metal-organic compounds
Bis[4-(4-bromophenylimino-κN)pent-2-en-2-olato-κO]copper(II)
aDepartment of Chemistry, University of the Free State, PO Box 339, Nelson Mandela Drive, Bloemfontein 9301, South Africa
*Correspondence e-mail: bungueps@ufs.ac.za
In the title compound, [Cu(C11H11BrNO)2], the CuII atom is in a distorted square-planar geometry, with the two bidentate ketimine ligands positioned in a trans geometry. Two intermolecular C—H⋯O hydrogen bond interactions are present which link the molecules in a zigzag manner along the a axis. The molecules pack in layers along the diagonal of the bc plane.
Related literature
For similar structures, see: Bourget-Merle et al. (2002); Bryndin et al. (2008) Hsu et al. (2004, 2007) John et al. (2007); Stender et al. (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812042420/gg2104sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042420/gg2104Isup2.hkl
Copper nitrate Cu(NO3)2 (100 mg, 0.044 mmol) was dissolved in MeOH and refluxed with 2 equivalent of C11H11BrONH (237 mg, 0.94 mmol) for 2 h. The product was filtered at ambient temperature and dried in air. Black crystals were grown overnight from chloroform/ether (1:1, 10 ml) mixture. (yield: 169 mg, 0.29 mmol and 67%).
All aromatic and methine H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) of the parent atom with the C—H distance of 0.95 Å. The methyl H atoms were placed in geometrically idealized positions and contrained to ride the parent atom with Uiso(H)= 1.5Ueq(C) and at a distance of) 0.98 Å.
Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C11H11BrNO)2] | F(000) = 1132 |
Mr = 569.77 | Dx = 1.702 Mg m−3 Dm = 1.702 Mg m−3 Dm measured by not measured |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4022 reflections |
a = 12.493 (3) Å | θ = 2.6–28.3° |
b = 11.559 (4) Å | µ = 4.60 mm−1 |
c = 15.415 (4) Å | T = 100 K |
β = 92.306 (14)° | Cuboid, black |
V = 2224.2 (11) Å3 | 0.64 × 0.25 × 0.15 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4291 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 28.4°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −16→16 |
Tmin = 0.262, Tmax = 0.502 | k = −15→15 |
13700 measured reflections | l = −20→20 |
5558 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0411P)2] where P = (Fo2 + 2Fc2)/3 |
5558 reflections | (Δ/σ)max = 0.001 |
266 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.89 e Å−3 |
[Cu(C11H11BrNO)2] | V = 2224.2 (11) Å3 |
Mr = 569.77 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.493 (3) Å | µ = 4.60 mm−1 |
b = 11.559 (4) Å | T = 100 K |
c = 15.415 (4) Å | 0.64 × 0.25 × 0.15 mm |
β = 92.306 (14)° |
Bruker APEXII CCD diffractometer | 5558 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4291 reflections with I > 2σ(I) |
Tmin = 0.262, Tmax = 0.502 | Rint = 0.034 |
13700 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.65 e Å−3 |
5558 reflections | Δρmin = −0.89 e Å−3 |
266 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.8322 (2) | 0.8020 (3) | 0.36239 (16) | 0.0212 (6) | |
H11A | 0.9055 | 0.813 | 0.3859 | 0.032* | |
H11B | 0.8011 | 0.8772 | 0.3462 | 0.032* | |
H11C | 0.8331 | 0.7522 | 0.311 | 0.032* | |
C12 | 0.76552 (18) | 0.7460 (2) | 0.43032 (15) | 0.0149 (5) | |
C13 | 0.66749 (18) | 0.7913 (2) | 0.44918 (15) | 0.0175 (5) | |
H13 | 0.6461 | 0.8593 | 0.4185 | 0.021* | |
C14 | 0.59432 (18) | 0.7476 (2) | 0.50978 (16) | 0.0167 (5) | |
C15 | 0.48851 (19) | 0.8093 (3) | 0.51301 (18) | 0.0243 (6) | |
H15A | 0.4366 | 0.7727 | 0.4723 | 0.036* | |
H15B | 0.4978 | 0.8906 | 0.4969 | 0.036* | |
H15C | 0.4622 | 0.8048 | 0.572 | 0.036* | |
C21 | 0.6951 (2) | 0.2875 (3) | 0.71567 (18) | 0.0256 (6) | |
H21A | 0.6228 | 0.3133 | 0.7287 | 0.038* | |
H21B | 0.7318 | 0.259 | 0.7689 | 0.038* | |
H21C | 0.6905 | 0.2252 | 0.6725 | 0.038* | |
C22 | 0.7570 (2) | 0.3872 (2) | 0.68015 (17) | 0.0179 (5) | |
C23 | 0.8587 (2) | 0.4111 (2) | 0.71350 (17) | 0.0202 (6) | |
H23 | 0.8847 | 0.3643 | 0.7604 | 0.024* | |
C24 | 0.92856 (19) | 0.4990 (2) | 0.68462 (16) | 0.0177 (5) | |
C25 | 1.0380 (2) | 0.5049 (3) | 0.73005 (18) | 0.0294 (7) | |
H25A | 1.0898 | 0.463 | 0.6959 | 0.044* | |
H25B | 1.0349 | 0.4697 | 0.7877 | 0.044* | |
H25C | 1.0601 | 0.586 | 0.736 | 0.044* | |
C111 | 0.54017 (18) | 0.6141 (2) | 0.61825 (15) | 0.0129 (5) | |
C112 | 0.56717 (19) | 0.6087 (2) | 0.70644 (16) | 0.0174 (5) | |
H112 | 0.6316 | 0.6437 | 0.7283 | 0.021* | |
C113 | 0.50063 (19) | 0.5526 (2) | 0.76277 (16) | 0.0177 (5) | |
H113 | 0.5191 | 0.5486 | 0.8231 | 0.021* | |
C114 | 0.40750 (18) | 0.5026 (2) | 0.73001 (15) | 0.0150 (5) | |
C115 | 0.37692 (18) | 0.5094 (2) | 0.64311 (15) | 0.0151 (5) | |
H115 | 0.3113 | 0.4764 | 0.622 | 0.018* | |
C116 | 0.44426 (18) | 0.5657 (2) | 0.58699 (15) | 0.0149 (5) | |
H116 | 0.4246 | 0.571 | 0.5269 | 0.018* | |
C211 | 0.97726 (17) | 0.6546 (2) | 0.59351 (14) | 0.0127 (5) | |
C212 | 0.95377 (18) | 0.7715 (2) | 0.59664 (15) | 0.0150 (5) | |
H212 | 0.889 | 0.7959 | 0.6213 | 0.018* | |
C213 | 1.02240 (18) | 0.8536 (2) | 0.56474 (15) | 0.0157 (5) | |
H213 | 1.0056 | 0.9337 | 0.5672 | 0.019* | |
C214 | 1.11628 (18) | 0.8159 (2) | 0.52909 (15) | 0.0168 (5) | |
C215 | 1.14142 (19) | 0.6996 (2) | 0.52416 (16) | 0.0187 (6) | |
H215 | 1.2062 | 0.6756 | 0.4994 | 0.022* | |
C216 | 1.07162 (18) | 0.6190 (2) | 0.55558 (16) | 0.0159 (5) | |
H216 | 1.0877 | 0.5389 | 0.5515 | 0.019* | |
N1 | 0.61776 (14) | 0.65887 (19) | 0.56113 (12) | 0.0133 (4) | |
N2 | 0.90082 (15) | 0.57349 (18) | 0.62280 (13) | 0.0130 (4) | |
O1 | 0.80748 (12) | 0.65429 (16) | 0.46501 (10) | 0.0152 (4) | |
O2 | 0.70804 (13) | 0.44317 (15) | 0.61821 (11) | 0.0166 (4) | |
Cu1 | 0.75794 (2) | 0.58295 (3) | 0.567779 (18) | 0.01230 (8) | |
Br1 | 0.32073 (2) | 0.41819 (2) | 0.806750 (16) | 0.02103 (8) | |
Br2 | 1.21072 (2) | 0.92786 (3) | 0.48364 (2) | 0.03221 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0233 (13) | 0.0226 (16) | 0.0175 (12) | −0.0046 (11) | −0.0012 (10) | 0.0066 (11) |
C12 | 0.0180 (11) | 0.0132 (13) | 0.0130 (11) | −0.0037 (10) | −0.0052 (9) | 0.0005 (10) |
C13 | 0.0199 (12) | 0.0158 (14) | 0.0164 (12) | −0.0007 (10) | −0.0039 (10) | 0.0069 (11) |
C14 | 0.0161 (11) | 0.0154 (14) | 0.0183 (12) | −0.0011 (10) | −0.0050 (9) | −0.0016 (11) |
C15 | 0.0200 (13) | 0.0201 (16) | 0.0324 (15) | 0.0052 (11) | −0.0024 (11) | 0.0068 (13) |
C21 | 0.0281 (14) | 0.0198 (16) | 0.0287 (15) | −0.0056 (12) | −0.0016 (12) | 0.0103 (13) |
C22 | 0.0205 (12) | 0.0140 (14) | 0.0195 (13) | 0.0000 (10) | 0.0036 (10) | 0.0017 (11) |
C23 | 0.0240 (13) | 0.0172 (14) | 0.0190 (13) | 0.0008 (11) | −0.0038 (10) | 0.0098 (11) |
C24 | 0.0189 (12) | 0.0185 (15) | 0.0156 (12) | 0.0012 (11) | −0.0008 (9) | 0.0026 (11) |
C25 | 0.0215 (13) | 0.037 (2) | 0.0291 (15) | −0.0055 (13) | −0.0112 (11) | 0.0184 (14) |
C111 | 0.0132 (11) | 0.0131 (13) | 0.0123 (11) | 0.0010 (9) | −0.0011 (9) | 0.0007 (10) |
C112 | 0.0162 (12) | 0.0184 (14) | 0.0171 (12) | −0.0017 (10) | −0.0040 (9) | −0.0022 (11) |
C113 | 0.0192 (12) | 0.0214 (15) | 0.0121 (12) | −0.0018 (11) | −0.0024 (9) | −0.0025 (11) |
C114 | 0.0136 (11) | 0.0154 (14) | 0.0164 (12) | 0.0025 (10) | 0.0047 (9) | −0.0021 (10) |
C115 | 0.0120 (10) | 0.0166 (14) | 0.0166 (12) | −0.0004 (10) | −0.0010 (9) | −0.0038 (11) |
C116 | 0.0142 (11) | 0.0167 (14) | 0.0136 (11) | 0.0012 (10) | −0.0014 (9) | −0.0026 (10) |
C211 | 0.0107 (10) | 0.0167 (14) | 0.0103 (11) | −0.0009 (10) | −0.0032 (8) | 0.0000 (10) |
C212 | 0.0139 (11) | 0.0170 (14) | 0.0140 (11) | 0.0015 (10) | 0.0010 (9) | −0.0030 (10) |
C213 | 0.0176 (11) | 0.0121 (13) | 0.0172 (12) | 0.0015 (10) | −0.0013 (9) | −0.0012 (10) |
C214 | 0.0134 (11) | 0.0190 (14) | 0.0182 (12) | −0.0029 (10) | 0.0011 (9) | 0.0039 (11) |
C215 | 0.0144 (11) | 0.0210 (15) | 0.0210 (13) | 0.0015 (10) | 0.0049 (10) | 0.0030 (11) |
C216 | 0.0167 (12) | 0.0120 (13) | 0.0188 (12) | 0.0023 (10) | −0.0006 (10) | −0.0009 (10) |
N1 | 0.0118 (9) | 0.0144 (11) | 0.0133 (10) | −0.0015 (8) | −0.0032 (7) | 0.0014 (9) |
N2 | 0.0117 (9) | 0.0126 (11) | 0.0147 (10) | −0.0002 (8) | −0.0004 (7) | 0.0017 (9) |
O1 | 0.0176 (8) | 0.0154 (10) | 0.0123 (8) | 0.0008 (7) | −0.0018 (6) | 0.0021 (7) |
O2 | 0.0172 (8) | 0.0118 (10) | 0.0210 (9) | −0.0019 (7) | 0.0013 (7) | 0.0044 (7) |
Cu1 | 0.01157 (14) | 0.01196 (17) | 0.01323 (15) | −0.00026 (11) | −0.00136 (11) | 0.00234 (12) |
Br1 | 0.02047 (14) | 0.02328 (16) | 0.01966 (14) | −0.00309 (11) | 0.00480 (10) | 0.00181 (11) |
Br2 | 0.02029 (14) | 0.02105 (17) | 0.0562 (2) | −0.00094 (12) | 0.01245 (13) | 0.01269 (15) |
C11—C12 | 1.509 (3) | C111—C116 | 1.391 (3) |
C11—H11A | 0.98 | C111—N1 | 1.432 (3) |
C11—H11B | 0.98 | C112—C113 | 1.387 (4) |
C11—H11C | 0.98 | C112—H112 | 0.95 |
C12—O1 | 1.289 (3) | C113—C114 | 1.376 (3) |
C12—C13 | 1.374 (3) | C113—H113 | 0.95 |
C13—C14 | 1.426 (3) | C114—C115 | 1.380 (3) |
C13—H13 | 0.95 | C114—Br1 | 1.905 (2) |
C14—N1 | 1.321 (3) | C115—C116 | 1.392 (3) |
C14—C15 | 1.505 (3) | C115—H115 | 0.95 |
C15—H15A | 0.98 | C116—H116 | 0.95 |
C15—H15B | 0.98 | C211—C212 | 1.385 (4) |
C15—H15C | 0.98 | C211—C216 | 1.398 (3) |
C21—C22 | 1.503 (4) | C211—N2 | 1.424 (3) |
C21—H21A | 0.98 | C212—C213 | 1.382 (3) |
C21—H21B | 0.98 | C212—H212 | 0.95 |
C21—H21C | 0.98 | C213—C214 | 1.385 (3) |
C22—O2 | 1.287 (3) | C213—H213 | 0.95 |
C22—C23 | 1.380 (3) | C214—C215 | 1.383 (4) |
C23—C24 | 1.422 (4) | C214—Br2 | 1.904 (3) |
C23—H23 | 0.95 | C215—C216 | 1.377 (4) |
C24—N2 | 1.320 (3) | C215—H215 | 0.95 |
C24—C25 | 1.512 (3) | C216—H216 | 0.95 |
C25—H25A | 0.98 | N1—Cu1 | 1.958 (2) |
C25—H25B | 0.98 | N2—Cu1 | 1.948 (2) |
C25—H25C | 0.98 | O1—Cu1 | 1.9110 (17) |
C111—C112 | 1.389 (3) | O2—Cu1 | 1.9085 (19) |
C12—C11—H11A | 109.5 | C113—C112—H112 | 119.8 |
C12—C11—H11B | 109.5 | C111—C112—H112 | 119.8 |
H11A—C11—H11B | 109.5 | C114—C113—C112 | 119.1 (2) |
C12—C11—H11C | 109.5 | C114—C113—H113 | 120.5 |
H11A—C11—H11C | 109.5 | C112—C113—H113 | 120.5 |
H11B—C11—H11C | 109.5 | C113—C114—C115 | 121.9 (2) |
O1—C12—C13 | 125.2 (2) | C113—C114—Br1 | 118.74 (18) |
O1—C12—C11 | 114.5 (2) | C115—C114—Br1 | 119.31 (18) |
C13—C12—C11 | 120.3 (2) | C114—C115—C116 | 118.6 (2) |
C12—C13—C14 | 127.2 (2) | C114—C115—H115 | 120.7 |
C12—C13—H13 | 116.4 | C116—C115—H115 | 120.7 |
C14—C13—H13 | 116.4 | C111—C116—C115 | 120.4 (2) |
N1—C14—C13 | 122.4 (2) | C111—C116—H116 | 119.8 |
N1—C14—C15 | 121.5 (2) | C115—C116—H116 | 119.8 |
C13—C14—C15 | 116.2 (2) | C212—C211—C216 | 119.0 (2) |
C14—C15—H15A | 109.5 | C212—C211—N2 | 119.1 (2) |
C14—C15—H15B | 109.5 | C216—C211—N2 | 121.8 (2) |
H15A—C15—H15B | 109.5 | C213—C212—C211 | 121.5 (2) |
C14—C15—H15C | 109.5 | C213—C212—H212 | 119.3 |
H15A—C15—H15C | 109.5 | C211—C212—H212 | 119.3 |
H15B—C15—H15C | 109.5 | C212—C213—C214 | 118.2 (2) |
C22—C21—H21A | 109.5 | C212—C213—H213 | 120.9 |
C22—C21—H21B | 109.5 | C214—C213—H213 | 120.9 |
H21A—C21—H21B | 109.5 | C215—C214—C213 | 121.7 (2) |
C22—C21—H21C | 109.5 | C215—C214—Br2 | 119.67 (18) |
H21A—C21—H21C | 109.5 | C213—C214—Br2 | 118.7 (2) |
H21B—C21—H21C | 109.5 | C216—C215—C214 | 119.3 (2) |
O2—C22—C23 | 125.3 (2) | C216—C215—H215 | 120.3 |
O2—C22—C21 | 114.8 (2) | C214—C215—H215 | 120.3 |
C23—C22—C21 | 119.8 (2) | C215—C216—C211 | 120.3 (3) |
C22—C23—C24 | 126.5 (2) | C215—C216—H216 | 119.8 |
C22—C23—H23 | 116.8 | C211—C216—H216 | 119.8 |
C24—C23—H23 | 116.8 | C14—N1—C111 | 120.6 (2) |
N2—C24—C23 | 123.0 (2) | C14—N1—Cu1 | 123.75 (16) |
N2—C24—C25 | 120.7 (2) | C111—N1—Cu1 | 115.60 (16) |
C23—C24—C25 | 116.2 (2) | C24—N2—C211 | 119.9 (2) |
C24—C25—H25A | 109.5 | C24—N2—Cu1 | 124.07 (16) |
C24—C25—H25B | 109.5 | C211—N2—Cu1 | 116.06 (15) |
H25A—C25—H25B | 109.5 | C12—O1—Cu1 | 123.98 (15) |
C24—C25—H25C | 109.5 | C22—O2—Cu1 | 125.06 (16) |
H25A—C25—H25C | 109.5 | O2—Cu1—O1 | 145.59 (8) |
H25B—C25—H25C | 109.5 | O2—Cu1—N2 | 94.80 (8) |
C112—C111—C116 | 119.5 (2) | O1—Cu1—N2 | 93.64 (8) |
C112—C111—N1 | 118.3 (2) | O2—Cu1—N1 | 95.43 (8) |
C116—C111—N1 | 121.8 (2) | O1—Cu1—N1 | 94.70 (8) |
C113—C112—C111 | 120.4 (2) | N2—Cu1—N1 | 148.20 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C115—H115···O1i | 0.95 | 2.47 | 3.370 (3) | 157 |
C215—H215···O2ii | 0.95 | 2.54 | 3.378 (3) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H11BrNO)2] |
Mr | 569.77 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.493 (3), 11.559 (4), 15.415 (4) |
β (°) | 92.306 (14) |
V (Å3) | 2224.2 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.60 |
Crystal size (mm) | 0.64 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.262, 0.502 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13700, 5558, 4291 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.082, 1.00 |
No. of reflections | 5558 |
No. of parameters | 266 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.89 |
Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C115—H115···O1i | 0.95 | 2.47 | 3.370 (3) | 157.1 |
C215—H215···O2ii | 0.95 | 2.54 | 3.378 (3) | 146.5 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Acknowledgements
We would like to thank the crystallographer, Ricky Kotze, for the data collection, and the University of the Free State, the Chemistry Department, the NRF, Sasol Ltd and Inkaba YeAfrica for funding.
References
Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Bryndin, V. E., Smolentsev, A. I., Stabnikov, P. A. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 556–559. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hsu, S.-H., Chang, J.-C., Lai, C.-L., Hu, C.-H., Lee, H. M., Lee, G.-H., Peng, S.-M. & Huang, J.-H. (2004). Inorg. Chem. 43, 6786–6792. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hsu, S.-H., Li, C.-Y., Chiu, Y.-W., Chiu, M.-C., Lien, Y.-L., Kuo, P.-C., Lee, H. M., Huang, J.-H. & Cheng, C.-P. (2007). J. Organomet. Chem. 692, 5421–5428. Web of Science CSD CrossRef CAS Google Scholar
John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stender, M., Eichler, B. E., Hardman, N. J., Power, P. P., Prust, J., Noltemeyer, M. & Roesky, H. W. (2001). Inorg. Chem. 40, 2794–2799. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Beta-diketimine ligands are a versatile class of molecules that display an impressive range of diverse applications in coordination chemistry (Bourget-Merle et al. 2002). The success of these ligands (Stender et al. 2001) is presumably due to the scope for suitable tuning of the steric and electronic properties and due to its easy synthetic accessibility to coordinate to early transition metals (Hsu et al. 2004). Here we report the crystal structure of the Cu(II) complex containing a ketiminate ligand, [OC(Me)CHC(Me)NH (Ar)] where Ar = 4-bromophenyl. Structural analysis shows that the title compound crystallized as black cuboidal crystals in the monoclinic space group, P21/c, with one molecule in the asymmetric unit and with approximately non-crystallographic C2 symmetry. The complex shows a four coordinate environment around the copper atom where two ketimine ligands act as bidentate N,O-chelators and lie in the trans conformation to create two six-membered chelate rings (Cu—O—C—C—C—N). Similar structures are reported in literature and the bond distances and angles of this structure compare well to those in literature (Bryndin et al. 2008, Hsu et al. 2007, John et al.2007).
In this structure, the dihedral angles of the two coordinate planes, O1—Cu1—N2 and O2—Cu1—N1, are 24.1 (2)° and 21.1 (2)° respectively. Also, the Cu—O and Cu—N bond distances are all marginally unequal, hence suggesting distorted square-planer geometry around the Cu(II) center. In Figure 1, the Cu1—O1 and Cu1—O2 bond lengths are 1.911 (2) Å and 1.909 (2) Å while the Cu1—N1 and Cu1—N2 bond lengths were 1.958 (2) Å and 1.948 (2) Å respectively. The presence of the 4-bromophenyl group has caused a slight decrease in the Cu—N bond distances when compared to the respective analogues of copper ketimine complexes by Bryndin et al. 2008 (Cu—N = 1.960 (2) Å and 1.965 (2) Å) and Hsu et al. 2007 (Cu—N = 1.974 (1) Å and 1.974 (1) Å). Owing to the presence of the distortion, the four N—Cu—O bond angles are marginally different from the ideal value of a square planer geometry of 90° and are reported as 94.70 (8)° (N1—Cu1—O1) and 94.80 (8)° (N2—Cu1—O2). The diagonal angles, N1—Cu1—N2 and O1—Cu1—O2, are reported as 148.20 (9)° and 145.59 (8)° which also differ substantially from the ideal angle of 180° and are comparable to results reported by Bryndin et al. 2008 and Hsu et al. 2007.These differences were made apparent when comparing the results to the structures by John et al. 2007, where phenoxy-ketimine ligands were used as bidentate ligands for both Cu(II) and Ni(II), in which almost a perfect square planar geometry was obeserved. The stabilization is dominated by two intermolecular C—H···O hydrogen bonds (C115—H115···O1) 2.47 Å and C215—H215···O1 = 2.54 Å) (Table 2). π–π stacking is observed between neighbouring molecules with a centroid-to-hydrogen bond distance of 3.7236 (9) Å. Five pi-interactions (centroid-to-hydrogen) are observed with a distance varying between 3.527 (1) Å and 3.746 (1) Å. The hydrogen and pi-interactions as well as the pi–pi stacking is illustrated in Figure 2. The molecules pack in alternating layers along the c axis possibly due to the hydrogen- and π interactions.