organic compounds
1-Allyl-1H-1,3-benzimidazol-2(3H)-one
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanmaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr
The fused five- and six-membered rings in the title compound, C10H10N2O, are approximately coplanar, with an r.m.s. deviation of 0.008 Å. The mean plane of the allyl group is roughly perpendicular to the mean plane of the 1,3-benzimidazol-2(3H)-one system, making a dihedral angle of 86.1 (2)°. In the crystal, each molecule is linked to its symmetry equivalent partner by a pair of N—H⋯O and C—H⋯O hydrogen bonds.
Related literature
For the pharmacological and biochemical properties of the title compound, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For compounds with similar structures, see: Belaziz et al. (2012); Ouzidan et al. (2011).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812043620/fj2602sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043620/fj2602Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812043620/fj2602Isup3.cml
To 1H-1,3-benzimidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 2.98 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added allyl bromide (0.14 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by
on a column of silica gel with ethyl acetate/hexane (1/2) as The product was obtained with quantitative yield of 70%. It was recrystallized from hexan/acetate to give colourless crystals.H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with Uiso(H) = 1.2 Ueq (aromatic, methylene).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C10H10N2O | F(000) = 368 |
Mr = 174.20 | Dx = 1.237 Mg m−3 |
Monoclinic, P21/c | Melting point: 342.7 K |
Hall symbol: -p 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2749 (5) Å | Cell parameters from 2570 reflections |
b = 5.5787 (3) Å | θ = 2.9–29.4° |
c = 16.6220 (9) Å | µ = 0.08 mm−1 |
β = 100.976 (4)° | T = 296 K |
V = 935.35 (8) Å3 | Block, colourless |
Z = 4 | 0.38 × 0.29 × 0.27 mm |
Bruker X8 APEX diffractometer | 1393 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.046 |
Graphite monochromator | θmax = 29.4°, θmin = 2.9° |
ϕ and ω scans | h = −13→14 |
13429 measured reflections | k = −7→7 |
2570 independent reflections | l = −22→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0584P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2570 reflections | Δρmax = 0.14 e Å−3 |
120 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.011 (4) |
C10H10N2O | V = 935.35 (8) Å3 |
Mr = 174.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2749 (5) Å | µ = 0.08 mm−1 |
b = 5.5787 (3) Å | T = 296 K |
c = 16.6220 (9) Å | 0.38 × 0.29 × 0.27 mm |
β = 100.976 (4)° |
Bruker X8 APEX diffractometer | 1393 reflections with I > 2σ(I) |
13429 measured reflections | Rint = 0.046 |
2570 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.14 e Å−3 |
2570 reflections | Δρmin = −0.14 e Å−3 |
120 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.64101 (14) | 0.3295 (2) | 0.87918 (9) | 0.0444 (4) | |
C2 | 0.63854 (16) | 0.3098 (3) | 0.79675 (9) | 0.0549 (4) | |
H2A | 0.5937 | 0.1851 | 0.7662 | 0.066* | |
C3 | 0.70534 (18) | 0.4825 (3) | 0.76048 (9) | 0.0638 (5) | |
H3 | 0.7056 | 0.4732 | 0.7046 | 0.077* | |
C4 | 0.77162 (19) | 0.6684 (3) | 0.80584 (10) | 0.0651 (5) | |
H4 | 0.8153 | 0.7820 | 0.7798 | 0.078* | |
C5 | 0.77454 (16) | 0.6892 (2) | 0.88889 (10) | 0.0557 (4) | |
H5 | 0.8189 | 0.8149 | 0.9191 | 0.067* | |
C6 | 0.70925 (14) | 0.5166 (2) | 0.92520 (8) | 0.0436 (4) | |
C7 | 0.74323 (15) | 0.6384 (2) | 1.07492 (9) | 0.0512 (4) | |
H7A | 0.7020 | 0.5928 | 1.1205 | 0.061* | |
H7B | 0.7180 | 0.8027 | 1.0605 | 0.061* | |
C8 | 0.88971 (17) | 0.6264 (3) | 1.10148 (10) | 0.0656 (5) | |
H8 | 0.9191 | 0.4602 | 1.1144 | 0.105 (7)* | |
C9 | 0.9688 (2) | 0.8074 (4) | 1.11471 (13) | 0.0968 (7) | |
H9A | 1.0714 | 0.7945 | 1.1346 | 0.116* | |
H9B | 0.9256 | 0.9702 | 1.1048 | 0.116* | |
C10 | 0.61611 (15) | 0.2860 (2) | 1.01062 (9) | 0.0441 (4) | |
N1 | 0.69312 (11) | 0.48505 (18) | 1.00561 (7) | 0.0452 (3) | |
N2 | 0.58638 (12) | 0.19162 (19) | 0.93391 (7) | 0.0481 (3) | |
H2 | 0.5401 | 0.0640 | 0.9210 | 0.058* | |
O1 | 0.58255 (11) | 0.21105 (17) | 1.07330 (6) | 0.0559 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0415 (9) | 0.0445 (7) | 0.0468 (9) | 0.0002 (5) | 0.0072 (7) | 0.0025 (6) |
C2 | 0.0578 (11) | 0.0578 (9) | 0.0476 (10) | −0.0040 (7) | 0.0064 (8) | −0.0033 (6) |
C3 | 0.0733 (13) | 0.0750 (11) | 0.0442 (9) | −0.0033 (8) | 0.0137 (8) | 0.0056 (7) |
C4 | 0.0751 (13) | 0.0680 (11) | 0.0555 (11) | −0.0120 (8) | 0.0205 (9) | 0.0106 (8) |
C5 | 0.0597 (11) | 0.0523 (9) | 0.0567 (10) | −0.0101 (7) | 0.0149 (8) | 0.0027 (6) |
C6 | 0.0417 (9) | 0.0443 (7) | 0.0451 (8) | 0.0006 (6) | 0.0091 (6) | 0.0028 (5) |
C7 | 0.0556 (11) | 0.0511 (8) | 0.0483 (9) | −0.0034 (6) | 0.0132 (8) | −0.0068 (6) |
C8 | 0.0591 (12) | 0.0633 (11) | 0.0695 (12) | −0.0024 (8) | 0.0001 (9) | −0.0102 (8) |
C9 | 0.0674 (15) | 0.0902 (15) | 0.130 (2) | −0.0206 (10) | 0.0128 (13) | −0.0189 (12) |
C10 | 0.0420 (9) | 0.0437 (7) | 0.0469 (9) | 0.0000 (6) | 0.0090 (7) | 0.0037 (6) |
N1 | 0.0476 (8) | 0.0444 (6) | 0.0442 (7) | −0.0063 (5) | 0.0106 (6) | −0.0014 (4) |
N2 | 0.0514 (8) | 0.0439 (6) | 0.0491 (8) | −0.0094 (5) | 0.0100 (6) | −0.0008 (5) |
O1 | 0.0631 (8) | 0.0575 (6) | 0.0491 (7) | −0.0111 (5) | 0.0159 (6) | 0.0066 (4) |
C1—C2 | 1.370 (2) | C7—N1 | 1.4487 (17) |
C1—N2 | 1.3890 (17) | C7—C8 | 1.487 (2) |
C1—C6 | 1.4007 (18) | C7—H7A | 0.9700 |
C2—C3 | 1.386 (2) | C7—H7B | 0.9700 |
C2—H2A | 0.9300 | C8—C9 | 1.288 (2) |
C3—C4 | 1.383 (2) | C8—H8 | 0.9858 |
C3—H3 | 0.9300 | C9—H9A | 1.0463 |
C4—C5 | 1.380 (2) | C9—H9B | 1.0104 |
C4—H4 | 0.9300 | C10—O1 | 1.2313 (16) |
C5—C6 | 1.3768 (19) | C10—N2 | 1.3594 (17) |
C5—H5 | 0.9300 | C10—N1 | 1.3751 (17) |
C6—N1 | 1.3890 (16) | N2—H2 | 0.8600 |
C2—C1—N2 | 132.67 (13) | C8—C7—H7A | 108.9 |
C2—C1—C6 | 121.20 (13) | N1—C7—H7B | 108.9 |
N2—C1—C6 | 106.13 (12) | C8—C7—H7B | 108.9 |
C1—C2—C3 | 117.58 (14) | H7A—C7—H7B | 107.7 |
C1—C2—H2A | 121.2 | C9—C8—C7 | 125.79 (19) |
C3—C2—H2A | 121.2 | C9—C8—H8 | 122.9 |
C4—C3—C2 | 121.15 (15) | C7—C8—H8 | 111.0 |
C4—C3—H3 | 119.4 | C8—C9—H9A | 124.4 |
C2—C3—H3 | 119.4 | C8—C9—H9B | 115.7 |
C5—C4—C3 | 121.56 (14) | H9A—C9—H9B | 119.9 |
C5—C4—H4 | 119.2 | O1—C10—N2 | 127.79 (13) |
C3—C4—H4 | 119.2 | O1—C10—N1 | 125.63 (13) |
C6—C5—C4 | 117.39 (14) | N2—C10—N1 | 106.57 (12) |
C6—C5—H5 | 121.3 | C10—N1—C6 | 109.64 (11) |
C4—C5—H5 | 121.3 | C10—N1—C7 | 123.39 (12) |
C5—C6—N1 | 131.91 (13) | C6—N1—C7 | 126.93 (11) |
C5—C6—C1 | 121.11 (13) | C10—N2—C1 | 110.67 (12) |
N1—C6—C1 | 106.97 (11) | C10—N2—H2 | 124.7 |
N1—C7—C8 | 113.31 (12) | C1—N2—H2 | 124.7 |
N1—C7—H7A | 108.9 | ||
N2—C1—C2—C3 | −179.87 (15) | N2—C10—N1—C6 | 1.06 (15) |
C6—C1—C2—C3 | −0.4 (2) | O1—C10—N1—C7 | −1.5 (2) |
C1—C2—C3—C4 | −0.2 (3) | N2—C10—N1—C7 | 178.85 (12) |
C2—C3—C4—C5 | 0.3 (3) | C5—C6—N1—C10 | 178.59 (15) |
C3—C4—C5—C6 | 0.3 (3) | C1—C6—N1—C10 | −0.59 (15) |
C4—C5—C6—N1 | 179.99 (14) | C5—C6—N1—C7 | 0.9 (2) |
C4—C5—C6—C1 | −0.9 (2) | C1—C6—N1—C7 | −178.28 (13) |
C2—C1—C6—C5 | 1.0 (2) | C8—C7—N1—C10 | 112.16 (16) |
N2—C1—C6—C5 | −179.39 (13) | C8—C7—N1—C6 | −70.44 (18) |
C2—C1—C6—N1 | −179.73 (12) | O1—C10—N2—C1 | 179.19 (14) |
N2—C1—C6—N1 | −0.11 (15) | N1—C10—N2—C1 | −1.14 (15) |
N1—C7—C8—C9 | 130.56 (19) | C2—C1—N2—C10 | −179.66 (15) |
O1—C10—N1—C6 | −179.26 (13) | C6—C1—N2—C10 | 0.79 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.00 | 2.8274 (14) | 161 |
C3—H3···O1ii | 0.93 | 2.52 | 3.3080 (19) | 142 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10N2O |
Mr | 174.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.2749 (5), 5.5787 (3), 16.6220 (9) |
β (°) | 100.976 (4) |
V (Å3) | 935.35 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.38 × 0.29 × 0.27 |
Data collection | |
Diffractometer | Bruker X8 APEX diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13429, 2570, 1393 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.690 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.128, 1.04 |
No. of reflections | 2570 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.14 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.00 | 2.8274 (14) | 161 |
C3—H3···O1ii | 0.93 | 2.52 | 3.3080 (19) | 142 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345. CrossRef CAS PubMed Web of Science Google Scholar
Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930. Web of Science CrossRef PubMed CAS Google Scholar
Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.. CrossRef CAS PubMed Web of Science Google Scholar
Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).
As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2012; Ouzidan et al. 2011), we reported in this paper the synthesis of new benzimidazol-2-one derivative by action of allyl bromide with 1H-1,3-benzimidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish mono-substituted compound (Scheme 1).
The crystal structure of the 1-allyl-1H-1,3-benzimidazol-2(3H)-one molecule is built up from fused six-and five-membered rings linked to C3H5 chain as shown in Fg.1. The fused-ring system is essentially planar, with a maximum deviation of -0.010 (1) Å for C10. The allyl group is nearly perpendicular to the 1H-1,3-benzimidazol-2(3H)-one plane as indicated by the torsion angle of C8 C7 N1 C6 - 70.44 (18)°. In the crystal, each molecule and its symmetry through the inversion center are linked by N2—H2···O1 and C3—H3···O1 hydrogen bonds in the way to form dimers as shown in Fig.2.