organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-[(2-Eth­­oxy­naphthalen-1-yl)methyl­­idene]-2-ethyl­aniline

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and cDepartment of Medical Services, and Techniques, Vocational School of Health Services, Giresun University, TR-28200 Giresun, Turkey
*Correspondence e-mail: gokhan.alpaslan@giresun.edu.tr

(Received 5 October 2012; accepted 16 October 2012; online 20 October 2012)

In the title compound, C21H21NO, the dihedral angle between the naphthalene ring system and the benzene ring is 64.61 (6)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯N hydrogen bond.

Related literature

For biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Vesek et al. (2012[Vesek, H., Kazak, C., Alaman Ağar, A., Macit, M. & Soylu, M. S. (2012). Acta Cryst. E68, o2518.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO

  • Mr = 303.39

  • Monoclinic, P 21 /c

  • a = 11.6011 (11) Å

  • b = 20.457 (3) Å

  • c = 7.4335 (7) Å

  • β = 101.303 (8)°

  • V = 1730.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.71 × 0.55 × 0.36 mm

Data collection
  • Stoe IPDS-II diffractometer

  • 14212 measured reflections

  • 3403 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.211

  • S = 0.94

  • 3403 reflections

  • 209 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1 0.93 2.32 2.961 (4) 126

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). In this paper, the structure of the title compound, is reported. An ORTEP-3 (Farrugia, 2012) plot of the molecule of (I) is shown in Fig.1. The geometric parameters in (I) are comparable with those in (E)-3-Chloro-N-[(2-ethoxynaphthalen -1-yl)methylidene]aniline (Vesek et al., 2012). The dihedral angle between the naphthalene ring and the benzene ring is 64.61 (6)°. The molecular structure is stabilized by a C9-H9···N1 intramolecular hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

Related literature top

For biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For a related structure, see: Vesek et al. (2012).

Experimental top

The compound (E)-N-((2-ethoxynaphthalen-1-yl)methylene)-2-ethylaniline was prepared by refluxing a mixture of a solution containing 2-ethoxy-1-naphthaldehyde (20,0 mg, 0,1 mmol) in ethanol (20 ml) and a solution containing 2-ethylaniline (12,12 mg, 0,1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 hour under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 62%; m.p.376-378 K).

Refinement top

All H atoms bound to C atoms were refined using a riding model, with C-H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C atoms, C-H=0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene C atoms, and C-H=0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl C atoms. Restraints and constraints (ISOR, DFIX, DELU) were used in order to maintain a reasonable geometry and atomic displacement parameters for C17, C18 and C19 atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
(E)-N-[(2-Ethoxynaphthalen-1-yl)methylidene]-2-ethylaniline top
Crystal data top
C21H21NOF(000) = 648
Mr = 303.39Dx = 1.165 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10574 reflections
a = 11.6011 (11) Åθ = 1.8–27.9°
b = 20.457 (3) ŵ = 0.07 mm1
c = 7.4335 (7) ÅT = 296 K
β = 101.303 (8)°Prism, yellow
V = 1730.0 (3) Å30.71 × 0.55 × 0.36 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1769 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
Detector resolution: 6.67 pixels mm-1h = 1414
ω scansk = 2525
14212 measured reflectionsl = 99
3403 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1288P)2]
where P = (Fo2 + 2Fc2)/3
3403 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.45 e Å3
16 restraintsΔρmin = 0.31 e Å3
Crystal data top
C21H21NOV = 1730.0 (3) Å3
Mr = 303.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6011 (11) ŵ = 0.07 mm1
b = 20.457 (3) ÅT = 296 K
c = 7.4335 (7) Å0.71 × 0.55 × 0.36 mm
β = 101.303 (8)°
Data collection top
Stoe IPDS-II
diffractometer
1769 reflections with I > 2σ(I)
14212 measured reflectionsRint = 0.055
3403 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06516 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 0.94Δρmax = 0.45 e Å3
3403 reflectionsΔρmin = 0.31 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4025 (2)0.19226 (13)0.3272 (3)0.0619 (7)
C20.3508 (2)0.25280 (13)0.2813 (4)0.0664 (7)
C30.2305 (3)0.25814 (17)0.2024 (4)0.0784 (8)
H30.19760.29890.16860.094*
C40.1635 (3)0.20410 (18)0.1760 (4)0.0810 (9)
H40.08370.20850.12730.097*
C50.2097 (2)0.14074 (15)0.2197 (4)0.0707 (8)
C60.1392 (3)0.08513 (19)0.1902 (5)0.0905 (10)
H60.05970.08970.13950.109*
C70.1834 (3)0.0246 (2)0.2336 (5)0.1001 (11)
H70.13490.01200.21320.120*
C80.3027 (3)0.01776 (16)0.3093 (5)0.0901 (9)
H80.33320.02370.34020.108*
C90.3751 (3)0.07046 (14)0.3386 (4)0.0753 (8)
H90.45440.06450.38800.090*
C100.3315 (2)0.13437 (13)0.2950 (4)0.0620 (7)
C110.5272 (2)0.19292 (13)0.4136 (4)0.0642 (7)
H110.55780.23240.46330.077*
C120.7140 (2)0.15485 (13)0.5261 (4)0.0661 (7)
C130.7377 (3)0.18615 (15)0.6913 (4)0.0808 (9)
H130.67610.20400.73860.097*
C140.8499 (3)0.19186 (17)0.7886 (5)0.0958 (11)
H140.86400.21310.90150.115*
C150.9404 (3)0.16685 (18)0.7216 (5)0.0938 (10)
H151.01700.17120.78710.113*
C160.9191 (3)0.13519 (19)0.5575 (5)0.1005 (12)
H160.98190.11790.51240.121*
C170.8060 (3)0.12796 (18)0.4555 (5)0.0971 (10)
C180.7839 (4)0.0973 (4)0.2575 (7)0.184 (3)
H18A0.70150.10180.20100.221*
H18B0.82980.12080.18250.221*
C190.8162 (8)0.0289 (3)0.2652 (10)0.226 (3)
H19A0.80300.01130.14310.339*
H19B0.76920.00550.33660.339*
H19C0.89780.02450.32090.339*
C200.3711 (3)0.36953 (14)0.3110 (4)0.0817 (9)
H20A0.31330.37070.38920.098*
H20B0.33260.38120.18730.098*
C210.4679 (4)0.41565 (17)0.3792 (6)0.1107 (12)
H21A0.43690.45910.38000.166*
H21B0.52430.41420.30040.166*
H21C0.50540.40360.50150.166*
N10.59740 (19)0.14530 (11)0.4274 (3)0.0729 (7)
O10.42183 (17)0.30550 (9)0.3129 (3)0.0820 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0527 (14)0.0783 (18)0.0563 (15)0.0040 (12)0.0148 (11)0.0010 (12)
C20.0592 (15)0.0801 (18)0.0615 (16)0.0058 (13)0.0162 (12)0.0046 (13)
C30.0663 (18)0.095 (2)0.0730 (19)0.0177 (15)0.0104 (14)0.0069 (15)
C40.0559 (16)0.112 (2)0.071 (2)0.0119 (16)0.0036 (14)0.0018 (17)
C50.0571 (16)0.096 (2)0.0588 (17)0.0025 (14)0.0121 (12)0.0122 (14)
C60.0628 (18)0.116 (3)0.091 (2)0.0098 (18)0.0125 (15)0.018 (2)
C70.088 (2)0.104 (3)0.112 (3)0.029 (2)0.029 (2)0.025 (2)
C80.084 (2)0.080 (2)0.111 (3)0.0078 (17)0.0304 (18)0.0116 (18)
C90.0662 (17)0.0798 (19)0.082 (2)0.0005 (15)0.0195 (14)0.0035 (15)
C100.0566 (15)0.0787 (18)0.0532 (15)0.0015 (12)0.0166 (11)0.0037 (12)
C110.0578 (15)0.0722 (16)0.0633 (16)0.0008 (12)0.0133 (12)0.0009 (12)
C120.0543 (14)0.0678 (16)0.0740 (19)0.0001 (12)0.0075 (12)0.0007 (13)
C130.0674 (17)0.088 (2)0.084 (2)0.0005 (14)0.0091 (15)0.0120 (16)
C140.077 (2)0.109 (3)0.094 (2)0.0061 (18)0.0013 (18)0.0219 (19)
C150.0596 (18)0.112 (3)0.101 (3)0.0172 (17)0.0050 (17)0.009 (2)
C160.0576 (18)0.145 (3)0.097 (3)0.0103 (18)0.0111 (17)0.006 (2)
C170.0582 (18)0.129 (3)0.101 (2)0.0164 (18)0.0087 (16)0.0085 (19)
C180.085 (3)0.291 (5)0.168 (4)0.056 (4)0.005 (3)0.116 (4)
C190.272 (7)0.219 (5)0.197 (6)0.055 (5)0.071 (5)0.055 (5)
C200.097 (2)0.079 (2)0.0715 (19)0.0159 (17)0.0227 (16)0.0117 (15)
C210.125 (3)0.084 (2)0.124 (3)0.006 (2)0.027 (2)0.006 (2)
N10.0529 (12)0.0801 (15)0.0832 (17)0.0061 (11)0.0072 (11)0.0080 (12)
O10.0715 (12)0.0713 (13)0.1033 (16)0.0058 (10)0.0174 (11)0.0105 (10)
Geometric parameters (Å, º) top
C1—C21.389 (4)C12—N11.420 (3)
C1—C101.435 (4)C13—C141.365 (4)
C1—C111.464 (3)C13—H130.9300
C2—O11.349 (3)C14—C151.348 (5)
C2—C31.408 (4)C14—H140.9300
C3—C41.344 (4)C15—C161.360 (5)
C3—H30.9300C15—H150.9300
C4—C51.416 (4)C16—C171.388 (4)
C4—H40.9300C16—H160.9300
C5—C61.393 (4)C17—C181.573 (5)
C5—C101.420 (4)C18—C191.449 (7)
C6—C71.356 (5)C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—C81.395 (5)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.357 (4)C19—H19C0.9600
C8—H80.9300C20—O11.435 (3)
C9—C101.416 (4)C20—C211.478 (5)
C9—H90.9300C20—H20A0.9700
C11—N11.261 (3)C20—H20B0.9700
C11—H110.9300C21—H21A0.9600
C12—C131.364 (4)C21—H21B0.9600
C12—C171.392 (4)C21—H21C0.9600
C2—C1—C10119.3 (2)C15—C14—C13120.2 (3)
C2—C1—C11116.2 (2)C15—C14—H14119.9
C10—C1—C11124.5 (2)C13—C14—H14119.9
O1—C2—C1116.7 (2)C14—C15—C16119.6 (3)
O1—C2—C3122.2 (3)C14—C15—H15120.2
C1—C2—C3121.1 (3)C16—C15—H15120.2
C4—C3—C2119.7 (3)C15—C16—C17121.8 (3)
C4—C3—H3120.2C15—C16—H16119.1
C2—C3—H3120.2C17—C16—H16119.1
C3—C4—C5122.5 (3)C16—C17—C12117.7 (3)
C3—C4—H4118.7C16—C17—C18121.1 (3)
C5—C4—H4118.7C12—C17—C18120.9 (3)
C6—C5—C4121.8 (3)C19—C18—C17110.8 (5)
C6—C5—C10119.7 (3)C19—C18—H18A109.5
C4—C5—C10118.5 (3)C17—C18—H18A109.5
C7—C6—C5121.7 (3)C19—C18—H18B109.5
C7—C6—H6119.1C17—C18—H18B109.5
C5—C6—H6119.1H18A—C18—H18B108.1
C6—C7—C8119.1 (3)C18—C19—H19A109.5
C6—C7—H7120.4C18—C19—H19B109.5
C8—C7—H7120.4H19A—C19—H19B109.5
C9—C8—C7121.3 (3)C18—C19—H19C109.5
C9—C8—H8119.4H19A—C19—H19C109.5
C7—C8—H8119.4H19B—C19—H19C109.5
C8—C9—C10121.0 (3)O1—C20—C21107.3 (3)
C8—C9—H9119.5O1—C20—H20A110.3
C10—C9—H9119.5C21—C20—H20A110.3
C9—C10—C5117.2 (2)O1—C20—H20B110.3
C9—C10—C1123.8 (2)C21—C20—H20B110.3
C5—C10—C1118.9 (2)H20A—C20—H20B108.5
N1—C11—C1126.6 (3)C20—C21—H21A109.5
N1—C11—H11116.7C20—C21—H21B109.5
C1—C11—H11116.7H21A—C21—H21B109.5
C13—C12—C17119.4 (3)C20—C21—H21C109.5
C13—C12—N1122.2 (3)H21A—C21—H21C109.5
C17—C12—N1118.3 (3)H21B—C21—H21C109.5
C12—C13—C14121.4 (3)C11—N1—C12118.0 (2)
C12—C13—H13119.3C2—O1—C20119.5 (2)
C14—C13—H13119.3
C10—C1—C2—O1179.4 (2)C11—C1—C10—C5176.3 (2)
C11—C1—C2—O13.0 (4)C2—C1—C11—N1162.3 (3)
C10—C1—C2—C30.6 (4)C10—C1—C11—N120.3 (4)
C11—C1—C2—C3178.2 (2)C17—C12—C13—C140.2 (5)
O1—C2—C3—C4179.2 (3)N1—C12—C13—C14176.6 (3)
C1—C2—C3—C42.1 (4)C12—C13—C14—C150.6 (5)
C2—C3—C4—C51.9 (5)C13—C14—C15—C160.8 (6)
C3—C4—C5—C6179.5 (3)C14—C15—C16—C170.3 (6)
C3—C4—C5—C100.3 (4)C15—C16—C17—C120.5 (6)
C4—C5—C6—C7179.4 (3)C15—C16—C17—C18174.0 (5)
C10—C5—C6—C70.8 (5)C13—C12—C17—C160.7 (5)
C5—C6—C7—C80.2 (6)N1—C12—C17—C16177.2 (3)
C6—C7—C8—C90.6 (6)C13—C12—C17—C18174.2 (4)
C7—C8—C9—C100.7 (5)N1—C12—C17—C189.3 (6)
C8—C9—C10—C50.0 (4)C16—C17—C18—C1967.1 (7)
C8—C9—C10—C1178.2 (3)C12—C17—C18—C19119.6 (5)
C6—C5—C10—C90.7 (4)C1—C11—N1—C12176.3 (3)
C4—C5—C10—C9179.5 (3)C13—C12—N1—C1145.1 (4)
C6—C5—C10—C1179.0 (3)C17—C12—N1—C11138.6 (3)
C4—C5—C10—C11.2 (4)C1—C2—O1—C20165.1 (2)
C2—C1—C10—C9179.3 (3)C3—C2—O1—C2016.1 (4)
C11—C1—C10—C91.9 (4)C21—C20—O1—C2170.8 (3)
C2—C1—C10—C51.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.322.961 (4)126

Experimental details

Crystal data
Chemical formulaC21H21NO
Mr303.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.6011 (11), 20.457 (3), 7.4335 (7)
β (°) 101.303 (8)
V3)1730.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.71 × 0.55 × 0.36
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14212, 3403, 1769
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.211, 0.94
No. of reflections3403
No. of parameters209
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.31

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.322.961 (4)126
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVesek, H., Kazak, C., Alaman Ağar, A., Macit, M. & Soylu, M. S. (2012). Acta Cryst. E68, o2518.  CSD CrossRef IUCr Journals Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds