organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(Z)-2,3-Dimeth­­oxy­benzyl­­idene]-1,2,4-triazolo[3,2-b][1,3]thia­zol-6(5H)-one

aWenzhou Medical College, School of Pharmacy, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: profgrs@163.com

(Received 2 September 2012; accepted 11 October 2012; online 20 October 2012)

The title compound, C13H11N3O3S, was synthesized from 1H-1,2,4-triazole-5-thiol in a one pot reaction. The fused thia­zolo[3,2-b][1,2,4]triazole system is essentially coplanar with the benzene ring: they enclose an inter­planar angle of 1.37 (13)°. The olefinic double bond is in a Z conformation. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules into double layers parallel to the ab plane.

Related literature

For related structures, see: Özbey et al. (1999[Özbey, S., Kendi, E., Tozkoparan, B. & Ertan, M. (1999). Acta Cryst. C55, 1939-1941.]); Köysal et al. (2004[Köysal, Y., Işık, Ş., Dog~daş, E., Tozkoparan, B. & Ertan, M. (2004). Acta Cryst. C60, o356-o357.]). For background to the biological properties of fused thia­zolo[3,2-b][1,2,4]triazol derivatives, see: El-Sherif et al. (2006[El-Sherif, H. A. H., Mahmoud, A. M., Sarhan, A. A. O., Hozien, Z. A. & Habib, O. M. A. (2006). J. Sulfur Chem. 27 ,65-85.]); Gilbertsen et al. (1999[Gilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A. & Dyer, R. D. (1999). J. Med. Chem. 42, 1151-1160.]); Karthikeyan (2009[Karthikeyan, M. S. (2009). Eur. J. Med. Chem. 44, 827-833.]); Lesyk et al. (2007[Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med.Chem. 42, 641-648.]); Martin et al. (1999[Martin, L., Rabasseda, X. & Castaner, J. (1999). Drugs Fut. 24, 853-857.]); Tozkoparan et al. (2000[Tozkoparan, B., Gokhan, N., Aktay, G., Yeşilada, E. & Ertan, M. (2000). Eur. J. Med. Chem. 35, 743-750.], 2002[Tozkoparan, B., Aktayb, G. & Yeşilada, E. (2002). Il Farmaco, 57, 145-152.], 2007[Tozkoparan, B., Küpeli, E., Yeşilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808-1814.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O3S

  • Mr = 289.31

  • Monoclinic, C 2

  • a = 11.5904 (13) Å

  • b = 7.0570 (8) Å

  • c = 16.4519 (18) Å

  • β = 107.445 (2)°

  • V = 1283.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.314, Tmax = 1.000

  • 3567 measured reflections

  • 2096 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.07

  • 2096 reflections

  • 184 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 724 Friedel pairs

  • Flack parameter: 0.00 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N2i 0.93 2.46 3.375 (4) 167
C8—H8⋯N3ii 0.93 2.60 3.529 (4) 173
C1—H1⋯N3iii 0.93 2.65 3.556 (4) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{3\over 2}}, z]; (ii) -x, y-1, -z; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Darbufelone, a 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)thiazol-4-one derivative, is a new non-steroidal anti-inflammatory drug (NSAID), acting as a COX-2 and LOX-5 dual inhibitor (Martin et al., 1999). It is made and developed by the Warner-Lambert Company of the USA. The title compound, 5(Z)-(2,3-dimethoxybenzylidene)thiazolo[3,2-b][1,2,4]triazol-6(5H)-one, is structurally related to Darbufelone and other compounds bearing fused thiazole and triazole rings, which have attracted our interest in a search for better anti-inflammatory agents.

The thiazole and 1,2,4-triazole moieties are present in various molecules having biological activity, especially in antiinflammatory agents (Karthikeyan, 2009; Tozkoparan et al., 2002, 2007). Compounds which contain fused thiazole and triazole rings, thiazolo-triazoles, also show significant biological and pharmacological properties: antiinflammatory, antitumoral, analgesic, antipyretic, antimicrobial (Tozkoparan et al., 2000; Lesyk et al., 2007; El-Sherif et al., 2006). Thus, in the present work, with the aim of further clarifying the molecular structure of this type of compounds, the single-crystal X-ray analysis of 5(Z)-(2,3-dimethoxybenzylidene)thiazolo[3,2-b][1,2,4]triazol-6(5H)-one(I), has been carried out.

The title compound consists of a fused thiazolo[3,2-b]-l,2,4-triazole system and a phenyl group which bears 2,3-dimethoxy substituents (Fig. 1). The thiazolo[3,2-b][1,2,4]triazole system is essentially planar and the two rings nearly share a common plane with interplanar angle of 0.89 (18)°. The r.m.s. deviation of heavy atoms from the triazole and thiazolo ring mean planes are 0.0034 and 0.0020 Å, respectively. The benzene ring at the C5 position is in the cis (Z) configuration. The C4—C5 bond is a double bond [1.343 (4) Å]. The C3—C4 [1.489 (4), Å,] and C5—C6 [1.439 (4) Å] bonds are found to have normal single-bond lengths. A similar lengthening of the S1—C2 bond relative to the S1—C4 bond has been observed in the structure of a similar compound (Özbey et al., 1999; Köysal et al., 2004). The crystal of the title compound is stabilized by C—H···N intermolecular contacts. There are three intermolecular hydrogen-bond interactions: C9—H9···N2, C8—H8···N3 and C1—H1···N3 (Table 1).

Related literature top

For related structures, see: Özbey et al. (1999); Köysal et al. (2004). For background to the biological properties of fused thiazolo[3,2-b][1,2,4]triazol derivatives, see: El-Sherif et al. (2006); Gilbertsen et al. (1999); Karthikeyan (2009); Lesyk et al. (2007); Martin et al. (1999); Tozkoparan et al. (2000, 2002, 2007).

Experimental top

4 ml of 90% formic acid contained in a round-bottomed flask was heated at 100°C for 15 minutes, and then 1.82 g (20 mmol) thiosemicarbazide was added. The heating was continued for 30 minutes, during which time crystalline 2-formylhydrazinecarbothioamide separated. The reaction mixture was cooled to 0 °C to give a white solid. Then a solution of 10 mmol 2-formylhydrazinecarbothioamide and 2 ml 20% NaOH was heated for 1 h. The reaction mixture was cooled, poured onto crushed ice, and neutralized with conc. HCl. The resulting solid 1H-1,2,4-triazole-5-thiol was filtered, dried, and recrystallized from ethanol.

To 1 mmol of 1H-1,2,4-triazole-5-thiol, 1.5 mmol of monochloroacetic acid, 0.01 mol of 2,3-dimethoxy benzaldehyde, 1 ml acetic anhydride, 0.01 mol of anhydrous sodium acetate, and 2 ml glacial acetic acid were added and refluxed for 3 h. The reaction mixture was cooled, and poured onto crushed ice. The mixture was then allowed to reach room temperature, then filtered and washed with water to obtain a crude product. The resulting solid was collected and crystallized from acetic acid. Single crystals were grown from acetic acid by slow evaporation.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal-packing diagram the title compound. Hydrogen bonds are shown as dashed lines.
5-[(Z)-2,3-Dimethoxybenzylidene]-1,2,4- triazolo[3,2-b][1,3]thiazol-6(5H)-one top
Crystal data top
C13H11N3O3SF(000) = 600
Mr = 289.31Dx = 1.497 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 11.5904 (13) ÅCell parameters from 2670 reflections
b = 7.0570 (8) Åθ = 5.2–55.1°
c = 16.4519 (18) ŵ = 0.26 mm1
β = 107.445 (2)°T = 293 K
V = 1283.8 (2) Å3Prismatic, green
Z = 40.32 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube2022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1214
Tmin = 0.314, Tmax = 1.000k = 68
3567 measured reflectionsl = 2017
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.102P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.30 e Å3
2096 reflectionsΔρmin = 0.40 e Å3
184 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.004
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 724 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (10)
Crystal data top
C13H11N3O3SV = 1283.8 (2) Å3
Mr = 289.31Z = 4
Monoclinic, C2Mo Kα radiation
a = 11.5904 (13) ŵ = 0.26 mm1
b = 7.0570 (8) ÅT = 293 K
c = 16.4519 (18) Å0.32 × 0.22 × 0.20 mm
β = 107.445 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2096 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2022 reflections with I > 2σ(I)
Tmin = 0.314, Tmax = 1.000Rint = 0.074
3567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.30 e Å3
S = 1.07Δρmin = 0.40 e Å3
2096 reflectionsAbsolute structure: Flack (1983), 724 Friedel pairs
184 parametersAbsolute structure parameter: 0.00 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01455 (7)1.05191 (12)0.10793 (4)0.0509 (3)
N10.0780 (2)1.3372 (4)0.18332 (14)0.0416 (5)
N20.1377 (2)1.5049 (4)0.17612 (17)0.0508 (7)
N30.1513 (3)1.3773 (5)0.04552 (16)0.0590 (8)
O10.00045 (19)1.2734 (4)0.32636 (12)0.0554 (6)
O20.21278 (18)0.7058 (4)0.40934 (11)0.0527 (6)
O30.3203 (2)0.3716 (4)0.39185 (15)0.0661 (7)
C10.1790 (3)1.5220 (5)0.0926 (2)0.0568 (9)
H10.22451.62620.06690.068*
C20.0877 (3)1.2682 (5)0.10527 (16)0.0464 (7)
C30.0130 (2)1.2290 (4)0.25439 (15)0.0389 (6)
C40.0302 (2)1.0558 (5)0.22076 (14)0.0380 (6)
C50.0954 (2)0.9259 (4)0.27501 (16)0.0395 (6)
H50.10930.95510.33230.047*
C60.1475 (2)0.7493 (5)0.25979 (16)0.0390 (6)
C70.1392 (3)0.6801 (5)0.17817 (17)0.0441 (7)
H70.09750.74970.13040.053*
C80.1919 (3)0.5107 (5)0.16797 (18)0.0468 (7)
H80.18470.46590.11350.056*
C90.2555 (3)0.4070 (5)0.23833 (19)0.0464 (7)
H90.29300.29460.23080.056*
C100.2643 (2)0.4684 (5)0.32006 (18)0.0455 (7)
C110.2112 (2)0.6410 (5)0.33035 (17)0.0416 (6)
C120.3298 (3)0.7237 (7)0.47229 (19)0.0620 (10)
H12A0.35200.60480.50110.093*
H12B0.32620.81950.51290.093*
H12C0.38890.75850.44470.093*
C130.3783 (4)0.1988 (7)0.3845 (3)0.0700 (10)
H13A0.32090.11380.34820.105*
H13B0.41050.14270.43990.105*
H13C0.44290.22250.36060.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0663 (5)0.0506 (5)0.0329 (3)0.0151 (4)0.0104 (3)0.0014 (3)
N10.0420 (11)0.0388 (14)0.0433 (11)0.0040 (10)0.0117 (9)0.0009 (10)
N20.0488 (13)0.0465 (18)0.0533 (13)0.0060 (12)0.0095 (10)0.0010 (12)
N30.0694 (16)0.0561 (19)0.0425 (13)0.0161 (16)0.0031 (12)0.0062 (13)
O10.0653 (13)0.0592 (16)0.0403 (10)0.0085 (12)0.0136 (9)0.0072 (11)
O20.0555 (11)0.0690 (17)0.0331 (9)0.0154 (11)0.0126 (8)0.0032 (10)
O30.0809 (15)0.0590 (18)0.0581 (13)0.0246 (13)0.0205 (11)0.0176 (12)
C10.0598 (16)0.047 (2)0.0556 (16)0.0153 (16)0.0057 (14)0.0117 (16)
C20.0492 (14)0.0461 (17)0.0409 (13)0.0050 (14)0.0090 (11)0.0015 (13)
C30.0373 (12)0.0418 (17)0.0376 (12)0.0009 (12)0.0113 (10)0.0036 (12)
C40.0377 (11)0.0444 (16)0.0315 (10)0.0002 (13)0.0096 (9)0.0006 (13)
C50.0381 (11)0.0444 (17)0.0367 (12)0.0002 (12)0.0125 (10)0.0006 (12)
C60.0366 (11)0.0429 (16)0.0376 (12)0.0013 (12)0.0112 (10)0.0020 (12)
C70.0462 (14)0.0458 (17)0.0387 (12)0.0012 (13)0.0102 (11)0.0008 (13)
C80.0521 (14)0.047 (2)0.0433 (13)0.0039 (14)0.0167 (11)0.0081 (13)
C90.0473 (14)0.0385 (16)0.0573 (16)0.0006 (13)0.0217 (12)0.0038 (14)
C100.0426 (13)0.0462 (17)0.0478 (15)0.0039 (13)0.0136 (12)0.0076 (12)
C110.0395 (12)0.0473 (17)0.0395 (13)0.0016 (13)0.0139 (10)0.0017 (12)
C120.0649 (19)0.073 (3)0.0406 (15)0.0098 (19)0.0047 (14)0.0010 (15)
C130.066 (2)0.058 (2)0.079 (2)0.0158 (19)0.0098 (18)0.014 (2)
Geometric parameters (Å, º) top
S1—C21.740 (3)C5—H50.9300
S1—C41.772 (2)C6—C111.401 (4)
N1—C21.346 (4)C6—C71.405 (4)
N1—N21.358 (4)C7—C81.375 (5)
N1—C31.411 (4)C7—H70.9300
N2—C11.317 (4)C8—C91.381 (4)
N3—C21.291 (4)C8—H80.9300
N3—C11.377 (5)C9—C101.387 (4)
O1—C31.189 (3)C9—H90.9300
O2—C111.373 (3)C10—C111.397 (5)
O2—C121.444 (4)C12—H12A0.9600
O3—C101.350 (4)C12—H12B0.9600
O3—C131.415 (5)C12—H12C0.9600
C1—H10.9300C13—H13A0.9600
C3—C41.489 (4)C13—H13B0.9600
C4—C51.343 (4)C13—H13C0.9600
C5—C61.439 (4)
C2—S1—C490.02 (15)C8—C7—H7119.6
C2—N1—N2109.7 (2)C6—C7—H7119.6
C2—N1—C3117.8 (3)C7—C8—C9120.2 (3)
N2—N1—C3132.5 (2)C7—C8—H8119.9
C1—N2—N1100.8 (3)C9—C8—H8119.9
C2—N3—C1100.9 (3)C8—C9—C10120.8 (3)
C11—O2—C12116.8 (2)C8—C9—H9119.6
C10—O3—C13118.6 (3)C10—C9—H9119.6
N2—C1—N3116.5 (3)O3—C10—C9124.5 (3)
N2—C1—H1121.8O3—C10—C11116.7 (3)
N3—C1—H1121.8C9—C10—C11118.9 (3)
N3—C2—N1112.1 (3)O2—C11—C10121.6 (3)
N3—C2—S1134.8 (2)O2—C11—C6117.2 (3)
N1—C2—S1113.1 (2)C10—C11—C6121.1 (3)
O1—C3—N1124.1 (3)O2—C12—H12A109.5
O1—C3—C4128.9 (3)O2—C12—H12B109.5
N1—C3—C4107.0 (2)H12A—C12—H12B109.5
C5—C4—C3119.9 (2)O2—C12—H12C109.5
C5—C4—S1128.0 (2)H12A—C12—H12C109.5
C3—C4—S1112.1 (2)H12B—C12—H12C109.5
C4—C5—C6131.1 (2)O3—C13—H13A109.5
C4—C5—H5114.5O3—C13—H13B109.5
C6—C5—H5114.5H13A—C13—H13B109.5
C11—C6—C7118.0 (3)O3—C13—H13C109.5
C11—C6—C5118.2 (2)H13A—C13—H13C109.5
C7—C6—C5123.7 (3)H13B—C13—H13C109.5
C8—C7—C6120.9 (3)
C2—N1—N2—C10.1 (3)C3—C4—C5—C6179.9 (3)
C3—N1—N2—C1179.0 (3)S1—C4—C5—C60.1 (5)
N1—N2—C1—N30.5 (4)C4—C5—C6—C11179.5 (3)
C2—N3—C1—N20.9 (4)C4—C5—C6—C71.2 (5)
C1—N3—C2—N10.9 (4)C11—C6—C7—C80.1 (4)
C1—N3—C2—S1179.5 (3)C5—C6—C7—C8179.4 (3)
N2—N1—C2—N30.7 (4)C6—C7—C8—C90.9 (4)
C3—N1—C2—N3178.5 (3)C7—C8—C9—C101.9 (4)
N2—N1—C2—S1179.61 (19)C13—O3—C10—C92.4 (5)
C3—N1—C2—S10.4 (3)C13—O3—C10—C11178.2 (3)
C4—S1—C2—N3178.2 (4)C8—C9—C10—O3177.1 (3)
C4—S1—C2—N10.4 (2)C8—C9—C10—C112.2 (4)
C2—N1—C3—O1178.9 (3)C12—O2—C11—C1055.9 (4)
N2—N1—C3—O10.1 (5)C12—O2—C11—C6128.0 (3)
C2—N1—C3—C40.2 (3)O3—C10—C11—O21.9 (4)
N2—N1—C3—C4179.1 (3)C9—C10—C11—O2177.5 (3)
O1—C3—C4—C51.0 (5)O3—C10—C11—C6177.9 (3)
N1—C3—C4—C5180.0 (2)C9—C10—C11—C61.5 (4)
O1—C3—C4—S1179.2 (3)C7—C6—C11—O2176.6 (3)
N1—C3—C4—S10.2 (3)C5—C6—C11—O24.1 (4)
C2—S1—C4—C5179.9 (3)C7—C6—C11—C100.5 (4)
C2—S1—C4—C30.3 (2)C5—C6—C11—C10179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.463.375 (4)167
C8—H8···N3ii0.932.603.529 (4)173
C1—H1···N3iii0.932.653.556 (4)164
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H11N3O3S
Mr289.31
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)11.5904 (13), 7.0570 (8), 16.4519 (18)
β (°) 107.445 (2)
V3)1283.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.314, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3567, 2096, 2022
Rint0.074
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.07
No. of reflections2096
No. of parameters184
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.40
Absolute structureFlack (1983), 724 Friedel pairs
Absolute structure parameter0.00 (10)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.463.375 (4)166.6
C8—H8···N3ii0.932.603.529 (4)173.3
C1—H1···N3iii0.932.653.556 (4)164.0
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant Nos. LY12H16003 and Y4110197) and the Project of Wenzhou Sci & Tech Bureau (Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences is gratefully acknowledged for the data collection.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationEl-Sherif, H. A. H., Mahmoud, A. M., Sarhan, A. A. O., Hozien, Z. A. & Habib, O. M. A. (2006). J. Sulfur Chem. 27 ,65–85.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A. & Dyer, R. D. (1999). J. Med. Chem. 42, 1151–1160.  Web of Science PubMed Google Scholar
First citationKarthikeyan, M. S. (2009). Eur. J. Med. Chem. 44, 827–833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKöysal, Y., Işık, Ş., Dog~daş, E., Tozkoparan, B. & Ertan, M. (2004). Acta Cryst. C60, o356–o357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med.Chem. 42, 641–648.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, L., Rabasseda, X. & Castaner, J. (1999). Drugs Fut. 24, 853–857.  CAS Google Scholar
First citationÖzbey, S., Kendi, E., Tozkoparan, B. & Ertan, M. (1999). Acta Cryst. C55, 1939–1941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTozkoparan, B., Aktayb, G. & Yeşilada, E. (2002). Il Farmaco, 57, 145–152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTozkoparan, B., Gokhan, N., Aktay, G., Yeşilada, E. & Ertan, M. (2000). Eur. J. Med. Chem. 35, 743-750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTozkoparan, B., Küpeli, E., Yeşilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808–1814.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds