organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(Di­methyl­amino)-1-(4-fluoro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 13 September 2012; accepted 8 October 2012; online 13 October 2012)

In the title compound, C11H12FNO, the dihedral angle between the prop-2-en-1-one group and the benzene ring is 19.33 (6)°. The configuration of the keto group with respect to the olefinic double bond is s-cis. In the crystal, the mol­ecules form dimers through aromatic ππ stacking inter­actions [centroid–centroid distance = 3.667 (1) Å] and are linked via C—H⋯O inter­actions into chains along the b axis.

Related literature

For the synthesis and pharmaceutical activity of enamino­nes, see: Kantevari et al. (2007[Kantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024-13031.]); Ke et al. (2009[Ke, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389-1391.]); Omran et al. (1997[Omran, F. A., Awadi, N. A., Khair, A. A. E. & Elnagdi, M. H. (1997). Org. Prep. Proced. Int. 65, 285-292.]); Eddington et al. (2003[Eddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49-64.]). For a related structure, see: Deng et al. (2010[Deng, J., Shen, D. & Zhou, Z. (2010). Acta Cryst. E66, o2.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12FNO

  • Mr = 193.22

  • Monoclinic, P 21 /c

  • a = 13.2832 (6) Å

  • b = 5.8530 (2) Å

  • c = 14.2995 (8) Å

  • β = 116.086 (6)°

  • V = 998.49 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.824, Tmax = 1.000

  • 14183 measured reflections

  • 1952 independent reflections

  • 1430 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.04

  • 1952 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1i 0.96 2.59 3.531 (3) 168
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

(2E)-3-(Dimethylamino)-1-(4-fluorophenyl)prop-2-en-1-one is a versatile substrate used for synthesis of number of heterocyclic compounds and drug intermediates (Kantevari et al., 2007; Ke et al., 2009; Omran et al., 1997; Eddington et al., 2003).

The molecular structure of the title compound (I) is shown in Fig.1. The bond lengths and angles observed in (I) show normal values and are comparable with a related structure (Deng et al., 2010). The dihedral angle between prop-2-en-1-one group and the phenyl ring is 19.33 (6) °. Molecules in the unit cell are packed together to form one dimensional assembly along the b axis (Fig.2) through intermolecular C6—H6B···O1 interactions (Table 1). The crystal structure is further stabilized by ππ interactions between the benzene ring (C7—C12) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (- x, - y, -z)[centroid separation = 3.667 (1) Å, interplanar spacing = 3.535 Å and centroid shift = 0.97 Å].

Related literature top

For the synthesis and pharmaceutical activity of enaminones, see: Kantevari et al. (2007); Ke et al. (2009); Omran et al. (1997); Eddington et al. (2003). For a related structure, see: Deng et al. (2010).

Experimental top

In a 50 ml round bottom flask charged with 5 mmole of 4-methyl acetophenone and 5 mmole of dimethylformamide dimethyl acetal. Then 10 ml toulene was added and the reaction mixture was stirred for 3 h at 110°C. The reaction was monitored by TLC. After completion of reaction and cooling the reaction mixture was evaporated under vacuum. Finally, the product was isolated by column chromatography using ethyl acetate and n-hexane(2/8 vol.). Yield: 85%. IR(KBr): 1643, 1598, 1550,1439 cm-1. 1H NMR (300 MHz, CDCl3): 2.93(s, 3H, N—CH3), 3.15(s, 3H, N—CH3), 5.65–5.69 (d, 1H, =CH), 7.79–7.83(d, 1H,=CH), 7.05–7.11(m, 2H, Ar—H), 7.89–7.94 (m, 2H, Ar—H).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular C—H···O interactions.
(2E)-3-(Dimethylamino)-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C11H12FNOF(000) = 408
Mr = 193.22Dx = 1.285 Mg m3
Monoclinic, P21/cMelting point = 336–335 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.2832 (6) ÅCell parameters from 5766 reflections
b = 5.8530 (2) Åθ = 3.5–29.0°
c = 14.2995 (8) ŵ = 0.10 mm1
β = 116.086 (6)°T = 293 K
V = 998.49 (8) Å3Block, yellow
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1952 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.824, Tmax = 1.000l = 1717
14183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.1767P]
where P = (Fo2 + 2Fc2)/3
1952 reflections(Δ/σ)max = 0.002
129 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C11H12FNOV = 998.49 (8) Å3
Mr = 193.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2832 (6) ŵ = 0.10 mm1
b = 5.8530 (2) ÅT = 293 K
c = 14.2995 (8) Å0.3 × 0.2 × 0.2 mm
β = 116.086 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1952 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1430 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1.000Rint = 0.040
14183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1952 reflectionsΔρmin = 0.16 e Å3
129 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.14077 (14)0.3879 (3)0.44568 (12)0.0387 (4)
F10.19144 (9)0.5459 (2)0.27506 (10)0.0802 (4)
O10.28148 (11)0.1122 (2)0.52645 (12)0.0752 (5)
C10.26094 (15)0.3183 (3)0.50936 (13)0.0463 (4)
C20.34503 (14)0.4916 (3)0.54818 (13)0.0457 (4)
H20.32590.64470.53320.055*
C30.45299 (14)0.4299 (3)0.60714 (13)0.0489 (5)
H30.46530.27380.61860.059*
N40.54383 (12)0.5600 (2)0.65100 (12)0.0548 (5)
C50.53933 (17)0.8047 (3)0.63606 (18)0.0656 (6)
H5A0.58000.84530.59720.098*
H5B0.57240.87930.70260.098*
H5C0.46270.85200.59850.098*
C60.65389 (16)0.4629 (4)0.71403 (17)0.0689 (6)
H6A0.64860.29930.71300.103*
H6B0.68100.51650.78440.103*
H6C0.70480.50880.68630.103*
C80.05728 (15)0.2340 (3)0.43627 (13)0.0460 (4)
H80.07730.09210.46840.055*
C90.05434 (15)0.2869 (3)0.38041 (14)0.0510 (5)
H90.10980.18450.37610.061*
C100.08165 (14)0.4935 (3)0.33139 (13)0.0476 (5)
C110.00276 (15)0.6494 (3)0.33688 (13)0.0468 (5)
H110.02400.78800.30180.056*
C120.10921 (14)0.5974 (3)0.39551 (13)0.0424 (4)
H120.16380.70350.40140.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0408 (9)0.0342 (8)0.0392 (8)0.0007 (7)0.0158 (7)0.0018 (7)
F10.0383 (7)0.0777 (9)0.1045 (10)0.0076 (6)0.0130 (7)0.0085 (7)
O10.0530 (9)0.0379 (7)0.1041 (12)0.0033 (6)0.0066 (8)0.0109 (7)
C10.0446 (10)0.0361 (9)0.0504 (10)0.0021 (7)0.0136 (8)0.0031 (7)
C20.0405 (10)0.0367 (9)0.0522 (10)0.0028 (7)0.0134 (8)0.0008 (7)
C30.0454 (11)0.0380 (9)0.0542 (10)0.0017 (8)0.0134 (8)0.0009 (8)
N40.0370 (8)0.0433 (9)0.0680 (10)0.0025 (7)0.0082 (7)0.0015 (7)
C50.0526 (12)0.0458 (11)0.0848 (15)0.0024 (9)0.0179 (11)0.0022 (10)
C60.0416 (11)0.0642 (13)0.0804 (14)0.0076 (10)0.0080 (10)0.0013 (11)
C80.0483 (10)0.0364 (9)0.0476 (10)0.0037 (7)0.0159 (8)0.0032 (7)
C90.0436 (10)0.0489 (10)0.0585 (11)0.0102 (8)0.0206 (9)0.0012 (8)
C100.0363 (9)0.0504 (10)0.0501 (10)0.0031 (8)0.0134 (8)0.0041 (8)
C110.0483 (10)0.0382 (9)0.0496 (10)0.0068 (8)0.0175 (8)0.0034 (7)
C120.0410 (9)0.0368 (9)0.0487 (9)0.0023 (7)0.0191 (8)0.0013 (7)
Geometric parameters (Å, º) top
C7—C81.389 (2)C5—H5B0.9600
C7—C121.389 (2)C5—H5C0.9600
C7—C11.505 (2)C6—H6A0.9600
F1—C101.355 (2)C6—H6B0.9600
O1—C11.237 (2)C6—H6C0.9600
C1—C21.428 (2)C8—C91.375 (2)
C2—C31.354 (2)C8—H80.9300
C2—H20.9300C9—C101.365 (3)
C3—N41.328 (2)C9—H90.9300
C3—H30.9300C10—C111.365 (3)
N4—C51.445 (2)C11—C121.382 (2)
N4—C61.454 (2)C11—H110.9300
C5—H5A0.9600C12—H120.9300
C8—C7—C12118.41 (16)N4—C6—H6A109.5
C8—C7—C1118.20 (15)N4—C6—H6B109.5
C12—C7—C1123.39 (16)H6A—C6—H6B109.5
O1—C1—C2123.30 (16)N4—C6—H6C109.5
O1—C1—C7117.81 (16)H6A—C6—H6C109.5
C2—C1—C7118.89 (14)H6B—C6—H6C109.5
C3—C2—C1119.05 (16)C9—C8—C7121.44 (16)
C3—C2—H2120.5C9—C8—H8119.3
C1—C2—H2120.5C7—C8—H8119.3
N4—C3—C2129.38 (17)C10—C9—C8118.23 (17)
N4—C3—H3115.3C10—C9—H9120.9
C2—C3—H3115.3C8—C9—H9120.9
C3—N4—C5121.90 (15)F1—C10—C9118.63 (16)
C3—N4—C6121.72 (16)F1—C10—C11118.78 (16)
C5—N4—C6116.35 (16)C9—C10—C11122.59 (16)
N4—C5—H5A109.5C10—C11—C12118.80 (16)
N4—C5—H5B109.5C10—C11—H11120.6
H5A—C5—H5B109.5C12—C11—H11120.6
N4—C5—H5C109.5C11—C12—C7120.49 (16)
H5A—C5—H5C109.5C11—C12—H12119.8
H5B—C5—H5C109.5C7—C12—H12119.8
C8—C7—C1—O119.2 (3)C1—C7—C8—C9179.18 (16)
C12—C7—C1—O1160.52 (17)C7—C8—C9—C101.8 (3)
C8—C7—C1—C2159.98 (17)C8—C9—C10—F1179.16 (15)
C12—C7—C1—C220.4 (3)C8—C9—C10—C110.8 (3)
O1—C1—C2—C30.3 (3)F1—C10—C11—C12179.12 (15)
C7—C1—C2—C3178.80 (16)C9—C10—C11—C120.9 (3)
C1—C2—C3—N4179.93 (18)C10—C11—C12—C71.6 (3)
C2—C3—N4—C53.2 (3)C8—C7—C12—C110.6 (3)
C2—C3—N4—C6178.8 (2)C1—C7—C12—C11179.03 (15)
C12—C7—C8—C91.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.962.593.531 (3)168
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H12FNO
Mr193.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.2832 (6), 5.8530 (2), 14.2995 (8)
β (°) 116.086 (6)
V3)998.49 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.824, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14183, 1952, 1430
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.04
No. of reflections1952
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.962.593.531 (3)168
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

References

First citationDeng, J., Shen, D. & Zhou, Z. (2010). Acta Cryst. E66, o2.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024–13031.  Web of Science CrossRef CAS Google Scholar
First citationKe, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389–1391.  Web of Science CrossRef CAS Google Scholar
First citationOmran, F. A., Awadi, N. A., Khair, A. A. E. & Elnagdi, M. H. (1997). Org. Prep. Proced. Int. 65, 285–292.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds