)0.0005 (10)0.0001 (10)0.0067 (9)
C180.0377 (12)0.0324 (11)0.0432 (12)0.0003 (10)0.0024 (10)0.0050 (9)
O1'0.0606 (11)0.0368 (9)0.0418 (9)0.0061 (8)0.0066 (8)0.0057 (7)
O2'0.0787 (14)0.0458 (10)0.0406 (10)0.0043 (9)0.0097 (9)0.0003 (8)
O3'0.0700 (15)0.0376 (10)0.0724 (13)0.0094 (10)0.0038 (11)0.0034 (9)
O4'0.0712 (14)0.0415 (11)0.0567 (11)0.0081 (10)0.0065 (10)0.0081 (8)
O5'0.0785 (14)0.0532 (11)0.0521 (11)0.0131 (10)0.0191 (10)0.0004 (9)
C1'0.0474 (14)0.0343 (12)0.0420 (13)0.0040 (10)0.0006 (11)0.0016 (9)
C2'0.070 (2)0.0622 (19)0.082 (2)0.0024 (17)0.0238 (18)0.0024 (16)
C3'0.0473 (14)0.0415 (13)0.0417 (12)0.0006 (11)0.0031 (10)0.0074 (10)
C4'0.0502 (15)0.0445 (14)0.0504 (14)0.0071 (12)0.0012 (11)0.0080 (11)
C5'0.0538 (16)0.0470 (15)0.0486 (14)0.0032 (12)0.0060 (12)0.0012 (11)
C6'0.0695 (19)0.0388 (14)0.0564 (16)0.0056 (13)0.0047 (14)0.0040 (12)
C7'0.0563 (16)0.0320 (12)0.0528 (14)0.0023 (11)0.0000 (12)0.0001 (10)
C8'0.0619 (17)0.0403 (13)0.0499 (14)0.0036 (12)0.0029 (12)0.0013 (11)
C9'0.093 (2)0.0404 (14)0.0452 (14)0.0140 (15)0.0131 (15)0.0002 (11)
C10'0.0653 (18)0.0387 (13)0.0596 (17)0.0054 (12)0.0225 (14)0.0040 (12)
C11'0.0591 (16)0.0382 (13)0.0500 (14)0.0053 (12)0.0073 (12)0.0019 (11)
C12'0.0495 (15)0.0388 (13)0.0452 (13)0.0012 (11)0.0107 (11)0.0059 (10)
C13'0.0550 (16)0.0367 (13)0.0452 (13)0.0047 (11)0.0045 (11)0.0019 (10)
C14'0.0549 (15)0.0313 (12)0.0452 (13)0.0010 (11)0.0090 (11)0.0015 (10)
C15'0.0498 (15)0.0321 (12)0.0521 (14)0.0041 (11)0.0010 (11)0.0045 (10)
C16'0.0492 (15)0.0344 (12)0.0406 (12)0.0055 (11)0.0030 (10)0.0074 (10)
C17'0.0413 (13)0.0309 (11)0.0402 (12)0.0052 (10)0.0010 (10)0.0017 (9)
C18'0.0409 (13)0.0298 (12)0.0456 (13)0.0046 (10)0.0033 (10)0.0024 (10)
Geometric parameters (Å, º) top
O1—C11.341 (3)O1'—C1'1.331 (3)
O1—C31.482 (3)O1'—C3'1.483 (3)
O2—C11.227 (3)O2'—C1'1.232 (3)
O3—C71.460 (3)O3'—C7'1.456 (3)
O3—H3A0.818 (10)O3'—H3'A0.821 (10)
O4—C141.372 (3)O4'—C14'1.370 (3)
O4—H4A0.826 (10)O4'—H4'A0.821 (10)
O5—C161.359 (3)O5'—C16'1.365 (3)
O5—H5A0.8200O5'—H5'A0.8200
C1—C171.489 (3)C1'—C17'1.476 (3)
C2—C31.503 (4)C2'—C3'1.504 (4)
C2—H2A0.9600C2'—H2'A0.9600
C2—H2B0.9600C2'—H2'B0.9600
C2—H2C0.9600C2'—H2'C0.9600
C3—C41.517 (4)C3'—C4'1.523 (4)
C3—H3B0.9800C3'—H3'B0.9800
C4—C51.507 (4)C4'—C5'1.527 (4)
C4—H4B0.9700C4'—H4'B0.9700
C4—H4C0.9700C4'—H4'C0.9700
C5—C61.540 (4)C5'—C6'1.538 (4)
C5—H5B0.9700C5'—H5'B0.9700
C5—H5C0.9700C5'—H5'C0.9700
C6—C71.527 (4)C6'—C7'1.533 (4)
C6—H6A0.9700C6'—H6'A0.9700
C6—H6B0.9700C6'—H6'B0.9700
C7—C81.532 (4)C7'—C8'1.527 (4)
C7—H7A0.9800C7'—H7'A0.9800
C8—C91.523 (5)C8'—C9'1.542 (4)
C8—H8A0.9700C8'—H8'A0.9700
C8—H8B0.9700C8'—H8'B0.9700
C9—C101.520 (4)C9'—C10'1.532 (4)
C9—H9A0.9700C9'—H9'A0.9700
C9—H9B0.9700C9'—H9'B0.9700
C10—C111.534 (3)C10'—C11'1.528 (4)
C10—H10A0.9700C10'—H10C0.9700
C10—H10B0.9700C10'—H10D0.9700
C11—C121.524 (3)C11'—C12'1.540 (4)
C11—H11A0.9700C11'—H11C0.9700
C11—H11B0.9700C11'—H11D0.9700
C12—C181.531 (3)C12'—C18'1.520 (3)
C12—H12A0.9700C12'—H12C0.9700
C12—H12B0.9700C12'—H12D0.9700
C13—C181.388 (3)C13'—C18'1.381 (3)
C13—C141.391 (4)C13'—C14'1.392 (4)
C13—H13A0.9300C13'—H13B0.9300
C14—C151.385 (4)C14'—C15'1.379 (4)
C15—C161.394 (3)C15'—C16'1.387 (4)
C15—H15A0.9300C15'—H15B0.9300
C16—C171.425 (3)C16'—C17'1.421 (3)
C17—C181.419 (3)C17'—C18'1.428 (3)
C1—O1—C3117.26 (18)C1'—O1'—C3'116.96 (18)
C7—O3—H3A113 (3)C7'—O3'—H3'A103 (3)
C14—O4—H4A106 (3)C14'—O4'—H4'A104 (4)
C16—O5—H5A109.5C16'—O5'—H5'A109.5
O2—C1—O1120.9 (2)O2'—C1'—O1'121.1 (2)
O2—C1—C17122.7 (2)O2'—C1'—C17'122.5 (2)
O1—C1—C17116.3 (2)O1'—C1'—C17'116.3 (2)
C3—C2—H2A109.5C3'—C2'—H2'A109.5
C3—C2—H2B109.5C3'—C2'—H2'B109.5
H2A—C2—H2B109.5H2'A—C2'—H2'B109.5
C3—C2—H2C109.5C3'—C2'—H2'C109.5
H2A—C2—H2C109.5H2'A—C2'—H2'C109.5
H2B—C2—H2C109.5H2'B—C2'—H2'C109.5
O1—C3—C2109.9 (2)O1'—C3'—C2'109.8 (2)
O1—C3—C4105.53 (19)O1'—C3'—C4'105.24 (19)
C2—C3—C4113.1 (2)C2'—C3'—C4'112.8 (2)
O1—C3—H3B109.4O1'—C3'—H3'B109.6
C2—C3—H3B109.4C2'—C3'—H3'B109.6
C4—C3—H3B109.4C4'—C3'—H3'B109.6
C5—C4—C3114.9 (2)C3'—C4'—C5'114.6 (2)
C5—C4—H4B108.5C3'—C4'—H4'B108.6
C3—C4—H4B108.5C5'—C4'—H4'B108.6
C5—C4—H4C108.5C3'—C4'—H4'C108.6
C3—C4—H4C108.5C5'—C4'—H4'C108.6
H4B—C4—H4C107.5H4'B—C4'—H4'C107.6
C4—C5—C6114.8 (2)C4'—C5'—C6'114.1 (2)
C4—C5—H5B108.6C4'—C5'—H5'B108.7
C6—C5—H5B108.6C6'—C5'—H5'B108.7
C4—C5—H5C108.6C4'—C5'—H5'C108.7
C6—C5—H5C108.6C6'—C5'—H5'C108.7
H5B—C5—H5C107.5H5'B—C5'—H5'C107.6
C7—C6—C5114.4 (2)C7'—C6'—C5'114.9 (2)
C7—C6—H6A108.7C7'—C6'—H6'A108.5
C5—C6—H6A108.7C5'—C6'—H6'A108.5
C7—C6—H6B108.7C7'—C6'—H6'B108.5
C5—C6—H6B108.7C5'—C6'—H6'B108.5
H6A—C6—H6B107.6H6'A—C6'—H6'B107.5
O3—C7—C6110.1 (2)O3'—C7'—C8'109.8 (2)
O3—C7—C8109.6 (2)O3'—C7'—C6'110.6 (2)
C6—C7—C8114.5 (2)C8'—C7'—C6'113.3 (2)
O3—C7—H7A107.5O3'—C7'—H7'A107.6
C6—C7—H7A107.5C8'—C7'—H7'A107.6
C8—C7—H7A107.5C6'—C7'—H7'A107.6
C9—C8—C7114.4 (2)C7'—C8'—C9'113.6 (3)
C9—C8—H8A108.7C7'—C8'—H8'A108.8
C7—C8—H8A108.7C9'—C8'—H8'A108.8
C9—C8—H8B108.7C7'—C8'—H8'B108.8
C7—C8—H8B108.7C9'—C8'—H8'B108.8
H8A—C8—H8B107.6H8'A—C8'—H8'B107.7
C10—C9—C8114.9 (2)C10'—C9'—C8'114.1 (2)
C10—C9—H9A108.5C10'—C9'—H9'A108.7
C8—C9—H9A108.5C8'—C9'—H9'A108.7
C10—C9—H9B108.5C10'—C9'—H9'B108.7
C8—C9—H9B108.5C8'—C9'—H9'B108.7
H9A—C9—H9B107.5H9'A—C9'—H9'B107.6
C9—C10—C11114.1 (2)C11'—C10'—C9'114.4 (3)
C9—C10—H10A108.7C11'—C10'—H10C108.7
C11—C10—H10A108.7C9'—C10'—H10C108.7
C9—C10—H10B108.7C11'—C10'—H10D108.7
C11—C10—H10B108.7C9'—C10'—H10D108.7
H10A—C10—H10B107.6H10C—C10'—H10D107.6
C12—C11—C10112.7 (2)C10'—C11'—C12'113.4 (2)
C12—C11—H11A109.1C10'—C11'—H11C108.9
C10—C11—H11A109.1C12'—C11'—H11C108.9
C12—C11—H11B109.1C10'—C11'—H11D108.9
C10—C11—H11B109.1C12'—C11'—H11D108.9
H11A—C11—H11B107.8H11C—C11'—H11D107.7
C11—C12—C18112.0 (2)C18'—C12'—C11'111.6 (2)
C11—C12—H12A109.2C18'—C12'—H12C109.3
C18—C12—H12A109.2C11'—C12'—H12C109.3
C11—C12—H12B109.2C18'—C12'—H12D109.3
C18—C12—H12B109.2C11'—C12'—H12D109.3
H12A—C12—H12B107.9H12C—C12'—H12D108.0
C18—C13—C14122.0 (2)C18'—C13'—C14'121.6 (2)
C18—C13—H13A119.0C18'—C13'—H13B119.2
C14—C13—H13A119.0C14'—C13'—H13B119.2
O4—C14—C15122.8 (2)O4'—C14'—C15'122.5 (2)
O4—C14—C13116.8 (2)O4'—C14'—C13'116.7 (2)
C15—C14—C13120.4 (2)C15'—C14'—C13'120.8 (2)
C14—C15—C16119.3 (2)C14'—C15'—C16'119.0 (2)
C14—C15—H15A120.4C14'—C15'—H15B120.5
C16—C15—H15A120.4C16'—C15'—H15B120.5
O5—C16—C15115.8 (2)O5'—C16'—C15'115.6 (2)
O5—C16—C17123.2 (2)O5'—C16'—C17'122.9 (2)
C15—C16—C17121.0 (2)C15'—C16'—C17'121.5 (2)
C18—C17—C16118.8 (2)C16'—C17'—C18'118.2 (2)
C18—C17—C1125.7 (2)C16'—C17'—C1'116.0 (2)
C16—C17—C1115.6 (2)C18'—C17'—C1'125.8 (2)
C13—C18—C17118.6 (2)C13'—C18'—C17'118.8 (2)
C13—C18—C12116.4 (2)C13'—C18'—C12'116.2 (2)
C17—C18—C12125.0 (2)C17'—C18'—C12'124.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.821.832.549 (3)146
O5—H5A···O20.821.822.540 (3)146
O4—H4A···O3i0.83 (2)1.93 (3)2.745 (3)171 (3)
O4—H4A···O3ii0.82 (3)1.94 (3)2.740 (3)163 (4)
O3—H3A···O4iii0.82 (3)2.29 (3)3.080 (3)162 (3)
O3—H3A···O4iii0.82 (3)2.27 (3)3.067 (3)165 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H26O5
Mr322.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.0734 (11), 11.618 (2), 14.718 (3)
α, β, γ (°)87.388 (13), 86.595 (15), 89.780 (15)
V3)865.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.22 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.186, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
19642, 4264, 3421
Rint0.095
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.147, 0.95
No. of reflections4264
No. of parameters431
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.821.832.549 (3)146
O5'—H5'A···O2'0.821.822.540 (3)146
O4—H4A···O3i0.83 (2)1.93 (3)2.745 (3)171 (3)
O4'—H4'A···O3'ii0.82 (3)1.94 (3)2.740 (3)163 (4)
O3—H3A···O4iii0.82 (3)2.29 (3)3.080 (3)162 (3)
O3'—H3'A···O4'iii0.82 (3)2.27 (3)3.067 (3)165 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x, y1, z.
 

References

First citationBaldwin, R. S., Williams, R. D. & Terry, M. K. (1983). Regul. Toxicol. Pharmacol. 3, 9–25.  CrossRef CAS PubMed Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrzymala, S., Kraus, W., Emmerling, F. & Koch, M. (2012). Acta Cryst. E68, o1577.  CSD CrossRef IUCr Journals Google Scholar
First citationGelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753–13764.  CSD CrossRef Web of Science Google Scholar
First citationKöppen, R., Riedel, J., Emmerling, F. & Koch, M. (2012). Acta Cryst. E68, o832.  CSD CrossRef IUCr Journals Google Scholar
First citationPanneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095–3097.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). Tetrahedron Lett. 7, 3109–3114.  CrossRef Google Scholar
First citationWang, S. & Wang, X. H. (2007). Food Addit. Contam. 24, 573–582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds