organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2-Chloro-1,3-thia­zol-5-yl)meth­yl]-5-methyl-1,3,5-oxadiazinan-4-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 12 September 2012; accepted 8 October 2012; online 13 October 2012)

In the title compound, C8H10ClN3O2S, the oxadiazinane ring is in a sofa conformation with the ring O atom deviating from the best plane of the remaining five atoms by 0.636 (2) Å. A short intra­molecular C-S⋯O=C contact [S⋯O 3.122 (2) Å, C—S⋯O 80.0 (2)°] is observed between the two mol­ecular fragments bridged by the methyl­ene group. In the crystal, C—H⋯O hydrogen bonds link mol­ecules, forming chains along the b axis.

Related literature

For the biological activity of thia­methoxam, see: Maienfisch et al. (2001[Maienfisch, P., Huerlimann, H., Rindlisbacher, A., Gsell, L., Dettwiler, H., Haettenschwiler, J., Sieger, E. & Walti, M. (2001). Pest. Manag. Sci. 57, 165-176.], 2006[Maienfisch, P. (2006). Z. Naturforsch. Teil B, 61, 353-359.]); Suchail et al. (2001[Suchail, S., De Sousa, G. & Belzunces, L. P. (2001). Environ. Toxicol. Chem. 20, 2482-2486.]); Ford & Casida (2006[Ford, K. A. & Casida, J. E. (2006). Chem. Res. Toxicol. 19, 1549-1556.]). For the structure of thia­methoxam, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413-o2414.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10ClN3O2S

  • Mr = 247.70

  • Orthorhombic, P 21 21 21

  • a = 4.6141 (2) Å

  • b = 11.7335 (4) Å

  • c = 20.1460 (8) Å

  • V = 1090.70 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.925, Tmax = 1.000

  • 22323 measured reflections

  • 2147 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.07

  • 2147 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 856 Friedel pairs

  • Flack parameter: 0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O7i 0.93 2.60 3.443 (3) 151
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

An important milestone in the history of modern insect control is marked by the discovery of neonicotinoid insecticides (Maienfisch, 2006). In 1998 Novartis launched thiamethoxam as a novel second generation neonicotinoid with a unique structure and outstanding insecticidal activity (Maienfisch et al., 2001). The major natural metabolite of thiamethoxam is the title compound, which is thiamethoxam urea derivative (Suchail et al., 2001, Ford & Casida, 2006)

In the title compound (Fig.1) all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The oxadiazinane ring is in a sofa conformation [asymmetry parameter: ΔCs(O1—C4) = 7.47 (Duax & Norton, 1975)]. In the crystal, the displacement of the atom O1 from the plane defined by atoms C2/N3/C4/N5/C6 is -0.636 (2) Å. In thiametoxam and the title compound the two molecular fragments bridged by the methylene group are similarly oriented. C—H···O hydrogen bonds link molecules to form chains along b axis(Fig.2).

Related literature top

For the biological activity of thiamethoxam, see: Maienfisch et al. (2001, 2006); Suchail et al. (2001); Ford & Casida (2006). For the structure of thiamethoxam, see: Chopra et al. (2004). For ring conformations, see: Duax & Norton (1975).

Experimental top

Thiamethoxam (0.291 g, 0.001 mol) was dissolved in 5 ml methanol and to it 5 ml of 1 N K2CO3 solution was added. The reaction mixture was refluxed for about 10 h on a water bath at 343 K and then cooled. The reaction mixture was neutralized with 1 N HCl solution, until the solid compound was separated out. The synthesized compound was dissolved in minimum amount of methanol and was kept standing for slow evaporation until colourless transparent crystals were formed (m.p. = 372 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular C—H···O hydrogen bonds.
3-[(2-Chloro-1,3-thiazol-5-yl)methyl]-5-methyl-1,3,5-oxadiazinan-4-one top
Crystal data top
C8H10ClN3O2SF(000) = 512
Mr = 247.70Dx = 1.508 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11280 reflections
a = 4.6141 (2) Åθ = 3.5–29.0°
b = 11.7335 (4) ŵ = 0.53 mm1
c = 20.1460 (8) ÅT = 293 K
V = 1090.70 (7) Å3Needle, white
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2147 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.925, Tmax = 1.000l = 2424
22323 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2799P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2147 reflectionsΔρmax = 0.22 e Å3
137 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 856 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C8H10ClN3O2SV = 1090.70 (7) Å3
Mr = 247.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6141 (2) ŵ = 0.53 mm1
b = 11.7335 (4) ÅT = 293 K
c = 20.1460 (8) Å0.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2147 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1974 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 1.000Rint = 0.034
22323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.22 e Å3
S = 1.07Δρmin = 0.16 e Å3
2147 reflectionsAbsolute structure: Flack (1983), 856 Friedel pairs
137 parametersAbsolute structure parameter: 0.04 (9)
0 restraints
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29172 (13)0.85031 (5)0.83926 (3)0.04611 (15)
Cl10.64157 (15)0.83860 (6)0.96232 (3)0.0642 (2)
O10.4809 (4)1.08899 (16)0.64448 (10)0.0653 (5)
C20.2262 (7)1.1021 (2)0.68003 (16)0.0668 (8)
H2A0.08441.14120.65270.080*
H2B0.26301.14870.71890.080*
N30.1108 (5)0.99332 (17)0.70052 (10)0.0512 (5)
C40.1836 (6)0.8940 (2)0.67011 (12)0.0516 (6)
N50.3433 (6)0.90503 (19)0.61443 (11)0.0640 (6)
C60.4364 (9)1.0158 (3)0.59173 (14)0.0778 (9)
H6A0.61491.00790.56670.093*
H6B0.29051.04750.56240.093*
C70.0657 (6)0.9905 (3)0.76014 (14)0.0613 (7)
H7A0.20480.92890.75640.074*
H7B0.17341.06130.76340.074*
O70.1066 (5)0.80128 (15)0.69297 (10)0.0744 (6)
C80.4470 (9)0.8075 (3)0.57872 (19)0.0975 (12)
H8A0.38720.73920.60120.146*
H8B0.65470.80980.57650.146*
H8C0.36840.80800.53460.146*
C90.1052 (5)0.9747 (2)0.82176 (12)0.0494 (6)
C100.4123 (5)0.9127 (2)0.91085 (12)0.0484 (6)
N110.3276 (6)1.01443 (19)0.92255 (12)0.0692 (7)
C120.1516 (7)1.0488 (2)0.87096 (15)0.0680 (8)
H120.06831.12100.87040.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0529 (3)0.0353 (2)0.0501 (3)0.0000 (2)0.0022 (2)0.0000 (2)
Cl10.0651 (4)0.0728 (4)0.0546 (4)0.0027 (4)0.0063 (3)0.0091 (3)
O10.0633 (11)0.0579 (11)0.0748 (12)0.0128 (9)0.0003 (10)0.0120 (10)
C20.0732 (18)0.0395 (12)0.088 (2)0.0011 (13)0.0047 (16)0.0129 (13)
N30.0552 (12)0.0421 (10)0.0563 (12)0.0002 (9)0.0042 (10)0.0105 (9)
C40.0570 (13)0.0446 (11)0.0533 (14)0.0083 (11)0.0123 (13)0.0084 (11)
N50.0871 (17)0.0551 (13)0.0499 (12)0.0056 (13)0.0064 (12)0.0020 (10)
C60.102 (3)0.079 (2)0.0529 (17)0.0165 (19)0.0084 (16)0.0135 (15)
C70.0480 (14)0.0691 (16)0.0669 (17)0.0082 (13)0.0019 (12)0.0110 (14)
O70.1021 (17)0.0435 (9)0.0775 (13)0.0221 (11)0.0017 (13)0.0082 (9)
C80.121 (3)0.089 (2)0.083 (2)0.003 (2)0.011 (2)0.025 (2)
C90.0472 (13)0.0450 (12)0.0561 (14)0.0058 (10)0.0112 (11)0.0061 (11)
C100.0505 (13)0.0459 (13)0.0487 (13)0.0061 (11)0.0058 (11)0.0009 (10)
N110.0892 (19)0.0501 (12)0.0683 (15)0.0053 (13)0.0002 (14)0.0144 (11)
C120.087 (2)0.0429 (14)0.0741 (19)0.0176 (14)0.0026 (17)0.0061 (12)
Geometric parameters (Å, º) top
S1—C101.710 (2)N5—C61.443 (4)
S1—C91.731 (2)C6—H6A0.9700
Cl1—C101.718 (3)C6—H6B0.9700
O1—C61.382 (4)C7—C91.482 (4)
O1—C21.385 (4)C7—H7A0.9700
C2—N31.443 (3)C7—H7B0.9700
C2—H2A0.9700C8—H8A0.9600
C2—H2B0.9700C8—H8B0.9600
N3—C41.359 (3)C8—H8C0.9600
N3—C71.452 (3)C9—C121.336 (4)
C4—O71.233 (3)C10—N111.278 (3)
C4—N51.348 (3)N11—C121.379 (4)
N5—C81.434 (4)C12—H120.9300
C10—S1—C988.42 (12)N3—C7—C9113.4 (2)
C6—O1—C2109.9 (2)N3—C7—H7A108.9
O1—C2—N3111.3 (2)C9—C7—H7A108.9
O1—C2—H2A109.4N3—C7—H7B108.9
N3—C2—H2A109.4C9—C7—H7B108.9
O1—C2—H2B109.4H7A—C7—H7B107.7
N3—C2—H2B109.4N5—C8—H8A109.5
H2A—C2—H2B108.0N5—C8—H8B109.5
C4—N3—C2122.6 (2)H8A—C8—H8B109.5
C4—N3—C7119.5 (2)N5—C8—H8C109.5
C2—N3—C7117.6 (2)H8A—C8—H8C109.5
O7—C4—N5123.6 (2)H8B—C8—H8C109.5
O7—C4—N3121.1 (2)C12—C9—C7128.7 (2)
N5—C4—N3115.3 (2)C12—C9—S1108.5 (2)
C4—N5—C8121.5 (3)C7—C9—S1122.7 (2)
C4—N5—C6120.9 (2)N11—C10—S1117.1 (2)
C8—N5—C6117.4 (3)N11—C10—Cl1123.4 (2)
O1—C6—N5111.1 (2)S1—C10—Cl1119.52 (14)
O1—C6—H6A109.4C10—N11—C12108.3 (2)
N5—C6—H6A109.4C9—C12—N11117.6 (2)
O1—C6—H6B109.4C9—C12—H12121.2
N5—C6—H6B109.4N11—C12—H12121.2
H6A—C6—H6B108.0
C6—O1—C2—N354.5 (3)C4—N3—C7—C985.9 (3)
O1—C2—N3—C420.9 (4)C2—N3—C7—C987.9 (3)
O1—C2—N3—C7152.7 (2)N3—C7—C9—C12111.4 (3)
C2—N3—C4—O7172.1 (3)N3—C7—C9—S166.6 (3)
C7—N3—C4—O71.3 (4)C10—S1—C9—C120.2 (2)
C2—N3—C4—N57.7 (4)C10—S1—C9—C7178.1 (2)
C7—N3—C4—N5178.8 (2)C9—S1—C10—N110.3 (2)
O7—C4—N5—C82.7 (5)C9—S1—C10—Cl1178.75 (16)
N3—C4—N5—C8177.2 (3)S1—C10—N11—C120.2 (3)
O7—C4—N5—C6177.5 (3)Cl1—C10—N11—C12178.8 (2)
N3—C4—N5—C62.4 (4)C7—C9—C12—N11178.0 (3)
C2—O1—C6—N559.9 (4)S1—C9—C12—N110.2 (4)
C4—N5—C6—O131.4 (4)C10—N11—C12—C90.0 (4)
C8—N5—C6—O1143.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O7i0.932.603.443 (3)151
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H10ClN3O2S
Mr247.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.6141 (2), 11.7335 (4), 20.1460 (8)
V3)1090.70 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.925, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22323, 2147, 1974
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.07
No. of reflections2147
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16
Absolute structureFlack (1983), 856 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O7i0.932.603.443 (3)151
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413–o2414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFord, K. A. & Casida, J. E. (2006). Chem. Res. Toxicol. 19, 1549–1556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaienfisch, P. (2006). Z. Naturforsch. Teil B, 61, 353-359.  CAS Google Scholar
First citationMaienfisch, P., Huerlimann, H., Rindlisbacher, A., Gsell, L., Dettwiler, H., Haettenschwiler, J., Sieger, E. & Walti, M. (2001). Pest. Manag. Sci. 57, 165–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchail, S., De Sousa, G. & Belzunces, L. P. (2001). Environ. Toxicol. Chem. 20, 2482–2486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds