organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3086-o3087

Bi­cyclo­[2.2.1]hept-7-yl p-bromo­benzoate

aDepartment of Chemistry, Weber State University, Ogden, Utah 84408-2503, and bDepartment of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
*Correspondence e-mail: blloyd@weber.edu

(Received 12 September 2012; accepted 1 October 2012; online 6 October 2012)

The title compound, C14H15BrO2, contains a sterically unencumbered norbornyl group. The dihedral angle between the plane of the carboxyl­ate group and the mean plane of the adjacent benzene ring is 5.3 (2)°. The dihedral angle between the plane of the carboxyl­ate group and the norbornyl methano C—O bond is 4.5 (1)°, the methano C atom deviating by 0.141 (2) Å from this plane. In the crystal, mol­ecules pack as pairs of enanti­omers, with a distance of 3.747 (1) Å between the centroids of nearest parallel benzene rings.

Related literature

For calculated and experimental norbornane and related structures, see: Allinger et al. (1989[Allinger, N. L., Geise, H. J., Pyckhout, W., Paquette, L. A. & Gallucci, J. C. (1989). J. Am. Chem. Soc. 111, 1106-1114.]); Pfund et al. (1980[Pfund, R. A., Schweizer, W. B. & Ganter, C. (1980). Helv. Chim. Acta, 63, 674-681.]). For related polycyclic p-bromo­benzoate structures, see: Lloyd & Arif (2012[Lloyd, B. A. & Arif, A. M. (2012). Acta Cryst. E68, o2209.]); Lloyd et al. (1995[Lloyd, B. A., Arif, A. M., Coots, R. J. & Allred, E. L. (1995). Acta Cryst. C51, 2059-2062.], 2000[Lloyd, B. A., Arif, A. M. & Allred, E. L. (2000). Acta Cryst. C56, 1377-1379.]). For a high resolution low temperature powder synchrotron X-ray diffraction structure of norbornane, see: Fitch & Jobic (1993[Fitch, A. N. & Jobic, H. (1993). J. Chem. Soc. Chem. Commun. pp. 1516-1517.]). For some norbornyl bond lengths and angles, see: Watson et al. (1992[Watson, W. H., Kashyap, R. P., Krawiec, M., Marchand, A. P., Reddy, C. M. & Gadgil, V. R. (1992). Acta Cryst. B48, 731-737.]). For possible C—O bond-length correlation to reactivity in a 7-norbornenyl benzoate, see: Jones et al. (1992[Jones, P. G., Kirby, A. J. & Percy, J. M. (1992). Acta Cryst. C48, 829-832.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrO2

  • Mr = 295.17

  • Monoclinic, P 21 /c

  • a = 11.7401 (2) Å

  • b = 6.3767 (1) Å

  • c = 17.7462 (3) Å

  • β = 109.584 (1)°

  • V = 1251.68 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.18 mm

Data collection
  • Nonius KappaCCD Diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.440, Tmax = 0.591

  • 5495 measured reflections

  • 2882 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.03

  • 2882 reflections

  • 215 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Many norbornyl structures have been previously determined, but precise bond lengths and angles are derivative dependent (Watson et al., 1992). The Cambridge Crystallographic Database contains only five 7-norbornyl benzoate structures, but these are complicated by additional substituents and their associated steric interactions (for example, see Pfund et al., 1980). An ORTEP-3 drawing (Farrugia, 2012) of title compound structure 1 is shown in Fig. 1, and a cell packing diagram is shown in Fig. 2. Structure 1 norbornyl group bond lengths and bond angles agree with reported values, but their precision is about ten times better than geometry averaged values (Watson et al., 1992). Structure 1 was determined so that bond length, bond angle, least-squares plane, and nonbonding contact comparisons could be made with other related p-bromobenzoate structures (Lloyd & Arif, 2012, Lloyd et al., 2000 and Lloyd et al., 1995).

No nonhydrogen atom intermolecular contacts exist shorter than van der Waals radii sums, the smallest being O1i···C13ii at 3.257 (2) Å [symmetry code: (ii) x, -1 + y, z]. Least squares planes are defined as C1—C7—C4 (plane 1), C1—C2—C3—C4 (plane 2), and C1—C6—C5—C4 (plane 3). Interplanar 1:2, 1:3, and 1:4 angles are: 121.2 (1)°, 125.5 (1)°, and 113.3 (1)°, respectively. Angle 1:2 is 1.4° larger than the corresponding 296 K structure 2 (Fig. 3) angle (Lloyd et al., 1995), but smaller than corresponding angles of our other seven norbornenyl structures. Structure 1 angle 1: 3 is larger than analogous angles in all eight norbornenyl structures, and angle 2:3 is smaller for all except structure 3. Smaller 1:2 and larger 1:3 angles in structure 1 are likely a consequence of a longer C2—C3 norbornyl single bond (versus a shorter norbornenyl C2=C3 double bond) which bends C7 toward plane 2. The slightly larger structure 1 2:3 angle versus 3 might result from intramolecular H3B···H5A and H2B···H6A contacts, 2.35 (3) and 2.40 (3) Å, respectively (Lloyd & Arif, 2012). Reactant structural features (such as C7—O2 bond length) that might portend the large norbornenyl: norbornyl solvolytic reactivity ratio are not obvious, and the late transition state idea (Jones et al., 1992) is supported.

Related literature top

For calculated and experimental norbornane and related structures, see: Allinger et al. (1989); Pfund et al. (1980). For related polycyclic p-bromobenzoate structures, see: Lloyd & Arif (2012); Lloyd et al. (1995, 2000). For a high resolution low temperature powder synchrotron X-ray diffraction structure of norbornane, see: Fitch et al. (1993). For some norbornyl bond lengths and angles, see: Watson et al. (1992). For possible C—O bond-length correlation to reactivity in a 7-norbornenyl benzoate, see: Jones et al. (1992).

Experimental top

7-Norbornyl p-bromobenzoate (title compound 1) was made from commercial bicyclo[2.2.1]heptan-7-ol (7-norborneol, Alfa Products). Under a dry nitrogen atmosphere, 1.06 g freshly distilled (about 300 K, 7 Pa) p-bromobenzoyl chloride, 15 ml reagent grade dichloromethane, 0.802 g dry, freshly distilled (from CaH2 under N2) pyridine, and 0.540 g of sublimed (373 K, 7 Pa) 7-norborneol were combined and the mixture was refluxed for 15 min, then stirred for 2 d at 296 K. The reaction mixture was poured into 10 ml of 5% HCl solution, and layers were separated. The dichloromethane layer was washed twice more with 5% HCl solution, the dichloromethane was evaporated, and the residue was dissolved in about 3 ml of ether. The mixture was chromatographed on Florisil (petroleum ether, then ether). Recovered 1.22 g of 1, 85.3% yield, mp 350–351 K after two recrystallizations from petroleum ether/ether: 1H NMR (CDCl3, 90 MHz) δ 1.10–1.57 (4 H, m), 1.57–2.09 (4 H, m), 2.31 (2 H, m), 4.99 (1 H, s), 7.57 (2 H, d), 7.88 (2 H, d). Crystals were regrown slowly by dissolving 1.0 g of 1 in 5 ml of anhydrous ether in a 30 ml beaker. The beaker was placed inside a desiccator along with a 20 ml beaker containing 15 ml of petroleum ether (bp 303–333 K), and the desiccator was placed inside a freezer at 253 K. A one-hole rubber stopper was placed in the desiccator neck with glass wool inserted into the hole, allowing for slow evaporation. Crystals began forming after 3 d and they were filtered out after 5 d. One of these crystals was selected for X-ray analysis.

Refinement top

A colorless prism shaped crystal 0.30 × 0.25 × 0.18 mm in size was mounted on a glass fiber with traces of viscous oil and then transferred to a Nonius KappaCCD diffractometer equipped with Mo Kα radiation (λ = 0.71073 Å). Ten frames of data were collected at 150 (1) K with an oscillation range of 1 °/frame and an exposure time of 20 sec/frame (Nonius, 1998). Indexing and unit cell refinement based on all observed reflection from those ten frames, indicated a monoclinic P lattice. A total of 5495 reflections (Θmax = 27.48°) were indexed, integrated and corrected for Lorentz, polarization and absorption effects using DENZO– SMN and SCALEPAC (Otwinowski & Minor, 1997). Post refinement of the unit cell gave a = 11.7401 (2) Å, b = 6.3767 (1) Å, c = 17.7462 (3) Å, β =109.584 (1)°, and V = 1251.68 (4) Å3. Axial photographs and systematic absences were consistent with the compound having crystallized in the monoclinic space group P21/c.

The structure was solved by a combination of direct and heavy atom methods using SIR97 (Altomare et al., 1999). All of the non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were located and refined isotropically using SHELXL97 (Sheldrick, 2008). The weighting scheme employed was w = 1/[σ2(Fo2) + (0.0254P)2 + 0.4883P] where P = (Fo2 + 2Fc2) /3. The refinement converged to R1 = 0.0224, wR2 = 0.0527, and S = 1.025 for 2469 reflections with I > 2σ(I), and R1 = 0.0294, wR2 = 0.0552, and S = 1.025 for 2882 unique reflections and 215 parameters, where R1 = Σ (|| Fo | – |Fc ||) / Σ |Fo|, wR2 = [Σ(w(Fo2 – Fc2)2) / Σ(Fo2)2]1/2, and S = Goodness-of-fit on F2 = [Σ (w(Fo2 – Fc2)2 / (n-p)] 1/2, n is the number of reflections and p is the number of parameters refined.

The maximum Δ/σ in the final cycle of the least-squares was 0.001, and the residual peaks on the final difference-Fourier map ranged from -0.35 to 0.382 e/Å3. Scattering factors were taken from the International Tables for Crystallography, Volume C, Chapters 4 pp 206–222 and 6 pp 476–516.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 drawing of the title compound showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Cell packing diagram for the title compound.
[Figure 3] Fig. 3. Compounds 1, 2, and 3.
Bicyclo[2.2.1]hept-7-yl p-bromobenzoate top
Crystal data top
C14H15BrO2F(000) = 600
Mr = 295.17Dx = 1.566 Mg m3
Monoclinic, P21/cMelting point: 351 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.7401 (2) ÅCell parameters from 3135 reflections
b = 6.3767 (1) Åθ = 1.0–27.5°
c = 17.7462 (3) ŵ = 3.27 mm1
β = 109.584 (1)°T = 150 K
V = 1251.68 (4) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.18 mm
Data collection top
Nonius KappaCCD Diffractometer2882 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Phi and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.440, Tmax = 0.591k = 88
5495 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.4883P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2882 reflectionsΔρmax = 0.38 e Å3
215 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (7)
Crystal data top
C14H15BrO2V = 1251.68 (4) Å3
Mr = 295.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7401 (2) ŵ = 3.27 mm1
b = 6.3767 (1) ÅT = 150 K
c = 17.7462 (3) Å0.30 × 0.25 × 0.18 mm
β = 109.584 (1)°
Data collection top
Nonius KappaCCD Diffractometer2882 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2469 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.591Rint = 0.015
5495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055All H-atom parameters refined
S = 1.03Δρmax = 0.38 e Å3
2882 reflectionsΔρmin = 0.35 e Å3
215 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL-97 input file.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29724 (11)0.03809 (19)0.03440 (7)0.0345 (3)
O20.17768 (10)0.23527 (18)0.03757 (6)0.0275 (2)
Br10.470495 (15)0.70360 (3)0.187891 (10)0.03601 (8)
C10.20441 (14)0.1660 (3)0.18033 (9)0.0284 (3)
C20.12314 (16)0.0547 (3)0.22003 (10)0.0357 (4)
C30.00686 (16)0.0964 (3)0.16107 (11)0.0341 (4)
C40.01573 (14)0.2271 (3)0.09468 (9)0.0268 (3)
C50.05962 (15)0.4456 (3)0.12780 (10)0.0313 (4)
C60.18971 (16)0.4036 (3)0.18646 (10)0.0336 (4)
C70.13181 (14)0.1242 (3)0.09249 (9)0.0253 (3)
C80.26378 (13)0.1393 (3)0.01604 (8)0.0244 (3)
C90.31177 (13)0.2786 (2)0.03379 (8)0.0224 (3)
C100.39565 (15)0.1984 (3)0.06648 (9)0.0274 (3)
C110.44332 (15)0.3225 (3)0.11205 (10)0.0303 (4)
C120.40660 (13)0.5289 (3)0.12504 (8)0.0257 (3)
C130.32412 (15)0.6139 (3)0.09307 (10)0.0291 (3)
C140.27768 (14)0.4878 (3)0.04697 (9)0.0270 (3)
H10.2846 (17)0.116 (3)0.1972 (10)0.029 (4)*
H2A0.1403 (19)0.093 (4)0.2256 (12)0.049 (6)*
H2B0.1354 (16)0.109 (3)0.2741 (11)0.036 (5)*
H3A0.0457 (17)0.037 (3)0.1400 (12)0.039 (5)*
H3B0.0543 (18)0.179 (3)0.1874 (12)0.038 (5)*
H40.0512 (17)0.230 (3)0.0436 (11)0.031 (5)*
H5A0.0057 (17)0.507 (3)0.1529 (11)0.034 (5)*
H5B0.0597 (17)0.540 (3)0.0856 (11)0.035 (5)*
H6A0.2006 (18)0.443 (3)0.2418 (12)0.046 (6)*
H6B0.2501 (18)0.476 (3)0.1699 (12)0.043 (5)*
H70.1235 (16)0.023 (3)0.0794 (10)0.029 (5)*
H100.4167 (17)0.061 (3)0.0576 (11)0.038 (5)*
H110.5023 (19)0.270 (3)0.1319 (13)0.042 (5)*
H130.3001 (19)0.760 (3)0.1028 (12)0.040 (5)*
H140.2213 (17)0.543 (3)0.0241 (11)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0420 (7)0.0262 (6)0.0433 (7)0.0084 (5)0.0250 (5)0.0038 (5)
O20.0331 (6)0.0299 (6)0.0262 (5)0.0085 (5)0.0190 (5)0.0049 (5)
Br10.03629 (11)0.04188 (13)0.03518 (11)0.00802 (7)0.01902 (8)0.00085 (8)
C10.0223 (7)0.0396 (10)0.0243 (7)0.0034 (7)0.0093 (6)0.0054 (7)
C20.0356 (9)0.0473 (11)0.0288 (8)0.0035 (8)0.0169 (7)0.0101 (8)
C30.0299 (8)0.0427 (11)0.0349 (9)0.0027 (8)0.0177 (7)0.0010 (8)
C40.0227 (7)0.0357 (9)0.0231 (7)0.0029 (6)0.0090 (6)0.0000 (6)
C50.0347 (9)0.0312 (9)0.0333 (8)0.0059 (7)0.0184 (7)0.0013 (7)
C60.0326 (9)0.0396 (10)0.0301 (8)0.0049 (7)0.0125 (7)0.0081 (8)
C70.0294 (8)0.0267 (8)0.0245 (7)0.0020 (6)0.0151 (6)0.0015 (6)
C80.0244 (7)0.0296 (8)0.0203 (7)0.0036 (6)0.0090 (6)0.0045 (6)
C90.0214 (7)0.0273 (8)0.0179 (6)0.0016 (6)0.0056 (5)0.0030 (6)
C100.0304 (8)0.0273 (8)0.0285 (8)0.0068 (7)0.0153 (6)0.0003 (7)
C110.0269 (8)0.0389 (10)0.0295 (8)0.0053 (7)0.0154 (6)0.0017 (7)
C120.0221 (7)0.0343 (9)0.0207 (7)0.0046 (6)0.0074 (6)0.0025 (6)
C130.0300 (8)0.0263 (8)0.0326 (8)0.0009 (7)0.0125 (7)0.0010 (7)
C140.0266 (7)0.0293 (8)0.0284 (8)0.0046 (6)0.0134 (6)0.0027 (7)
Geometric parameters (Å, º) top
O1—C81.206 (2)C5—C61.556 (2)
O2—C81.3421 (17)C5—H5A0.971 (19)
O2—C71.4469 (18)C5—H5B0.96 (2)
Br1—C121.8997 (15)C6—H6A0.98 (2)
C1—C71.529 (2)C6—H6B0.97 (2)
C1—C61.533 (3)C7—H70.966 (19)
C1—C21.537 (2)C8—C91.491 (2)
C1—H10.944 (18)C9—C141.390 (2)
C2—C31.557 (2)C9—C101.397 (2)
C2—H2A0.96 (2)C10—C111.377 (2)
C2—H2B0.984 (19)C10—H100.91 (2)
C3—C41.537 (2)C11—C121.380 (2)
C3—H3A0.98 (2)C11—H110.94 (2)
C3—H3B0.99 (2)C12—C131.386 (2)
C4—C71.525 (2)C13—C141.383 (2)
C4—C51.533 (2)C13—H130.97 (2)
C4—H40.981 (19)C14—H140.953 (19)
C8—O2—C7117.02 (12)C1—C6—H6A110.0 (13)
C7—C1—C6101.97 (13)C5—C6—H6A113.4 (12)
C7—C1—C299.62 (13)C1—C6—H6B109.8 (12)
C6—C1—C2108.80 (14)C5—C6—H6B111.6 (12)
C7—C1—H1114.8 (11)H6A—C6—H6B108.6 (17)
C6—C1—H1116.0 (12)O2—C7—C4110.13 (13)
C2—C1—H1113.8 (11)O2—C7—C1113.28 (13)
C1—C2—C3103.42 (13)C4—C7—C195.54 (12)
C1—C2—H2A111.1 (13)O2—C7—H7110.2 (10)
C3—C2—H2A111.2 (13)C4—C7—H7114.0 (11)
C1—C2—H2B112.1 (12)C1—C7—H7113.0 (10)
C3—C2—H2B112.7 (11)O1—C8—O2124.01 (14)
H2A—C2—H2B106.5 (17)O1—C8—C9124.44 (13)
C4—C3—C2103.05 (13)O2—C8—C9111.55 (13)
C4—C3—H3A110.9 (11)C14—C9—C10119.00 (14)
C2—C3—H3A109.6 (12)C14—C9—C8121.81 (13)
C4—C3—H3B110.0 (11)C10—C9—C8119.17 (14)
C2—C3—H3B110.7 (11)C11—C10—C9121.02 (15)
H3A—C3—H3B112.2 (16)C11—C10—H10121.0 (12)
C7—C4—C5102.27 (13)C9—C10—H10117.9 (12)
C7—C4—C399.88 (13)C10—C11—C12118.71 (14)
C5—C4—C3108.73 (13)C10—C11—H11120.7 (13)
C7—C4—H4115.4 (11)C12—C11—H11120.5 (13)
C5—C4—H4113.6 (11)C11—C12—C13121.77 (15)
C3—C4—H4115.4 (11)C11—C12—Br1119.64 (11)
C4—C5—C6103.21 (13)C13—C12—Br1118.59 (13)
C4—C5—H5A110.9 (11)C14—C13—C12118.87 (16)
C6—C5—H5A114.0 (11)C14—C13—H13120.9 (12)
C4—C5—H5B111.2 (11)C12—C13—H13120.2 (12)
C6—C5—H5B111.8 (11)C13—C14—C9120.61 (14)
H5A—C5—H5B105.9 (16)C13—C14—H14120.3 (12)
C1—C6—C5103.36 (13)C9—C14—H14119.1 (12)
C7—C1—C2—C335.57 (17)C6—C1—C7—C454.16 (14)
C6—C1—C2—C370.69 (17)C2—C1—C7—C457.56 (15)
C1—C2—C3—C40.06 (19)C7—O2—C8—O16.3 (2)
C2—C3—C4—C735.81 (17)C7—O2—C8—C9174.22 (12)
C2—C3—C4—C570.86 (17)O1—C8—C9—C14174.03 (15)
C7—C4—C5—C633.78 (15)O2—C8—C9—C146.5 (2)
C3—C4—C5—C671.24 (15)O1—C8—C9—C104.3 (2)
C7—C1—C6—C534.25 (15)O2—C8—C9—C10175.22 (13)
C2—C1—C6—C570.38 (16)C14—C9—C10—C110.8 (2)
C4—C5—C6—C10.36 (16)C8—C9—C10—C11179.21 (15)
C8—O2—C7—C4166.14 (13)C9—C10—C11—C120.0 (2)
C8—O2—C7—C188.22 (16)C10—C11—C12—C130.5 (2)
C5—C4—C7—O263.24 (15)C10—C11—C12—Br1179.84 (12)
C3—C4—C7—O2175.05 (13)C11—C12—C13—C140.0 (2)
C5—C4—C7—C154.04 (14)Br1—C12—C13—C14179.71 (12)
C3—C4—C7—C157.76 (15)C12—C13—C14—C90.9 (2)
C6—C1—C7—O260.55 (15)C10—C9—C14—C131.3 (2)
C2—C1—C7—O2172.27 (13)C8—C9—C14—C13179.63 (14)

Experimental details

Crystal data
Chemical formulaC14H15BrO2
Mr295.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.7401 (2), 6.3767 (1), 17.7462 (3)
β (°) 109.584 (1)
V3)1251.68 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.30 × 0.25 × 0.18
Data collection
DiffractometerNonius KappaCCD Diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.440, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
5495, 2882, 2469
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.03
No. of reflections2882
No. of parameters215
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Weber State Chemistry Department for supporting this work, the University of Utah Chemistry Department X-ray crystallographic facility, and the late Professor Evan L. Allred who began this work.

References

First citationAllinger, N. L., Geise, H. J., Pyckhout, W., Paquette, L. A. & Gallucci, J. C. (1989). J. Am. Chem. Soc. 111, 1106–1114.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitch, A. N. & Jobic, H. (1993). J. Chem. Soc. Chem. Commun. pp. 1516–1517.  CrossRef Web of Science Google Scholar
First citationJones, P. G., Kirby, A. J. & Percy, J. M. (1992). Acta Cryst. C48, 829–832.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLloyd, B. A. & Arif, A. M. (2012). Acta Cryst. E68, o2209.  CSD CrossRef IUCr Journals Google Scholar
First citationLloyd, B. A., Arif, A. M. & Allred, E. L. (2000). Acta Cryst. C56, 1377–1379.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLloyd, B. A., Arif, A. M., Coots, R. J. & Allred, E. L. (1995). Acta Cryst. C51, 2059–2062.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPfund, R. A., Schweizer, W. B. & Ganter, C. (1980). Helv. Chim. Acta, 63, 674–681.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H., Kashyap, R. P., Krawiec, M., Marchand, A. P., Reddy, C. M. & Gadgil, V. R. (1992). Acta Cryst. B48, 731–737.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3086-o3087
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds