organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy-2-[2-({[6-(tri­fluoro­meth­yl)pyridin-2-yl]­­oxy}meth­yl)phen­yl]prop-2-enoic acid

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bNational Research Centre for Grapes, Pune 412307, India, and cDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 24 September 2012; accepted 9 October 2012; online 20 October 2012)

The title mol­ecule, C17H14F3NO4, consists of two nearly planar fragments, viz. the 2-benzyl­oxypyridine (r.m.s. deviation 0.016 Å) and (E)-3-meth­oxy­prop2-enoic (r.m.s. deviation 0.004 Å) units, which form a dihedral angle of 84.19 (7)°. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into dimers that are further connected by C—H⋯O and C—H⋯F inter­actions into (001) layers. In addition, ππ stacking inter­actions are observed within a layer between the pyridine and benzene rings [centroid–centroid distance = 3.768 (2) Å]. The F atoms of the trifluoro­methyl group are disordered over two sets of sites in a 0.53 (4):0.47 (4) ratio.

Related literature

The title compound is the acid metabolite of picoxystrobin [systematic name: methyl (E)-3-meth­oxy-2-{2-[6-(trifluoro­meth­yl)-2-pyridyl­oxymeth­yl]phen­yl}acrylate], a systemic fungicide with broad-spectrum bio-efficacy against various diseases of agricultural crops, see: Balba (2007[Balba, H. (2007). J. Environ. Sci. Health Part B, 42, 441-451.]); Ammermann et al. (2000[Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the BCPC Conference -Pest and Diseases, 2, 541-548.]). For a related structure, see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, o2425.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14F3NO4

  • Mr = 353.29

  • Triclinic, [P \overline 1]

  • a = 7.4701 (4) Å

  • b = 10.1619 (5) Å

  • c = 11.8219 (5) Å

  • α = 94.721 (4)°

  • β = 100.079 (4)°

  • γ = 110.685 (5)°

  • V = 816.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.821, Tmax = 1.000

  • 19533 measured reflections

  • 3214 independent reflections

  • 1988 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.154

  • S = 1.04

  • 3214 reflections

  • 253 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.85 (4) 1.78 (4) 2.626 (3) 174 (4)
C15—H15⋯O3ii 0.93 2.58 3.392 (3) 146
C17—H17A⋯F11Aiii 0.96 2.41 3.135 (14) 132
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The above compound is the acid metabolite of picoxystrobin, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases of economically important agricultural crops (Balba, 2007; Ammermann et al., 2000).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in the related structure (Kant et al., 2012). The dihedral angle between the two aromatic rings is 1.93 (9)°. The propenoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 82.6 (1)°]. The two nearly planar fragments, 2-(benzyloxy)-3-(trifluoromethyl)pyridine unit (r.m.s. deviation 0.016Å) and (E)-3-methoxyprop2-enoic unit (r.m.s. deviation 0.004Å) form dihedral angle of 84.19 (7)°. The F atoms of the trifluoromethyl group were refined as disordered over two sets of sites with occupancies of 0.53 (4)/0.47 (4). In the crystal, O—H···O hydrogen bonds link molecules to form dimers (Table 1). Dimers are further connected by C—H···O and C—H···F hydrogen bonds into (001) layers (Fig. 2). The crystal structure is further stabilized by ππ interactions between the pyridine ring (C11—C15/N1) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at(1 - x, 1 - y, - z) [centroid separation = 3.768 (2) Å, interplanar spacing = 3.437 Å and centroid shift = 1.54 Å].

Related literature top

The title compound is the acid metabolite of picoxystrobin [systematic name: methyl (E)-3-methoxy-2-{2-[6-(trifluoromethyl)-2-pyridyloxymethyl]phenyl}acrylate], a systemic fungicide of the strobilurin group with broad-spectrum bio-efficacy against various diseases of economically important agricultural crops, see: Balba (2007); Ammermann et al. (2000). For a related structure, see: Kant et al. (2012).

Experimental top

Picoxystrobin (0.353 g, 0.001 mol) was dissolved in 5 ml of acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed at 343 K for 6 h, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation.(m.p. 415 K).

Refinement top

H atom bonded to O atom was located in a difference map and refined freely. Other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the refinement process restraints were imposed on C-F distances of the disordered molecular fragments.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular C—H···O, O—H···O and C—H···F hydrogen bonds.
3-Methoxy-2-[2-({[6-(trifluoromethyl)pyridin-2-yl]oxy}methyl)phenyl]prop-2-enoic acid top
Crystal data top
C17H14F3NO4Z = 2
Mr = 353.29F(000) = 364
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Melting point: 415 K
a = 7.4701 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1619 (5) ÅCell parameters from 7723 reflections
c = 11.8219 (5) Åθ = 3.5–29.0°
α = 94.721 (4)°µ = 0.13 mm1
β = 100.079 (4)°T = 293 K
γ = 110.685 (5)°Plate, colourless
V = 816.42 (7) Å30.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3214 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.821, Tmax = 1.000l = 1414
19533 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.1912P]
where P = (Fo2 + 2Fc2)/3
3214 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H14F3NO4γ = 110.685 (5)°
Mr = 353.29V = 816.42 (7) Å3
Triclinic, P1Z = 2
a = 7.4701 (4) ÅMo Kα radiation
b = 10.1619 (5) ŵ = 0.13 mm1
c = 11.8219 (5) ÅT = 293 K
α = 94.721 (4)°0.3 × 0.2 × 0.2 mm
β = 100.079 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3214 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1988 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1.000Rint = 0.057
19533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3214 reflectionsΔρmin = 0.40 e Å3
253 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3119 (3)0.52862 (18)0.05675 (15)0.0505 (5)
N10.5088 (3)0.6809 (2)0.22310 (18)0.0441 (5)
O20.5218 (3)0.88494 (19)0.22824 (18)0.0579 (6)
O30.0083 (3)0.84278 (19)0.05459 (18)0.0578 (6)
O40.2235 (3)1.05406 (19)0.05040 (19)0.0580 (6)
C10.1465 (4)0.9160 (3)0.0804 (2)0.0403 (6)
C20.2512 (4)0.8515 (2)0.1454 (2)0.0369 (6)
C30.4172 (4)0.9358 (3)0.1689 (2)0.0437 (6)
H30.46221.03330.14340.052*
C40.1601 (3)0.6946 (2)0.1883 (2)0.0358 (6)
C50.1822 (3)0.5959 (2)0.1174 (2)0.0371 (6)
C60.0916 (4)0.4512 (3)0.1611 (2)0.0436 (6)
H60.10520.38470.11420.052*
C70.0180 (4)0.4060 (3)0.2733 (2)0.0502 (7)
H70.07810.30900.30160.060*
C80.0393 (4)0.5030 (3)0.3437 (2)0.0529 (7)
H80.11360.47200.41940.063*
C90.0500 (4)0.6462 (3)0.3013 (2)0.0477 (7)
H90.03630.71180.34920.057*
C100.3053 (4)0.6487 (3)0.0043 (2)0.0434 (6)
H10A0.43690.71140.00230.052*
H10B0.24860.70150.04910.052*
C110.4141 (4)0.5507 (3)0.1669 (2)0.0402 (6)
C120.6087 (4)0.6917 (3)0.3322 (2)0.0492 (7)
C130.6148 (4)0.5784 (3)0.3857 (2)0.0521 (7)
H130.68480.59180.46170.062*
C140.5133 (4)0.4432 (3)0.3227 (2)0.0519 (7)
H140.51420.36340.35580.062*
C150.4128 (4)0.4282 (3)0.2127 (2)0.0484 (7)
H150.34440.33840.16850.058*
C160.7204 (6)0.8399 (4)0.3923 (3)0.0835 (12)
C170.6970 (5)0.9862 (3)0.2501 (3)0.0698 (9)
H17A0.66351.03360.31270.105*
H17B0.77900.93780.27090.105*
H17C0.76621.05510.18130.105*
F1110.591 (3)0.888 (3)0.429 (2)0.173 (7)0.47 (4)
F2220.854 (19)0.914 (18)0.334 (12)0.145 (5)0.47 (4)
F3330.848 (3)0.846 (2)0.4878 (15)0.115 (6)0.47 (4)
F11A0.6329 (17)0.9292 (9)0.3891 (12)0.105 (4)0.53 (4)
F22A0.845 (17)0.916 (16)0.331 (11)0.145 (5)0.53 (4)
F33A0.806 (3)0.847 (2)0.5018 (9)0.109 (5)0.53 (4)
H410.160 (6)1.088 (4)0.012 (3)0.101 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0606 (12)0.0338 (10)0.0482 (11)0.0123 (9)0.0007 (9)0.0076 (8)
N10.0467 (13)0.0386 (12)0.0423 (13)0.0132 (10)0.0035 (10)0.0059 (10)
O20.0551 (12)0.0447 (11)0.0786 (14)0.0159 (10)0.0339 (11)0.0074 (10)
O30.0480 (12)0.0373 (10)0.0867 (15)0.0104 (9)0.0282 (11)0.0015 (10)
O40.0540 (13)0.0321 (10)0.0882 (16)0.0125 (9)0.0301 (11)0.0030 (10)
C10.0405 (15)0.0310 (13)0.0460 (15)0.0121 (12)0.0054 (12)0.0020 (11)
C20.0397 (14)0.0312 (13)0.0407 (14)0.0141 (12)0.0089 (11)0.0069 (11)
C30.0494 (16)0.0353 (14)0.0505 (16)0.0192 (13)0.0141 (13)0.0072 (12)
C40.0308 (13)0.0357 (13)0.0418 (14)0.0132 (11)0.0108 (11)0.0020 (11)
C50.0354 (14)0.0349 (14)0.0404 (14)0.0113 (11)0.0124 (11)0.0030 (11)
C60.0437 (15)0.0334 (14)0.0502 (16)0.0090 (12)0.0133 (13)0.0063 (12)
C70.0482 (17)0.0356 (15)0.0546 (18)0.0044 (13)0.0108 (13)0.0078 (13)
C80.0487 (17)0.0549 (18)0.0455 (16)0.0164 (14)0.0004 (13)0.0070 (14)
C90.0508 (17)0.0488 (16)0.0450 (16)0.0235 (14)0.0052 (13)0.0059 (13)
C100.0475 (16)0.0315 (13)0.0454 (15)0.0088 (12)0.0079 (12)0.0068 (11)
C110.0397 (15)0.0384 (14)0.0426 (15)0.0132 (12)0.0111 (12)0.0098 (12)
C120.0532 (17)0.0442 (16)0.0490 (17)0.0199 (14)0.0048 (13)0.0062 (13)
C130.0547 (18)0.0600 (19)0.0454 (16)0.0266 (15)0.0069 (13)0.0147 (14)
C140.0585 (18)0.0467 (17)0.0587 (19)0.0244 (15)0.0173 (15)0.0213 (14)
C150.0537 (17)0.0372 (15)0.0540 (18)0.0161 (13)0.0123 (14)0.0086 (12)
C160.104 (3)0.058 (2)0.061 (2)0.014 (2)0.017 (2)0.0047 (18)
C170.059 (2)0.068 (2)0.086 (2)0.0171 (17)0.0335 (18)0.0197 (18)
F1110.267 (14)0.108 (10)0.142 (12)0.136 (10)0.061 (8)0.060 (8)
F2220.162 (8)0.077 (4)0.114 (6)0.033 (5)0.012 (6)0.011 (3)
F3330.121 (8)0.060 (6)0.101 (9)0.002 (5)0.067 (8)0.006 (7)
F11A0.144 (7)0.039 (3)0.111 (6)0.042 (5)0.035 (4)0.007 (3)
F22A0.162 (8)0.077 (4)0.114 (6)0.033 (5)0.012 (6)0.011 (3)
F33A0.166 (11)0.090 (7)0.046 (4)0.043 (7)0.021 (5)0.009 (4)
Geometric parameters (Å, º) top
O1—C111.346 (3)C8—H80.9300
O1—C101.425 (3)C9—H90.9300
N1—C111.313 (3)C10—H10A0.9700
N1—C121.347 (3)C10—H10B0.9700
O2—C31.336 (3)C11—C151.396 (3)
O2—C171.432 (3)C12—C131.370 (4)
O3—C11.240 (3)C12—C161.482 (4)
O4—C11.304 (3)C13—C141.384 (4)
O4—H410.85 (4)C13—H130.9300
C1—C21.457 (3)C14—C151.350 (4)
C2—C31.326 (3)C14—H140.9300
C2—C41.497 (3)C15—H150.9300
C3—H30.9300C16—F11A1.291 (7)
C4—C91.387 (3)C16—F33A1.324 (8)
C4—C51.394 (3)C16—F3331.326 (9)
C5—C61.392 (3)C16—F1111.346 (10)
C5—C101.505 (3)C16—F2221.350 (10)
C6—C71.376 (4)C16—F22A1.350 (9)
C6—H60.9300C17—H17A0.9600
C7—C81.375 (4)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.375 (4)
C11—O1—C10118.71 (19)O1—C10—H10A110.0
C11—N1—C12115.5 (2)C5—C10—H10A110.0
C3—O2—C17117.1 (2)O1—C10—H10B110.0
C1—O4—H41115 (3)C5—C10—H10B110.0
O3—C1—O4121.7 (2)H10A—C10—H10B108.4
O3—C1—C2121.4 (2)N1—C11—O1120.1 (2)
O4—C1—C2116.9 (2)N1—C11—C15124.4 (2)
C3—C2—C1118.3 (2)O1—C11—C15115.5 (2)
C3—C2—C4123.2 (2)N1—C12—C13124.6 (3)
C1—C2—C4118.4 (2)N1—C12—C16114.5 (2)
C2—C3—O2122.0 (2)C13—C12—C16120.9 (3)
C2—C3—H3119.0C12—C13—C14117.7 (3)
O2—C3—H3119.0C12—C13—H13121.1
C9—C4—C5119.2 (2)C14—C13—H13121.1
C9—C4—C2119.2 (2)C15—C14—C13119.3 (3)
C5—C4—C2121.6 (2)C15—C14—H14120.3
C6—C5—C4119.3 (2)C13—C14—H14120.3
C6—C5—C10121.6 (2)C14—C15—C11118.4 (3)
C4—C5—C10119.1 (2)C14—C15—H15120.8
C7—C6—C5120.4 (2)C11—C15—H15120.8
C7—C6—H6119.8F11A—C16—C12118.5 (5)
C5—C6—H6119.8F33A—C16—C12113.2 (9)
C8—C7—C6120.5 (2)F333—C16—C12112.1 (9)
C8—C7—H7119.8F111—C16—C12106.9 (10)
C6—C7—H7119.8F222—C16—C12112 (8)
C7—C8—C9119.5 (3)F22A—C16—C12112 (7)
C7—C8—H8120.2O2—C17—H17A109.5
C9—C8—H8120.2O2—C17—H17B109.5
C8—C9—C4121.1 (3)H17A—C17—H17B109.5
C8—C9—H9119.4O2—C17—H17C109.5
C4—C9—H9119.4H17A—C17—H17C109.5
O1—C10—C5108.36 (19)H17B—C17—H17C109.5
O3—C1—C2—C3179.2 (2)C12—N1—C11—O1179.1 (2)
O4—C1—C2—C30.5 (4)C12—N1—C11—C150.2 (4)
O3—C1—C2—C44.4 (4)C10—O1—C11—N11.5 (3)
O4—C1—C2—C4175.9 (2)C10—O1—C11—C15179.5 (2)
C1—C2—C3—O2179.9 (2)C11—N1—C12—C130.6 (4)
C4—C2—C3—O23.7 (4)C11—N1—C12—C16177.8 (3)
C17—O2—C3—C2179.1 (2)N1—C12—C13—C140.9 (4)
C3—C2—C4—C980.6 (3)C16—C12—C13—C14177.4 (3)
C1—C2—C4—C995.6 (3)C12—C13—C14—C150.3 (4)
C3—C2—C4—C599.8 (3)C13—C14—C15—C110.5 (4)
C1—C2—C4—C584.0 (3)N1—C11—C15—C140.8 (4)
C9—C4—C5—C60.7 (3)O1—C11—C15—C14179.7 (2)
C2—C4—C5—C6178.9 (2)N1—C12—C16—F11A47.7 (9)
C9—C4—C5—C10178.7 (2)C13—C12—C16—F11A133.9 (8)
C2—C4—C5—C101.7 (3)N1—C12—C16—F33A175.8 (12)
C4—C5—C6—C70.3 (4)C13—C12—C16—F33A5.8 (13)
C10—C5—C6—C7179.1 (2)N1—C12—C16—F333166.4 (15)
C5—C6—C7—C80.1 (4)C13—C12—C16—F33312.1 (16)
C6—C7—C8—C90.1 (4)N1—C12—C16—F11178.5 (15)
C7—C8—C9—C40.5 (4)C13—C12—C16—F111103.0 (16)
C5—C4—C9—C80.8 (4)N1—C12—C16—F22260 (8)
C2—C4—C9—C8178.8 (2)C13—C12—C16—F222119 (9)
C11—O1—C10—C5179.7 (2)N1—C12—C16—F22A56 (8)
C6—C5—C10—O11.9 (3)C13—C12—C16—F22A123 (8)
C4—C5—C10—O1177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3i0.85 (4)1.78 (4)2.626 (3)174 (4)
C15—H15···O3ii0.932.583.392 (3)146
C17—H17A···F11Aiii0.962.413.135 (14)132
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H14F3NO4
Mr353.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4701 (4), 10.1619 (5), 11.8219 (5)
α, β, γ (°)94.721 (4), 100.079 (4), 110.685 (5)
V3)816.42 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.821, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19533, 3214, 1988
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.154, 1.04
No. of reflections3214
No. of parameters253
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.40

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3i0.85 (4)1.78 (4)2.626 (3)174 (4)
C15—H15···O3ii0.932.583.392 (3)146
C17—H17A···F11Aiii0.962.413.135 (14)132
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x+1, y+2, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAmmermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the BCPC Conference –Pest and Diseases, 2, 541–548.  Google Scholar
First citationBalba, H. (2007). J. Environ. Sci. Health Part B, 42, 441–451.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, o2425.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds