organic compounds
Methyl (2E)-2-cyano-3-(dimethylamino)prop-2-enoate
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com
In the title compound, C7H10N2O2, the dimethylamino group is twisted slightly relative to the acrylate fragment, forming a dihedral angle of 11.6 (1)°. In the crystal, molecules are linked via pairs of bifurcated C—H/H⋯O hydrogen bonds, forming inversion dimers, which are further connected by C—H⋯N hydrogen bonds into chains along the a-axis direction.
Related literature
For applications of et al. (2007); Michael et al. (1999). For a related structure, see: Gupta et al. (2007).
see: HuangExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812042304/gk2525sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042304/gk2525Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812042304/gk2525Isup3.cml
In a 50 ml round bottom flask the mixture of 5 mmole of methyl cyanoacetate and 5 mmole of dimethylformamide dimethyl acetal was stirred at room temperature for 1–1.5 h. After completion of reaction, the reaction mixture was poured on ice cold water and the separated solid was precipated after 15 minutes and recrystallized from ethanol. Yield: 87%; m.p. 378–380 K. IR(KBr): 2205, 1695, 1621, 1433, 1373, 1287, 1216 1/cm
All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C7H10N2O2 | Z = 2 |
Mr = 154.17 | F(000) = 164 |
Triclinic, P1 | Dx = 1.260 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1102 (5) Å | Cell parameters from 2720 reflections |
b = 7.8170 (5) Å | θ = 3.5–29.0° |
c = 8.2454 (6) Å | µ = 0.09 mm−1 |
α = 97.270 (6)° | T = 293 K |
β = 93.431 (6)° | Block, white |
γ = 115.680 (7)° | 0.3 × 0.2 × 0.2 mm |
V = 406.31 (5) Å3 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1593 independent reflections |
Radiation source: fine-focus sealed tube | 1126 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scan | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −9→9 |
Tmin = 0.830, Tmax = 1.000 | l = −10→10 |
6682 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0618P)2 + 0.0587P] where P = (Fo2 + 2Fc2)/3 |
1593 reflections | (Δ/σ)max = 0.001 |
103 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.13 e Å−3 |
C7H10N2O2 | γ = 115.680 (7)° |
Mr = 154.17 | V = 406.31 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1102 (5) Å | Mo Kα radiation |
b = 7.8170 (5) Å | µ = 0.09 mm−1 |
c = 8.2454 (6) Å | T = 293 K |
α = 97.270 (6)° | 0.3 × 0.2 × 0.2 mm |
β = 93.431 (6)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1593 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1126 reflections with I > 2σ(I) |
Tmin = 0.830, Tmax = 1.000 | Rint = 0.047 |
6682 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.17 e Å−3 |
1593 reflections | Δρmin = −0.13 e Å−3 |
103 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0160 (2) | 0.6248 (2) | 0.82511 (17) | 0.0648 (5) | |
O2 | 0.20619 (19) | 0.77535 (19) | 0.63425 (16) | 0.0535 (4) | |
C1 | 0.1860 (3) | 0.7109 (2) | 0.7792 (2) | 0.0438 (4) | |
C2 | 0.3885 (3) | 0.7570 (2) | 0.8695 (2) | 0.0405 (4) | |
N1 | 0.5414 (2) | 0.7293 (2) | 1.13299 (19) | 0.0475 (4) | |
N2 | 0.7150 (3) | 0.9493 (3) | 0.7343 (2) | 0.0733 (6) | |
C3 | 0.3876 (3) | 0.7106 (2) | 1.0252 (2) | 0.0423 (4) | |
H3 | 0.2552 | 0.6567 | 1.0599 | 0.051* | |
C4 | 0.5009 (3) | 0.6883 (3) | 1.2987 (3) | 0.0666 (6) | |
H4A | 0.3525 | 0.6365 | 1.3051 | 0.100* | |
H4B | 0.5737 | 0.8051 | 1.3773 | 0.100* | |
H4C | 0.5498 | 0.5964 | 1.3228 | 0.100* | |
C5 | 0.7594 (3) | 0.7984 (3) | 1.1018 (3) | 0.0616 (6) | |
H5A | 0.7642 | 0.7414 | 0.9929 | 0.092* | |
H5B | 0.8346 | 0.7633 | 1.1813 | 0.092* | |
H5C | 0.8230 | 0.9360 | 1.1107 | 0.092* | |
C6 | 0.5718 (3) | 0.8620 (3) | 0.7958 (2) | 0.0478 (5) | |
C7 | 0.0158 (3) | 0.7445 (3) | 0.5374 (3) | 0.0611 (6) | |
H7A | −0.0765 | 0.6090 | 0.5118 | 0.092* | |
H7B | 0.0491 | 0.7950 | 0.4371 | 0.092* | |
H7C | −0.0524 | 0.8090 | 0.5988 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0394 (8) | 0.0845 (10) | 0.0603 (9) | 0.0136 (7) | 0.0073 (7) | 0.0287 (8) |
O2 | 0.0476 (8) | 0.0646 (9) | 0.0472 (8) | 0.0215 (6) | 0.0059 (6) | 0.0186 (6) |
C1 | 0.0443 (11) | 0.0417 (9) | 0.0417 (10) | 0.0157 (8) | 0.0064 (8) | 0.0071 (7) |
C2 | 0.0356 (9) | 0.0396 (9) | 0.0435 (10) | 0.0140 (7) | 0.0079 (8) | 0.0061 (7) |
N1 | 0.0395 (8) | 0.0516 (9) | 0.0457 (9) | 0.0151 (7) | 0.0027 (7) | 0.0095 (7) |
N2 | 0.0502 (11) | 0.0953 (15) | 0.0766 (13) | 0.0263 (10) | 0.0241 (10) | 0.0380 (11) |
C3 | 0.0369 (10) | 0.0385 (9) | 0.0467 (10) | 0.0122 (8) | 0.0069 (8) | 0.0073 (7) |
C4 | 0.0583 (13) | 0.0804 (15) | 0.0516 (12) | 0.0205 (11) | 0.0027 (10) | 0.0200 (11) |
C5 | 0.0422 (11) | 0.0738 (14) | 0.0650 (14) | 0.0223 (10) | 0.0028 (10) | 0.0140 (11) |
C6 | 0.0430 (10) | 0.0534 (11) | 0.0475 (11) | 0.0210 (9) | 0.0086 (9) | 0.0114 (9) |
C7 | 0.0567 (13) | 0.0726 (14) | 0.0569 (13) | 0.0298 (11) | 0.0024 (10) | 0.0200 (11) |
O1—C1 | 1.213 (2) | C3—H3 | 0.9300 |
O2—C1 | 1.346 (2) | C4—H4A | 0.9600 |
O2—C7 | 1.438 (2) | C4—H4B | 0.9600 |
C1—C2 | 1.454 (2) | C4—H4C | 0.9600 |
C2—C3 | 1.377 (2) | C5—H5A | 0.9600 |
C2—C6 | 1.427 (2) | C5—H5B | 0.9600 |
N1—C3 | 1.311 (2) | C5—H5C | 0.9600 |
N1—C5 | 1.455 (2) | C7—H7A | 0.9600 |
N1—C4 | 1.460 (2) | C7—H7B | 0.9600 |
N2—C6 | 1.143 (2) | C7—H7C | 0.9600 |
C1—O2—C7 | 116.82 (15) | N1—C4—H4C | 109.5 |
O1—C1—O2 | 122.40 (17) | H4A—C4—H4C | 109.5 |
O1—C1—C2 | 125.53 (17) | H4B—C4—H4C | 109.5 |
O2—C1—C2 | 112.07 (15) | N1—C5—H5A | 109.5 |
C3—C2—C6 | 125.51 (17) | N1—C5—H5B | 109.5 |
C3—C2—C1 | 117.00 (15) | H5A—C5—H5B | 109.5 |
C6—C2—C1 | 117.21 (16) | N1—C5—H5C | 109.5 |
C3—N1—C5 | 124.10 (16) | H5A—C5—H5C | 109.5 |
C3—N1—C4 | 120.07 (15) | H5B—C5—H5C | 109.5 |
C5—N1—C4 | 115.77 (16) | N2—C6—C2 | 177.6 (2) |
N1—C3—C2 | 131.07 (16) | O2—C7—H7A | 109.5 |
N1—C3—H3 | 114.5 | O2—C7—H7B | 109.5 |
C2—C3—H3 | 114.5 | H7A—C7—H7B | 109.5 |
N1—C4—H4A | 109.5 | O2—C7—H7C | 109.5 |
N1—C4—H4B | 109.5 | H7A—C7—H7C | 109.5 |
H4A—C4—H4B | 109.5 | H7B—C7—H7C | 109.5 |
C7—O2—C1—O1 | 2.5 (3) | O2—C1—C2—C6 | 0.9 (2) |
C7—O2—C1—C2 | −177.56 (15) | C5—N1—C3—C2 | −4.1 (3) |
O1—C1—C2—C3 | −4.8 (3) | C4—N1—C3—C2 | 173.00 (19) |
O2—C1—C2—C3 | 175.27 (15) | C6—C2—C3—N1 | −8.1 (3) |
O1—C1—C2—C6 | −179.14 (17) | C1—C2—C3—N1 | 178.06 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.56 | 3.370 (2) | 146 |
C4—H4A···O1i | 0.96 | 2.58 | 3.415 (3) | 145 |
C7—H7C···N2ii | 0.96 | 2.58 | 3.535 (3) | 172 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C7H10N2O2 |
Mr | 154.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.1102 (5), 7.8170 (5), 8.2454 (6) |
α, β, γ (°) | 97.270 (6), 93.431 (6), 115.680 (7) |
V (Å3) | 406.31 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.830, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6682, 1593, 1126 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.134, 1.03 |
No. of reflections | 1593 |
No. of parameters | 103 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.13 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.56 | 3.370 (2) | 146 |
C4—H4A···O1i | 0.96 | 2.58 | 3.415 (3) | 145 |
C7—H7C···N2ii | 0.96 | 2.58 | 3.535 (3) | 172 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z. |
Acknowledgements
RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gupta, V. P., Sharma, A., Dinesh & Rajnikant (2007). Spectrochim. Acta Part A, 68, 237–244. Google Scholar
Huang, J., Liang, Y., Pan, W., Yang, Y. & Dong, D. (2007). Org. Lett. 9, 5345–5348. Web of Science CrossRef PubMed CAS Google Scholar
Michael, J. P., De Konig, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979–988. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Enamines are the multipurpose synthetic intermediates used for the synthesis of a variety of organic derivatives, bioactive natural products and their analogs (Huang et al., 2007; Michael et al., 1999).
In (I)(Fig.1), all bond lengths and angles are normal and correspond to those observed in the related structure (Gupta et al., 2007). The dihedral angle between dimethylamino and acrylate fragment is 11.6 (1)°. In the crystal, C3—H3···O1 and C4—H4A···O1 hydrogen bonds link molecules to form dimers. Dimers are further connected by C—H···N hydrogen bonds into chains along the a axis (Fig. 2, Table 1.).