organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3169-o3170

2-(Prop-2-enyl­oxy)benzamide

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bDepartment of Chemical Engineering, UAE University, AL Ain, Abu Dhabi, United Arab Emirates, cDepartment of Petroleum Engineering, UAE University, AL Ain, Abu Dhabi, United Arab Emirates, and dDepartment of Chemistry, UAE University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 22 September 2012; accepted 9 October 2012; online 20 October 2012)

In the title mol­ecule, C10H11NO2, the benzene ring forms dihedral angles of 33.15 (2) and 6.20 (2)° with the mean planes of the amide and propen­oxy groups, respectively. The amide –NH2 group is oriented toward the propen­oxy substituent and forms a weak intra­molecular N—H⋯O hydrogen bond to the propen­oxy O atom. The conformation of the propen­oxy group at the Csp2—Csp3 and Csp3—O bonds is synperiplanar and anti­periplanar, respectively. In the crystal, N—H⋯O hydrogen bonds involving the amide groups generate C(4) and R23(7) motifs that organize the mol­ecules into tapes along the a-axis direction. There are C—H⋯π inter­actions between the propen­oxy –CH2 group and the aromatic system of neighboring mol­ecules within the tape. The mean planes of the aromatic ring and the propen­oxy group belonging to mol­ecules located on opposite sites of the tape form an angle of 83.16 (2)°.

Related literature

For crystal structures of similar compounds, see: Al Jasem et al. (2012[Al Jasem, Y., Hindawi, B. al, Thiemann, T. & White, F. (2012). Acta Cryst. E68, o2639-o2640.]); Pagola & Stephens (2009[Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583-o586.]); Johnstone et al. (2010[Johnstone, R. D. L., Lennie, A. R., Parker, S. F., Parsons, S., Pidcock, E., Richardson, P. R., Warren, J. E. & Wood, P. A. (2010). CrystEngComm, 12, 1065-1078.]); Pertlik (1990)[Pertlik, F. (1990). Monatsh. Chem. 121, 129-139.]; Sasada et al. (1964[Sasada, Y., Takano, T. & Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940-946.]). For uses of 2-alk­oxy­benzamides, see: van de Waterbeemd & Testa (1983[Waterbeemd, H. van de & Testa, B. (1983). J. Med. Chem. 26, 203-207.]); Kusunoki & Harada (1984[Kusunoki, T. & Harada, S. (1984). J. Dermatol. 11, 277-281.]). For the preparation of a related 2-alk­oxy­benzamide, see: Al Jasem et al. (2012[Al Jasem, Y., Hindawi, B. al, Thiemann, T. & White, F. (2012). Acta Cryst. E68, o2639-o2640.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO2

  • Mr = 177.20

  • Orthorhombic, P 21 21 21

  • a = 5.08891 (17) Å

  • b = 11.2542 (4) Å

  • c = 15.8802 (6) Å

  • V = 909.48 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.30 × 0.09 × 0.08 mm

Data collection
  • Agilent SuperNova Atlas diffractometer

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.862, Tmax = 0.951

  • 4718 measured reflections

  • 1079 independent reflections

  • 1016 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.03

  • 1079 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 (2) 2.01 (2) 2.905 (2) 178 (17)
N1—H1B⋯O1ii 0.89 (3) 2.12 (3) 2.863 (2) 140 (2)
N1—H1B⋯O2 0.89 (3) 2.31 (2) 2.754 (2) 110.8 (18)
C8—H8BCgii 0.99 2.68 3.461 (2) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON.

Supporting information


Comment top

In 2-propenoxybenzamide (2-allyloxybenzamide) (Figure 1), the O1—C7—C1—C6 torsion angle characterizing the twist of the benzene ring relative to the amide group is -30.3 (2)° and the corresponding C8—O2—C2—C3 torsion angle for the propoxy group is 5.9 (2)°. There is an intramolecular N1—H1B···O2 bond within each molecule (Table 1). When compared to the structurally comparable 2-propoxybenzamide (Al Jasem et al., 2012), the torsion angle O1—C7—C1—C6 is much larger in the title compound. The amide groups generate C(4) and R23(7) hydrogen-bond motifs that organize the molecules into tapes along the a axis. The title compound exhibits a C10—H10A···O2 and a C8—H8··· π (Table 1) close contact, absent in 2-propoxybenzamide (Figure 2). The C4—H4···O1 intermolecular interaction in 2-propenoxybenzamide links the neighboring tapes of molecules along the a axis with each other (Figure 3). However, in 2-propoxybenzamide, where also a C–H···O intermolecular interaction is found, the interaction proceeds from the carbon ortho to the propoxy group, while in the present case, it proceeds from the carbon meta to the propenoxy group. As a result of more close intermolecular contacts in 2-propenoxybenzamide as compared to 2-propoxybenzamide, the difference in the packing between the two compounds is large. The main difference is that while in the 2-propoxybenzamide molecules are arranged into pairs by close contacts, where the pairs in one layer are not associated through close contacts, in the title compound all neighboring molecules form close contacts to each other. Nevertheless, both compounds exhibit particular molecular tapes, each compound with two different directions of tape propagation. In the title compound, the average plane (0 1 - 1) of a tape propagation has an angle of 68.78 (2)° with the corresponding plane (0 1 1) of the neighboring tape propagation. Due to the large dihedral angle between the benzene ring and the amide group in 2-propenoxybenzamide, the average plane (-1 2 2) of the benzene ring and the propenoxy group of a molecule in one stack makes an angle of 83.16 (2)° with the corresponding plane (1 2 2) of a molecule in the opposing motif within one tape.

Related literature top

For crystal structures of similar compounds, see: Al Jasem et al. (2012); Pagola & Stephens (2009); Johnstone et al. (2010); Pertlik (1990); Sasada et al. (1964). For uses of 2-alkoxybenzamides, see: van de Waterbeemd & Testa (1983); Kusunoki & Harada (1984). For the preparation of a related 2-alkoxybenzamide, see: Al Jasem et al. (2012).

Experimental top

To powdered KOH (1.12 g, 20.0 mmol) in DMSO (18 ml) was added salicylamide (2.74 g, 20.0 mmol), and the resulting mixture was stirred for 10 min. at rt. Thereafter, n-propenyl bromide (4.2 g, mmol, 34.7 mmol) was added dropwise. The solution was stirred for 12 h at rt. Then, it was poured into water (200 ml) and extracted with chloroform (3 x 75 ml). The organic phase was dried over anhydrous MgSO4, concentrated in vacuo, and the residue was subjected to column chromatography on silica gel (CHCl3/MtBE/hexane v/v/v 1:1:1) to give 2-propenoxybenzamide (2.76 g, 78%) as colorless crystals (m.p. 377 K). The crystal was grown from CHCl3/ MtBE/hexane (v/v/v 1:1:1).IR (KBr) νmax 3406, 3190, 1631, 1600, 1399, 1243, 996, 921, 757, 643, 627 cm-1; δH (400 MHz, CDCl3) 4.67 (2H, d, 3J = 5.6 Hz), 5.36 (1H, dd, 3J = 10.4 Hz, 2J = 1.2 Hz), 5.44 (1H, dd, 3J = 17.2 Hz, 2J = 1.2 Hz), 6.03 – 6.13 (1H, dt, 3J = 17.2 Hz, 3J = 10.4 Hz, 3J = 5.6 Hz), 6.25 (1H, bs, NH), 6.96 (1H, d, 3J = 8.0 Hz), 7.07 (1H, dd, 3J = 8.0 Hz, 3J = 8.0 Hz), 7.80 (1H, bs, NH), 8.20 (1H, dd, 3J = 8.0 Hz, 4J = 1.6 Hz); δC (100.5 MHz, CDCl3) 69.9, 112.6, 119.4, 121.1, 121.4, 132.0, 132.6, 133.3, 156.9, 167.2.

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C—H

distances of 0.95 - 0.99 Å and refined as riding with Uiso(H)

=xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

The N-bound H atom positions were determined from difference electron

density map and refined freely. In the absence of significant anomalous

scattering effects Friedel pairs have been merged.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009); Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound molecule with the atom-numbering scheme and the intramolecular interaction within the molecule. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular attractions between molecules of the title compound. [Symmetry codes: i: 1+x,y,z; ii: x,y,z; iii: -1/2 + x,1/2 - y,1 - z; iiii: 1/2 + x, 1/2 - y,1 - z]
[Figure 3] Fig. 3. The crystal packing diagram showing the C—H···O intermolecular interactions between tapes formed via amide group interactions.
2-(Prop-2-enyloxy)benzamide top
Crystal data top
C10H11NO2Dx = 1.294 Mg m3
Mr = 177.20Melting point: 377 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
a = 5.08891 (17) ÅCell parameters from 2824 reflections
b = 11.2542 (4) Åθ = 3.9–72.6°
c = 15.8802 (6) ŵ = 0.74 mm1
V = 909.48 (5) Å3T = 100 K
Z = 4Needle, colourless
F(000) = 3760.30 × 0.09 × 0.08 mm
Data collection top
Agilent SuperNova Atlas
diffractometer
1079 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1016 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4127 pixels mm-1θmax = 72.7°, θmin = 4.8°
ω scansh = 63
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
k = 1213
Tmin = 0.862, Tmax = 0.951l = 1919
4718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1267P]
where P = (Fo2 + 2Fc2)/3
1079 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H11NO2V = 909.48 (5) Å3
Mr = 177.20Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.08891 (17) ŵ = 0.74 mm1
b = 11.2542 (4) ÅT = 100 K
c = 15.8802 (6) Å0.30 × 0.09 × 0.08 mm
Data collection top
Agilent SuperNova Atlas
diffractometer
1079 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
1016 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.951Rint = 0.025
4718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
1079 reflectionsΔρmin = 0.18 e Å3
126 parameters
Special details top

Experimental. Numerical absorption correction based on gaussian integration over a multifaceted crystal model

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2397 (4)0.43317 (15)0.31664 (10)0.0181 (4)
C100.9389 (4)0.59453 (19)0.49447 (12)0.0289 (4)
C20.4129 (3)0.52840 (15)0.30222 (11)0.0188 (4)
C30.3949 (4)0.59415 (17)0.22777 (12)0.0238 (4)
C40.2055 (4)0.56545 (18)0.16826 (11)0.0262 (4)
C50.0314 (4)0.47271 (17)0.18190 (11)0.0244 (4)
C60.0478 (4)0.40808 (16)0.25658 (11)0.0208 (4)
C70.2401 (3)0.35748 (15)0.39466 (11)0.0181 (4)
C80.7520 (4)0.65550 (15)0.35506 (12)0.0231 (4)
C90.9255 (4)0.66806 (17)0.43007 (12)0.0268 (4)
H10A0.83100.52570.49580.035*
H10B1.05650.61040.53960.035*
H1A0.484 (5)0.288 (2)0.4772 (13)0.028 (6)*
H1B0.623 (5)0.358 (2)0.4113 (16)0.040 (7)*
H30.51200.65840.21790.029*
H40.19500.60990.11750.031*
H50.09750.45340.14080.029*
H60.07410.34580.26670.025*
H8A0.63890.72670.34960.028*
H8B0.86040.64880.30350.028*
H91.03730.73560.43160.032*
N10.4686 (3)0.33298 (15)0.43084 (10)0.0218 (3)
O10.0291 (2)0.31561 (12)0.42082 (8)0.0224 (3)
O20.5922 (2)0.55184 (11)0.36411 (7)0.0217 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0162 (8)0.0185 (8)0.0197 (8)0.0023 (7)0.0017 (7)0.0006 (6)
C20.0149 (8)0.0194 (8)0.0221 (8)0.0015 (7)0.0019 (7)0.0001 (7)
C30.0226 (9)0.0230 (8)0.0259 (9)0.0029 (8)0.0040 (7)0.0037 (7)
C40.0309 (10)0.0275 (10)0.0202 (8)0.0076 (9)0.0018 (8)0.0044 (7)
C50.0245 (9)0.0280 (9)0.0207 (8)0.0049 (8)0.0038 (7)0.0032 (7)
C60.0180 (8)0.0205 (8)0.0239 (8)0.0014 (7)0.0004 (8)0.0028 (7)
C70.0159 (8)0.0173 (8)0.0210 (8)0.0005 (7)0.0006 (7)0.0019 (6)
C80.0213 (9)0.0177 (8)0.0304 (9)0.0038 (8)0.0011 (8)0.0008 (7)
C90.0211 (9)0.0240 (9)0.0353 (10)0.0040 (8)0.0013 (8)0.0066 (8)
C100.0270 (10)0.0315 (9)0.0283 (9)0.0002 (9)0.0022 (9)0.0070 (8)
N10.0153 (7)0.0260 (8)0.0240 (7)0.0007 (6)0.0000 (6)0.0071 (6)
O10.0153 (6)0.0243 (6)0.0276 (6)0.0017 (5)0.0006 (5)0.0053 (5)
O20.0195 (6)0.0210 (6)0.0246 (6)0.0045 (5)0.0015 (5)0.0033 (5)
Geometric parameters (Å, º) top
C1—C21.406 (2)C7—N11.326 (2)
C1—C61.394 (2)C7—O11.244 (2)
C1—C71.504 (2)C8—H8A0.9900
C2—C31.398 (2)C8—H8B0.9900
C2—O21.367 (2)C8—C91.489 (3)
C3—H30.9500C8—O21.429 (2)
C3—C41.388 (3)C9—H90.9500
C4—H40.9500C9—C101.317 (3)
C4—C51.386 (3)C10—H10A0.9500
C5—H50.9500C10—H10B0.9500
C5—C61.394 (2)N1—H1A0.90 (2)
C6—H60.9500N1—H1B0.89 (3)
C1—C6—H6119.4C7—N1—H1A123.2 (16)
C10—C9—C8126.30 (18)C7—N1—H1B124.0 (16)
C10—C9—H9116.9C8—C9—H9116.9
C2—C1—C7124.39 (15)C9—C10—H10A120.0
C2—C3—H3120.1C9—C10—H10B120.0
C2—O2—C8117.72 (13)C9—C8—H8A109.8
C3—C2—C1120.00 (16)C9—C8—H8B109.8
C3—C4—H4119.6H10A—C10—H10B120.0
C4—C3—C2119.89 (18)H1A—N1—H1B113 (2)
C4—C3—H3120.1H8A—C8—H8B108.2
C4—C5—H5120.4N1—C7—C1118.44 (16)
C4—C5—C6119.20 (17)O1—C7—C1119.23 (15)
C5—C4—C3120.84 (17)O1—C7—N1122.25 (16)
C5—C4—H4119.6O2—C2—C1116.64 (14)
C5—C6—C1121.22 (17)O2—C2—C3123.36 (16)
C5—C6—H6119.4O2—C8—H8A109.8
C6—C1—C2118.81 (15)O2—C8—H8B109.8
C6—C1—C7116.76 (16)O2—C8—C9109.54 (15)
C6—C5—H5120.4
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.90 (2)2.01 (2)2.905 (2)178 (17)
N1—H1B···O1ii0.89 (3)2.12 (3)2.863 (2)140 (2)
N1—H1B···O20.89 (3)2.31 (2)2.754 (2)110.8 (18)
C8—H8B···Cgii0.992.683.461 (2)137
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H11NO2
Mr177.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.08891 (17), 11.2542 (4), 15.8802 (6)
V3)909.48 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.09 × 0.08
Data collection
DiffractometerAgilent SuperNova Atlas
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.862, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
4718, 1079, 1016
Rint0.025
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03
No. of reflections1079
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009); Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.90 (2)2.01 (2)2.905 (2)178 (17)
N1—H1B···O1ii0.89 (3)2.12 (3)2.863 (2)140 (2)
N1—H1B···O20.89 (3)2.31 (2)2.754 (2)110.8 (18)
C8—H8B···Cgii0.992.683.461 (2)137
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl Jasem, Y., Hindawi, B. al, Thiemann, T. & White, F. (2012). Acta Cryst. E68, o2639–o2640.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnstone, R. D. L., Lennie, A. R., Parker, S. F., Parsons, S., Pidcock, E., Richardson, P. R., Warren, J. E. & Wood, P. A. (2010). CrystEngComm, 12, 1065–1078.  Web of Science CSD CrossRef CAS Google Scholar
First citationKusunoki, T. & Harada, S. (1984). J. Dermatol. 11, 277–281.  CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPertlik, F. (1990). Monatsh. Chem. 121, 129–139.  CSD CrossRef CAS Web of Science Google Scholar
First citationSasada, Y., Takano, T. & Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940–946.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaterbeemd, H. van de & Testa, B. (1983). J. Med. Chem. 26, 203–207.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3169-o3170
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds