organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3149-o3150

Tris[(6S)-6-hy­dr­oxy-4-epi-shikimic acid] monohydrate: an enanti­omerically pure hy­dr­oxy­lated shikimic acid derived from methyl shikimate

aDepartment of Chemistry, University of Cologne, Greinstr. 4, 50939 Koeln, Germany
*Correspondence e-mail: griesbeck@uni-koeln.de

(Received 5 September 2012; accepted 1 October 2012; online 20 October 2012)

The title compound, 3C7H10O6·H2O, is the enanti­omerically pure product of a multi-step synthesis from the enanti­omerically pure natural shikimic acid. The asymmetric unit contains three mol­ecules of the acid and one mol­ecule of water. The cyclo­hexene rings of the acids have half-chair conformations. The carboxyl­ate, the four hydroxide groups and the additional water mol­ecule form a complex three-dimensional hydrogen-bonding network.

Related literature

A series of anti­tumor-active marine natural carbasugars has been isolated in the last two decades with a cyclo­hexene-1-carboxyl­ate core structure and four contiguous stereogenic centers (Numata et al., 1997[Numata, A., Iritani, M., Yamada, T., Minoura, K., Matsumura, E., Yamori, T. & Tsuruo, T. (1997). Tetrahedron Lett. 38, 8215-8218.]). The relative configuration of these compounds, the pericosines, has been a matter of debate since the first reports on the isolation (Usami et al., 2008[Usami, Y., Mizuki, K., Ichikawa, H. & Arimoto, M. (2008). Tetrahedron Asymmetry, 19, 1461-1464.], 2009[Usami, Y., Ohsugi, M., Mizuki, K., Ichikawa, H. & Arimoto, M. (2009). Org. Lett. 11, 2699-2701.]). By means of detailed NMR analysis of the natural compound pericosine D0 and comparison with the NMR data published for the 6-hy­droxy-5-epishikimic acid described herein, the absolute and relative configuration was established (Usami et al., 2006[Usami, Y., Horibe, Y., Takaoka, I., Ichikawa, H. & Arimoto, M. (2006). Synlett, 10, 1598-1600.], 2011[Usami, Y. & Mizuki, K. (2011). J. Nat. Prod. 74, 877-881.]). This reveals the importance of this X-ray crystallographic determination that finally proves the assignments that resulted from spectroscopic analyses. For the synthesis, see: Griesbeck et al. (2007[Griesbeck, A. G., Miara, C. & Neudörfl, J. (2007). Arkivoc, 8, 216-223.]).

[Scheme 1]

Experimental

Crystal data
  • 3C7H10O6·H2O

  • Mr = 588.47

  • Monoclinic, P 21

  • a = 11.2561 (17) Å

  • b = 7.7049 (11) Å

  • c = 13.9688 (14) Å

  • β = 91.672 (8)°

  • V = 1211.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5629 measured reflections

  • 2786 independent reflections

  • 1399 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.102

  • S = 0.88

  • 2786 reflections

  • 371 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1Ai 0.84 1.81 2.624 (5) 164
O3—H3⋯O4Aii 0.84 1.90 2.705 (5) 161
O4—H4⋯O6iii 0.84 1.94 2.738 (6) 157
O5—H5⋯O6Biv 0.84 2.08 2.736 (5) 134
O6—H6⋯O3iii 0.84 1.89 2.718 (6) 169
O6A—H6A⋯O3Av 0.84 1.99 2.764 (6) 153
O4A—H4A⋯O6Av 0.84 1.88 2.712 (6) 168
O5B—H5B⋯O5 0.84 1.93 2.765 (5) 171
O5A—H5A⋯O3B 0.84 2.06 2.882 (5) 164
O2A—H2A⋯O1vi 0.84 1.84 2.664 (5) 167
O6B—H6B⋯O1Biv 0.84 2.05 2.801 (5) 149
O4B—H4B⋯O4A 0.84 2.10 2.835 (6) 147
O2B—H2B⋯O5Bvii 0.84 1.85 2.663 (6) 163
O3B—H3B⋯O1W 0.84 1.88 2.703 (6) 166
O3A—H3A⋯O4iv 0.84 1.89 2.705 (5) 163
O1W—H1W1⋯O5Aviii 0.85 (2) 1.95 (2) 2.794 (7) 173 (8)
O1W—H1W2⋯O2Bix 0.86 (2) 2.16 (5) 2.967 (6) 157 (11)
Symmetry codes: (i) [-x, y-{\script{3\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z-1]; (iii) [-x-1, y+{\script{1\over 2}}, -z-1]; (iv) [-x, y+{\script{1\over 2}}, -z-1]; (v) [-x+1, y-{\script{1\over 2}}, -z]; (vi) [-x, y+{\script{3\over 2}}, -z]; (vii) x, y-1, z; (viii) [-x, y-{\script{1\over 2}}, -z]; (ix) [-x, y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Hooft 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: PLATON (Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a enantiomerically pure, highly substituted polyhydroxylated cyclohexane derived from the natural shikimic acid. Polyfunctionalized shikimic acid derivatives, e.g. the drug oseltamivir (tamiflu) lately have become well known as drugs repressing the symptoms of bird flu. Furthermore, the 4-epi-shikimic acid skeleton is present in numerous natural products with interesting biological properties, one example is the (6S)-6-chloro derivative (pericosine A), an antitumour agent from Periconia byssoid (Usami et al., 2006). Synthetic efforts to new and efficient structural modifications of the shikimate skeleton are thus of current and high relevance.

The asymmetric unit contains three molecules of the acid and one molecule water. All three independent acid molecules have the same half chair conformation (Fig. 1). Two molecules of the acid form hydrogen bonded carboxylic acid dimers, which are connected to double layers by hydrogen bonds (Fig. 3). The third molecule of the acid and the water molecule form a second layer structure (Fig. 4). These two different layer structures are connected via additional hydrogen bonds, forming a three dimmensional network (Fig. 5).

Related literature top

A series of antitumor-active marine natural carbasugars has been isolated in the last two decades with a cyclohexene-1-carboxylate core structure and four contiguous stereogenic centers (Numata et al., 1997). The relative configuration of these compounds, the pericosines, has been a matter of debate since the first reports on the isolation (Usami et al., 2008, 2009). By means of detailed NMR analysis of the natural compound pericosine D0 and comparison with the NMR data published for the 6-hydroxy-5-epishikimic acid described herein, the absolute and relative configuration was established (Usami et al., 2006, 2011). This reveals the importance of this X-ray crystallographic determination that finally proves the assignments that resulted from spectroscopic analyses. For the synthesis, see: Griesbeck et al. (2007).

Experimental top

By means of a 7-step synthetic procedure (Fig. 2), the acetal 2 was synthesized starting from enantiomerically pure shikimic acid (Griesbeck et al., 2007) by a sequence of 1) esterification (methanol, camphorsulfonic acid), 2) acetalization (dimethoxypropane, camphorsulfonic acid), 3) trifluoromethanesulfonate formation (trifluoromethanesulfonic anhydride, pyridine), 4) dehydration (caesium carbonate, dimethylformamide), 5) singlet oxygenation (rose bengal, visible light, oxygen atmosphere, tetrachloromethane), 6) reduction (potassium iodide, water-acetic acid), and 7) saponification of the methyl ester(lithium hydroxide, water). The acetal 2 was hydrolyzed by the following procedure: To a solution of 60 mg (0.26 mmol) of 2 in 2.5 ml of water and 2.5 ml of methanol was added 2 drops of concentrated HCl under vigorous stirring at room temperature. The reaction mixture was stirred overnight and the solvent evaporated under reduced pressure. The residue was repeatedly dissolved in ethanol and the solvent evaporated to give 45 mg (91%) of the title compound 1 as a colorless product. Recrystallization from ethanol resulted in fine colorless needles, m.p. 140–141°C.

Refinement top

Crystals of 1 are monoclinic; space group P21 was chosen as the acid component used was enantiopure sikimic acid and the absolute structure was set by reference to the known chirality of the enantiopure acid employed.

The hydrogen atoms of the hydroxy groups and the water molecule are partially disordered. Only one possible orientation was refined. The positions are constrained and treated as riding atoms with distances O—H = 0.84 Å. All other hydrogen atoms were placed in geometrically idealized positions and refined with using riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for C=CH.

Computing details top

Data collection: COLLECT (Hooft 1998); cell refinement: DENZO (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller 1999); software used to prepare material for publication: PLATON (Spek 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Synthesis of the title compound
[Figure 3] Fig. 3. Double layer formed from two independent acid molecules (stereodrawing parallel view).
[Figure 4] Fig. 4. Layer formed from one independent molecule acid and water.
[Figure 5] Fig. 5. Two connected Layers.
Tris[(6S)-6-hydroxy-4-epi-shikimic acid] monohydrate top
Crystal data top
3C7H10O6·H2OF(000) = 620
Mr = 588.47Dx = 1.614 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5629 reflections
a = 11.2561 (17) Åθ = 2.3–27.0°
b = 7.7049 (11) ŵ = 0.15 mm1
c = 13.9688 (14) ÅT = 100 K
β = 91.672 (8)°Prism, colourless
V = 1211.0 (3) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1399 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ϕ and ω scansh = 614
5629 measured reflectionsk = 89
2786 independent reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0326P)2]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
3C7H10O6·H2OV = 1211.0 (3) Å3
Mr = 588.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.2561 (17) ŵ = 0.15 mm1
b = 7.7049 (11) ÅT = 100 K
c = 13.9688 (14) Å0.20 × 0.10 × 0.05 mm
β = 91.672 (8)°
Data collection top
Nonius KappaCCD
diffractometer
1399 reflections with I > 2σ(I)
5629 measured reflectionsRint = 0.085
2786 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.27 e Å3
2786 reflectionsΔρmin = 0.28 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3102 (4)0.2913 (5)0.2574 (2)0.0246 (12)
O20.3049 (4)0.4950 (5)0.3725 (2)0.0237 (11)
H20.29430.56080.32510.036*
O30.4164 (4)0.2120 (5)0.6636 (2)0.0235 (11)
H30.40020.17820.71890.035*
O40.3797 (4)0.1684 (5)0.6388 (2)0.0211 (11)
H40.40690.26530.62260.032*
O50.2179 (4)0.1329 (5)0.4720 (2)0.0199 (11)
H50.19980.17620.52490.030*
O60.4911 (4)0.0313 (5)0.3704 (2)0.0226 (11)
H60.51490.06670.35270.034*
C10.3322 (5)0.2021 (8)0.4214 (4)0.0133 (14)
C20.3220 (5)0.2449 (8)0.5113 (4)0.0181 (16)
H2AA0.30160.36170.52510.022*
C30.3400 (6)0.1242 (8)0.5937 (4)0.0170 (15)
H3AA0.26160.09920.62270.020*
C40.3972 (6)0.0455 (8)0.5639 (4)0.0195 (16)
H4AA0.48440.02660.55670.023*
C50.3437 (6)0.1095 (8)0.4700 (4)0.0167 (15)
H5AA0.38170.22240.45320.020*
C60.3652 (5)0.0227 (8)0.3891 (4)0.0166 (15)
H6AA0.31880.00980.32970.020*
C70.3140 (5)0.3311 (8)0.3425 (4)0.0175 (15)
O1A0.3146 (4)0.7830 (5)0.2305 (3)0.0250 (12)
O2A0.2868 (4)0.9807 (5)0.1148 (2)0.0272 (12)
H2A0.28321.04780.16200.041*
O3A0.4144 (4)0.7044 (5)0.1699 (2)0.0261 (12)
H3A0.39210.68040.22620.039*
O4A0.3839 (4)0.3234 (5)0.1463 (2)0.0213 (11)
H4A0.43050.23980.13640.032*
O5A0.2219 (4)0.3483 (5)0.0099 (2)0.0235 (11)
H5A0.21130.25080.01590.035*
O6A0.4887 (4)0.5260 (5)0.1274 (2)0.0221 (11)
H6A0.51030.43740.15840.033*
C1A0.3275 (5)0.6941 (8)0.0687 (4)0.0159 (15)
C2A0.3199 (5)0.7380 (8)0.0230 (4)0.0186 (16)
H2A10.29960.85470.03830.022*
C3A0.3412 (6)0.6154 (8)0.1043 (4)0.0189 (16)
H3A10.26330.58760.13710.023*
C4A0.3988 (6)0.4488 (7)0.0705 (3)0.0175 (16)
H4A10.48570.47010.05910.021*
C5A0.3472 (6)0.3813 (8)0.0213 (3)0.0186 (16)
H5A10.38840.27090.03990.022*
C6A0.3646 (6)0.5122 (7)0.1018 (4)0.0172 (15)
H6A10.31840.47670.15860.021*
C7A0.3083 (6)0.8202 (8)0.1454 (4)0.0187 (16)
O1B0.0345 (4)0.3888 (5)0.4150 (3)0.0299 (12)
O2B0.0513 (4)0.4555 (5)0.2592 (3)0.0285 (12)
H2B0.07150.55290.28130.043*
O3B0.1426 (4)0.0421 (5)0.0919 (2)0.0225 (11)
H3B0.10450.02460.04190.034*
O4B0.1501 (4)0.3201 (5)0.2274 (2)0.0251 (11)
H4B0.20200.32090.18300.038*
O5B0.0695 (4)0.2162 (5)0.3176 (2)0.0231 (11)
H5B0.11970.19920.36230.035*
O6B0.1309 (4)0.0858 (5)0.4331 (2)0.0246 (12)
H6B0.12250.04780.48930.037*
C1B0.0130 (6)0.1703 (8)0.2996 (4)0.0208 (16)
C2B0.0253 (6)0.1288 (8)0.2070 (4)0.0265 (18)
H2B10.01050.21570.16060.032*
C3B0.0617 (6)0.0501 (8)0.1727 (4)0.0238 (17)
H3B10.01070.11670.15490.029*
C4B0.1225 (6)0.1430 (8)0.2535 (4)0.0227 (17)
H4B10.19790.08070.26790.027*
C5B0.0418 (6)0.1435 (8)0.3425 (4)0.0198 (16)
H5B10.07820.21710.39280.024*
C6B0.0283 (6)0.0423 (8)0.3797 (4)0.0242 (17)
H6B10.04340.04790.42360.029*
C7B0.0249 (6)0.3495 (8)0.3313 (4)0.0224 (17)
O1W0.0108 (6)0.0088 (8)0.0523 (4)0.0444 (14)
H1W10.071 (5)0.047 (10)0.031 (5)0.08 (4)*
H1W20.003 (9)0.010 (15)0.113 (2)0.15 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.039 (3)0.018 (3)0.017 (2)0.003 (2)0.004 (2)0.001 (2)
O20.040 (3)0.012 (3)0.019 (2)0.000 (2)0.0037 (19)0.0025 (19)
O30.039 (3)0.016 (3)0.016 (2)0.006 (2)0.002 (2)0.0002 (19)
O40.034 (3)0.013 (3)0.016 (2)0.001 (2)0.0000 (19)0.0002 (19)
O50.021 (3)0.020 (3)0.019 (2)0.003 (2)0.0026 (19)0.0009 (18)
O60.026 (3)0.010 (3)0.032 (2)0.003 (2)0.006 (2)0.000 (2)
C10.013 (4)0.008 (4)0.019 (3)0.001 (3)0.003 (3)0.001 (3)
C20.017 (4)0.009 (4)0.028 (4)0.006 (3)0.001 (3)0.001 (3)
C30.014 (4)0.016 (4)0.021 (3)0.005 (3)0.003 (3)0.004 (3)
C40.025 (4)0.015 (4)0.018 (3)0.003 (3)0.002 (3)0.006 (3)
C50.022 (5)0.006 (3)0.022 (3)0.003 (3)0.002 (3)0.003 (3)
C60.016 (4)0.015 (4)0.018 (3)0.004 (3)0.000 (3)0.003 (3)
C70.007 (4)0.017 (4)0.029 (4)0.003 (3)0.001 (3)0.005 (3)
O1A0.033 (3)0.023 (3)0.019 (2)0.002 (2)0.002 (2)0.002 (2)
O2A0.049 (4)0.011 (3)0.022 (2)0.005 (2)0.000 (2)0.006 (2)
O3A0.039 (3)0.021 (3)0.019 (2)0.008 (2)0.000 (2)0.002 (2)
O4A0.024 (3)0.020 (3)0.020 (2)0.002 (2)0.0007 (19)0.0047 (19)
O5A0.022 (3)0.019 (3)0.029 (2)0.002 (2)0.001 (2)0.0075 (19)
O6A0.027 (3)0.013 (3)0.026 (2)0.003 (2)0.0100 (19)0.0020 (19)
C1A0.013 (4)0.019 (4)0.016 (3)0.009 (3)0.002 (3)0.001 (3)
C2A0.016 (4)0.016 (4)0.024 (3)0.001 (3)0.002 (3)0.003 (3)
C3A0.021 (4)0.018 (4)0.018 (3)0.002 (3)0.000 (3)0.002 (3)
C4A0.023 (5)0.016 (4)0.013 (3)0.002 (3)0.001 (3)0.008 (3)
C5A0.016 (4)0.019 (4)0.020 (3)0.005 (3)0.009 (3)0.002 (3)
C6A0.023 (4)0.008 (4)0.021 (3)0.002 (3)0.000 (3)0.000 (3)
C7A0.014 (4)0.010 (4)0.033 (4)0.002 (3)0.006 (3)0.002 (3)
O1B0.047 (4)0.023 (3)0.020 (2)0.006 (2)0.001 (2)0.004 (2)
O2B0.035 (3)0.021 (3)0.029 (2)0.004 (2)0.001 (2)0.004 (2)
O3B0.030 (3)0.020 (3)0.017 (2)0.003 (2)0.0082 (19)0.0005 (18)
O4B0.035 (3)0.016 (3)0.024 (2)0.002 (2)0.0052 (19)0.001 (2)
O5B0.024 (3)0.018 (3)0.027 (2)0.000 (2)0.003 (2)0.001 (2)
O6B0.030 (3)0.024 (3)0.021 (2)0.002 (2)0.007 (2)0.0008 (19)
C1B0.030 (5)0.016 (4)0.017 (3)0.003 (3)0.003 (3)0.000 (3)
C2B0.034 (5)0.023 (4)0.022 (3)0.003 (4)0.002 (3)0.000 (3)
C3B0.033 (5)0.015 (4)0.023 (3)0.000 (3)0.004 (3)0.001 (3)
C4B0.031 (5)0.019 (4)0.018 (3)0.004 (3)0.001 (3)0.002 (3)
C5B0.017 (4)0.015 (4)0.027 (3)0.002 (3)0.002 (3)0.004 (3)
C6B0.028 (5)0.021 (4)0.023 (3)0.003 (3)0.001 (3)0.001 (3)
C7B0.021 (5)0.021 (4)0.026 (4)0.002 (3)0.001 (3)0.004 (3)
O1W0.048 (4)0.053 (4)0.032 (3)0.011 (3)0.001 (3)0.008 (3)
Geometric parameters (Å, º) top
O1—C71.226 (6)C1A—C6A1.530 (8)
O2—C71.336 (7)C2A—C3A1.502 (8)
O2—H20.8400C2A—H2A10.9500
O3—C31.449 (7)C3A—C4A1.508 (8)
O3—H30.8400C3A—H3A11.0000
O4—C41.429 (6)C4A—C5A1.515 (7)
O4—H40.8400C4A—H4A11.0000
O5—C51.429 (7)C5A—C6A1.518 (7)
O5—H50.8400C5A—H5A11.0000
O6—C61.450 (6)C6A—H6A11.0000
O6—H60.8400O1B—C7B1.210 (6)
C1—C21.307 (7)O2B—C7B1.337 (6)
C1—C71.494 (8)O2B—H2B0.8400
C1—C61.504 (8)O3B—C3B1.431 (7)
C2—C31.490 (8)O3B—H3B0.8400
C2—H2AA0.9500O4B—C4B1.444 (7)
C3—C41.521 (8)O4B—H4B0.8400
C3—H3AA1.0000O5B—C5B1.425 (7)
C4—C51.510 (7)O5B—H5B0.8400
C4—H4AA1.0000O6B—C6B1.433 (6)
C5—C61.546 (7)O6B—H6B0.8400
C5—H5AA1.0000C1B—C2B1.336 (7)
C6—H6AA1.0000C1B—C6B1.506 (7)
O1A—C7A1.223 (6)C1B—C7B1.507 (9)
O2A—C7A1.329 (7)C2B—C3B1.512 (8)
O2A—H2A0.8400C2B—H2B10.9500
O3A—C3A1.426 (6)C3B—C4B1.516 (8)
O3A—H3A0.8400C3B—H3B11.0000
O4A—C4A1.440 (6)C4B—C5B1.519 (8)
O4A—H4A0.8400C4B—H4B11.0000
O5A—C5A1.437 (7)C5B—C6B1.529 (8)
O5A—H5A0.8400C5B—H5B11.0000
O6A—C6A1.436 (6)C6B—H6B11.0000
O6A—H6A0.8400O1W—H1W10.85 (2)
C1A—C2A1.324 (7)O1W—H1W20.86 (2)
C1A—C7A1.467 (8)
C7—O2—H2109.5O4A—C4A—H4A1108.6
C3—O3—H3109.5C3A—C4A—H4A1108.6
C4—O4—H4109.5C5A—C4A—H4A1108.6
C5—O5—H5109.5O5A—C5A—C4A111.5 (4)
C6—O6—H6109.5O5A—C5A—C6A107.8 (5)
C2—C1—C7121.8 (5)C4A—C5A—C6A110.7 (5)
C2—C1—C6123.4 (5)O5A—C5A—H5A1108.9
C7—C1—C6114.8 (5)C4A—C5A—H5A1108.9
C1—C2—C3124.9 (6)C6A—C5A—H5A1108.9
C1—C2—H2AA117.6O6A—C6A—C5A109.7 (5)
C3—C2—H2AA117.6O6A—C6A—C1A105.3 (5)
O3—C3—C2107.1 (5)C5A—C6A—C1A110.9 (4)
O3—C3—C4109.7 (5)O6A—C6A—H6A1110.3
C2—C3—C4112.0 (4)C5A—C6A—H6A1110.3
O3—C3—H3AA109.3C1A—C6A—H6A1110.3
C2—C3—H3AA109.3O1A—C7A—O2A122.4 (5)
C4—C3—H3AA109.3O1A—C7A—C1A123.3 (6)
O4—C4—C5111.1 (5)O2A—C7A—C1A114.3 (5)
O4—C4—C3107.5 (4)C7B—O2B—H2B109.5
C5—C4—C3110.9 (5)C3B—O3B—H3B109.5
O4—C4—H4AA109.1C4B—O4B—H4B109.5
C5—C4—H4AA109.1C5B—O5B—H5B109.5
C3—C4—H4AA109.1C6B—O6B—H6B109.5
O5—C5—C4113.2 (4)C2B—C1B—C6B123.5 (6)
O5—C5—C6105.9 (5)C2B—C1B—C7B121.6 (6)
C4—C5—C6110.7 (5)C6B—C1B—C7B114.8 (5)
O5—C5—H5AA109.0C1B—C2B—C3B123.0 (6)
C4—C5—H5AA109.0C1B—C2B—H2B1118.5
C6—C5—H5AA109.0C3B—C2B—H2B1118.5
O6—C6—C1105.3 (5)O3B—C3B—C2B111.8 (5)
O6—C6—C5109.7 (5)O3B—C3B—C4B108.5 (5)
C1—C6—C5109.9 (4)C2B—C3B—C4B108.6 (5)
O6—C6—H6AA110.6O3B—C3B—H3B1109.3
C1—C6—H6AA110.6C2B—C3B—H3B1109.3
C5—C6—H6AA110.6C4B—C3B—H3B1109.3
O1—C7—O2122.7 (5)O4B—C4B—C3B110.9 (4)
O1—C7—C1123.3 (6)O4B—C4B—C5B108.9 (5)
O2—C7—C1114.0 (5)C3B—C4B—C5B109.8 (5)
C7A—O2A—H2A109.5O4B—C4B—H4B1109.1
C3A—O3A—H3A109.5C3B—C4B—H4B1109.1
C4A—O4A—H4A109.5C5B—C4B—H4B1109.1
C5A—O5A—H5A109.5O5B—C5B—C4B108.1 (5)
C6A—O6A—H6A109.5O5B—C5B—C6B111.8 (5)
C2A—C1A—C7A122.0 (6)C4B—C5B—C6B109.1 (5)
C2A—C1A—C6A122.4 (5)O5B—C5B—H5B1109.3
C7A—C1A—C6A115.5 (5)C4B—C5B—H5B1109.3
C1A—C2A—C3A124.3 (6)C6B—C5B—H5B1109.3
C1A—C2A—H2A1117.9O6B—C6B—C1B110.2 (5)
C3A—C2A—H2A1117.9O6B—C6B—C5B108.8 (5)
O3A—C3A—C2A106.9 (5)C1B—C6B—C5B111.9 (4)
O3A—C3A—C4A111.0 (5)O6B—C6B—H6B1108.6
C2A—C3A—C4A112.0 (5)C1B—C6B—H6B1108.6
O3A—C3A—H3A1108.9C5B—C6B—H6B1108.6
C2A—C3A—H3A1108.9O1B—C7B—O2B124.0 (6)
C4A—C3A—H3A1108.9O1B—C7B—C1B122.0 (6)
O4A—C4A—C3A107.5 (4)O2B—C7B—C1B114.0 (5)
O4A—C4A—C5A110.7 (5)H1W1—O1W—H1W2109 (8)
C3A—C4A—C5A112.6 (5)
C7—C1—C2—C3179.4 (6)O5A—C5A—C6A—O6A169.7 (4)
C6—C1—C2—C30.7 (10)C4A—C5A—C6A—O6A68.1 (6)
C1—C2—C3—O3132.5 (6)O5A—C5A—C6A—C1A74.4 (6)
C1—C2—C3—C412.2 (9)C4A—C5A—C6A—C1A47.7 (7)
O3—C3—C4—O477.6 (6)C2A—C1A—C6A—O6A98.2 (6)
C2—C3—C4—O4163.7 (5)C7A—C1A—C6A—O6A77.9 (6)
O3—C3—C4—C5160.8 (5)C2A—C1A—C6A—C5A20.4 (8)
C2—C3—C4—C542.0 (7)C7A—C1A—C6A—C5A163.5 (5)
O4—C4—C5—O562.3 (6)C2A—C1A—C7A—O1A179.9 (6)
C3—C4—C5—O557.2 (6)C6A—C1A—C7A—O1A4.0 (9)
O4—C4—C5—C6178.9 (5)C2A—C1A—C7A—O2A2.0 (9)
C3—C4—C5—C661.6 (6)C6A—C1A—C7A—O2A174.2 (5)
C2—C1—C6—O699.4 (6)C6B—C1B—C2B—C3B3.0 (11)
C7—C1—C6—O679.5 (6)C7B—C1B—C2B—C3B179.2 (6)
C2—C1—C6—C518.7 (9)C1B—C2B—C3B—O3B140.0 (6)
C7—C1—C6—C5162.5 (5)C1B—C2B—C3B—C4B20.4 (9)
O5—C5—C6—O6169.9 (4)O3B—C3B—C4B—O4B63.3 (6)
C4—C5—C6—O667.0 (6)C2B—C3B—C4B—O4B175.1 (5)
O5—C5—C6—C174.8 (6)O3B—C3B—C4B—C5B176.4 (5)
C4—C5—C6—C148.3 (7)C2B—C3B—C4B—C5B54.7 (7)
C2—C1—C7—O1171.8 (6)O4B—C4B—C5B—O5B67.1 (6)
C6—C1—C7—O19.3 (9)C3B—C4B—C5B—O5B54.4 (6)
C2—C1—C7—O29.7 (9)O4B—C4B—C5B—C6B171.1 (5)
C6—C1—C7—O2169.2 (5)C3B—C4B—C5B—C6B67.4 (6)
C7A—C1A—C2A—C3A178.6 (6)C2B—C1B—C6B—O6B113.1 (7)
C6A—C1A—C2A—C3A2.7 (10)C7B—C1B—C6B—O6B70.4 (7)
C1A—C2A—C3A—O3A134.8 (6)C2B—C1B—C6B—C5B8.1 (10)
C1A—C2A—C3A—C4A12.9 (9)C7B—C1B—C6B—C5B168.4 (5)
O3A—C3A—C4A—O4A77.0 (6)O5B—C5B—C6B—O6B160.3 (4)
C2A—C3A—C4A—O4A163.5 (5)C4B—C5B—C6B—O6B80.2 (6)
O3A—C3A—C4A—C5A160.8 (5)O5B—C5B—C6B—C1B77.7 (6)
C2A—C3A—C4A—C5A41.3 (7)C4B—C5B—C6B—C1B41.8 (7)
O4A—C4A—C5A—O5A60.9 (6)C2B—C1B—C7B—O1B178.8 (6)
C3A—C4A—C5A—O5A59.4 (6)C6B—C1B—C7B—O1B4.6 (10)
O4A—C4A—C5A—C6A179.1 (5)C2B—C1B—C7B—O2B3.9 (10)
C3A—C4A—C5A—C6A60.5 (7)C6B—C1B—C7B—O2B172.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Ai0.841.812.624 (5)164
O3—H3···O4Aii0.841.902.705 (5)161
O4—H4···O6iii0.841.942.738 (6)157
O5—H5···O6Biv0.842.082.736 (5)134
O6—H6···O3iii0.841.892.718 (6)169
O6A—H6A···O3Av0.841.992.764 (6)153
O4A—H4A···O6Av0.841.882.712 (6)168
O5B—H5B···O50.841.932.765 (5)171
O5A—H5A···O3B0.842.062.882 (5)164
O2A—H2A···O1vi0.841.842.664 (5)167
O6B—H6B···O1Biv0.842.052.801 (5)149
O4B—H4B···O4A0.842.102.835 (6)147
O2B—H2B···O5Bvii0.841.852.663 (6)163
O3B—H3B···O1W0.841.882.703 (6)166
O3A—H3A···O4iv0.841.892.705 (5)163
O1W—H1W1···O5Aviii0.85 (2)1.95 (2)2.794 (7)173 (8)
O1W—H1W2···O2Bix0.86 (2)2.16 (5)2.967 (6)157 (11)
Symmetry codes: (i) x, y3/2, z; (ii) x, y1/2, z1; (iii) x1, y+1/2, z1; (iv) x, y+1/2, z1; (v) x+1, y1/2, z; (vi) x, y+3/2, z; (vii) x, y1, z; (viii) x, y1/2, z; (ix) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula3C7H10O6·H2O
Mr588.47
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.2561 (17), 7.7049 (11), 13.9688 (14)
β (°) 91.672 (8)
V3)1211.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5629, 2786, 1399
Rint0.085
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.102, 0.88
No. of reflections2786
No. of parameters371
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: COLLECT (Hooft 1998), DENZO (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller 1999), PLATON (Spek 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Ai0.841.812.624 (5)164
O3—H3···O4Aii0.841.902.705 (5)161
O4—H4···O6iii0.841.942.738 (6)157
O5—H5···O6Biv0.842.082.736 (5)134
O6—H6···O3iii0.841.892.718 (6)169
O6A—H6A···O3Av0.841.992.764 (6)153
O4A—H4A···O6Av0.841.882.712 (6)168
O5B—H5B···O50.841.932.765 (5)171
O5A—H5A···O3B0.842.062.882 (5)164
O2A—H2A···O1vi0.841.842.664 (5)167
O6B—H6B···O1Biv0.842.052.801 (5)149
O4B—H4B···O4A0.842.102.835 (6)147
O2B—H2B···O5Bvii0.841.852.663 (6)163
O3B—H3B···O1W0.841.882.703 (6)166
O3A—H3A···O4iv0.841.892.705 (5)163
O1W—H1W1···O5Aviii0.85 (2)1.95 (2)2.794 (7)173 (8)
O1W—H1W2···O2Bix0.86 (2)2.16 (5)2.967 (6)157 (11)
Symmetry codes: (i) x, y3/2, z; (ii) x, y1/2, z1; (iii) x1, y+1/2, z1; (iv) x, y+1/2, z1; (v) x+1, y1/2, z; (vi) x, y+3/2, z; (vii) x, y1, z; (viii) x, y1/2, z; (ix) x, y+1/2, z.
 

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft and by University start-up funding (2004–2005).

References

First citationGriesbeck, A. G., Miara, C. & Neudörfl, J. (2007). Arkivoc, 8, 216–223.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationNumata, A., Iritani, M., Yamada, T., Minoura, K., Matsumura, E., Yamori, T. & Tsuruo, T. (1997). Tetrahedron Lett. 38, 8215–8218.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsami, Y., Horibe, Y., Takaoka, I., Ichikawa, H. & Arimoto, M. (2006). Synlett, 10, 1598–1600.  CrossRef Google Scholar
First citationUsami, Y. & Mizuki, K. (2011). J. Nat. Prod. 74, 877–881.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUsami, Y., Mizuki, K., Ichikawa, H. & Arimoto, M. (2008). Tetrahedron Asymmetry, 19, 1461–1464.  Web of Science CrossRef CAS Google Scholar
First citationUsami, Y., Ohsugi, M., Mizuki, K., Ichikawa, H. & Arimoto, M. (2009). Org. Lett. 11, 2699–2701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3149-o3150
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds