metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Amino­ethane­thiol­ato-κ2N,S)bis­­[1,2-bis­­(di­phenyl­phosphan­yl)ethane-κ2P,P′]ruthenium(II) hexa­fluoridophosphate

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: igashira@chem.sci.osaka-u.ac.jp, konno@chem.sci.osaka-u.ac.jp

(Received 17 October 2012; accepted 25 October 2012; online 31 October 2012)

In the crystal of the title compound, [Ru(C2H6NS)(C26H24P2)2]PF6, the RuII atom is in a slightly distorted octa­hedral geometry, coordinated by one 2-amino­ethane­thiol­ate (aet) and two 1,2-bis­(diphenyl­phosphan­yl)ethane (dppe) ligands. The crystal consists of a pair of enanti­omers (Δ and Λ) of the compound. The Δ and Λ isomers have the λ and δ conformations for the aet chelate rings and the δ and λ conformations for the dppe chelate rings. The F atoms of the PF6 counter-anion are disordered over three positions, with site occupancies of 0.4, 0.3 and 0.3.

Related literature

For closely related structures, see: Tamura et al. (2007[Tamura, M., Matsuura, N., Kawamoto, T. & Konno, T. (2007). Inorg. Chem. 46, 6834-6836.]); Matsuura et al. (2006[Matsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401-408.]); Hanif et al. (1999[Hanif, K. M., Hursthouse, M. B., Kabir, S. E., Malik, K. M. A. & Rosenberg, E. (1999). J. Organomet. Chem. 580, 60-65.]). For conformation descriptors of the chelate rings, see: Gispert (2008[Gispert, J. R. (2008). Coordination Chemistry, pp. 103-107. Weinheim: Wiley-VCH.]). For the starting material, see: Bautista et al. (1991[Bautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A. & Zubkowsky, J. (1991). J. Am. Chem. Soc. 113, 4876-4887.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C2H6NS)(C26H24P2)2]PF6

  • Mr = 1118.96

  • Monoclinic, C c

  • a = 21.1985 (17) Å

  • b = 11.4000 (9) Å

  • c = 20.9346 (17) Å

  • β = 106.588 (2)°

  • V = 4848.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 200 K

  • 0.15 × 0.08 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.684, Tmax = 0.954

  • 23148 measured reflections

  • 9513 independent reflections

  • 7722 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.20

  • 9513 reflections

  • 638 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3981 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Selected bond lengths (Å)

Ru1—N1 2.209 (5)
Ru1—P1 2.3586 (14)
Ru1—P4 2.3672 (15)
Ru1—P3 2.3698 (13)
Ru1—P2 2.4249 (13)
Ru1—S1 2.4317 (15)

Data collection: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218-224.]); software used to prepare material for publication: Yadokari-XG 2009.

Supporting information


Comment top

It has been recognized that the preparation of ruthenium complexes having non-bridging aliphatic thiolato group(s) is difficult because of the high reactivity of a thiolato group bound to a metal center. For example, the direct reaction of RuII with 2-aminoethanethiol (Haet) led to the formation of thiolato-bridged trinuclear complex, [Ru{Ru(aet)3}2]2+ (Matsuura et al., 2006), and furthermore, the reaction of [Ag{Ru(aet)(bpy)2}2]3+ (bpy = 2,2'-bipyridine) with HCl did not give an expected mononuclear complex, [Ru(aet)(bpy)2]+, but produced a dinuclear complex with a disulfide bond, [Ru2(cysta)(bpy)4]4+ (cysta = cystamine) (Tamura et al., 2007). Here, we report the synthesis and crystal structure of [Ru(aet)(dppe)2]PF6, which is a quite rare example of a crystallographically characterized ruthenium(II) complex with an aliphatic thiolato donor. The use of the bulky diphenylphosphine ligand seems to be responsible for the successful isolation of this compound.

The reaction of [RuCl2(dppe)2] (Bautista et al., 1991) with excess Haet in methanol in the presence of NH4PF6 gave a yellow powder of [Ru(aet)(dppe)2]PF6. Single-crystals suitable for X-ray analysis were obtained by the recrystallization of the yellow powder from methanol.

The compound crystallized in a non-centrosymmetric space group Cc, the asymmetric unit of which contains one complex cation and one PF6- anion. The Ru atom is in an NP4S octahedral geometry coordinated by two dppe-κP,P and one aet-κN,S ligands (Fig. 1). The Ru–S [2.431 (2) Å] and Ru–N [2.212 (5) Å] bond distances are slightly longer than those of the related ruthenium(II) complexes with aet ligand(s) (Ru–S = 2.291–2.394 Å, Ru–N = 2.133–2.212 Å) (Tamura et al., 2007; Matsuura et al., 2006; Hanif et al., 1999). On the other hand, the Ru–P bond distances (average 2.380 Å) are similar to those of ruthenium(II) complexes with dppe ligands (av. 2.32 Å), as found in the Cambridge Structural Database (Allen, 2002). Consistent with the space group Cc, the crystal consists of a pair of enantiomers (Δ and Λ) of the ruthenium(II) complex. Two dppe P,P-chelate rings in the complex adopt an ob conformation (δ for Δ isomer, λ for Λ isomer), while its N,S-aet chelate ring has a lel conformation (λ for Δ isomer, δ for Λ isomer). It may be interesting to note that no significant specific intermolecular interactions have been found, except for very weak N-H···F interactions between the complex cations and PF6- anions (Fig. 2).

Related literature top

For closely related structures, see: Tamura et al. (2007); Matsuura et al. (2006); Hanif et al. (1999). For conformation descriptors of the chelate rings, see: Gispert (2008). For the starting material, see: Bautista et al. (1991). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of 0.20 g (0.21 mmol) of [RuCl2(dppe)2] in 200 ml of methanol was added 0.078 g (1.01 mmol) of Haet and 0.338 g (2.07 mmol) of NH4PF6. The mixture was stirred at room temperature for 1 h. The resulting yellow suspension was concentrated to dryness with a rotary evaporator. The residue was washed with water to give a yellow powder of [Ru(aet)(dppe)2]PF6.1.5H2O. Yield 0.178 g (76%). Anal. Calcd for [Ru(aet)(dppe)2]PF6.1.5H2O: C, 58.54; H, 4.64; N, 1.26%. Found: C, 58.73; H, 4.91; N, 1.16%. 1H NMR (400 MHz, DMSO-d6): d, 8.04 (2H, t, J = 8.4 Hz), 7.93 (2H, t, J = 7.9 Hz), 7.72–7.64 (5H, m), 7.54 (2H, t, J = 8.5 Hz), 7.44–7.25 (17H, m), 7.05 (2H, t, J = 7.0 Hz), 6.98–6.89 (6H, m), 6.57 (2H, t, J = 8.3 Hz), 6.31 (2H, t, J = 8.4 Hz), 2.92–2.82 (3H, m), 2.38–2.34 (2H, m), 2.10–2.07 (2H, br m), 1.58 (1H, br s), 1.39 (1H, br s), 1.06 (1H, br s), 0.86 (1H, br s), 0.67 (1H, br s). 31P NMR (202.47 MHz, DMSO-d6): d, p.p.m. 50.25 (1P, d, J = 321.8 Hz), 48.79 (1P, s), 47.34 (1P, s), 29.74 (1P, d, J = 317.1 Hz). IR (KBr, cm-1): 1435 (νPh), 1097 and 745–694 (νP—Ph), 839 (PF6-), 557 (PF6-).

Single crystals of [Ru(aet)(dppe)2]PF6 suitable for X-ray analysis were obtained by the recrystallization of a yellow powder from methanol at room temperature.

Refinement top

H atoms bound to C atoms were placed at calculated positions [C—H = 0.99 (methylene) and 0.95 (phenyl)] and refined as riding with isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)]. H atoms bound to N atoms were located in a difference Fourier map and refined with distance restraint and constrained displacement parameters [N—H = 0.89 (2) Å, Uiso(H) = 1.5Ueq(N)]. The F atoms of the hexafluoridophosphate are disordered over three positions (F1–F6, F7–F12 and F13–F18) with site occupancies of 0.4 (F1–F6) and 0.3 (F7–F12, F13-F18), and refined isotropically.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO (Rigaku, 2000); data reduction: PROCESS-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG 2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of [Ru(aet)(dppe)2]PF6 with the atom-numbering scheme. H atoms and F atoms of the PF6- with minor occupancies were omitted for clarity. Ellipsoids represent 50% probability.
[Figure 2] Fig. 2. Crystal packing of [Ru(aet)(dppe)2]PF6 viewed along the y axis. F atoms of the PF6- with minor occupancies were omitted for clarity.
(2-Aminoethanethiolato-κ2N,S)bis[1,2- bis(diphenylphosphanyl)ethane-κ2P,P']ruthenium(II) hexafluoridophosphate top
Crystal data top
[Ru(C2H6NS)(C26H24P2)2]PF6F(000) = 2296
Mr = 1118.96Dx = 1.533 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 15716 reflections
a = 21.1985 (17) Åθ = 3.1–27.4°
b = 11.4000 (9) ŵ = 0.59 mm1
c = 20.9346 (17) ÅT = 200 K
β = 106.588 (2)°Prism, yellow
V = 4848.6 (7) Å30.15 × 0.08 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9513 independent reflections
Radiation source: fine-focus sealed tube7722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 2727
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 1414
Tmin = 0.684, Tmax = 0.954l = 2726
23148 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
9513 reflectionsΔρmax = 1.02 e Å3
638 parametersΔρmin = 0.88 e Å3
4 restraintsAbsolute structure: Flack (1983), 3981 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ru(C2H6NS)(C26H24P2)2]PF6V = 4848.6 (7) Å3
Mr = 1118.96Z = 4
Monoclinic, CcMo Kα radiation
a = 21.1985 (17) ŵ = 0.59 mm1
b = 11.4000 (9) ÅT = 200 K
c = 20.9346 (17) Å0.15 × 0.08 × 0.08 mm
β = 106.588 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9513 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
7722 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.954Rint = 0.067
23148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112Δρmax = 1.02 e Å3
S = 1.20Δρmin = 0.88 e Å3
9513 reflectionsAbsolute structure: Flack (1983), 3981 Friedel pairs
638 parametersAbsolute structure parameter: 0.02 (3)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.183683 (18)0.68842 (3)0.323758 (19)0.02092 (10)
S10.29912 (7)0.67929 (12)0.38742 (8)0.0301 (4)
N10.1722 (2)0.6281 (4)0.4201 (2)0.0302 (10)
H10.137 (2)0.654 (5)0.432 (3)0.045*
H20.167 (3)0.550 (2)0.425 (3)0.045*
C10.2930 (3)0.6267 (6)0.4680 (3)0.0429 (16)
H30.30150.54120.47100.052*
H40.32780.66490.50390.052*
C20.2286 (3)0.6491 (5)0.4800 (3)0.0391 (14)
H50.22720.73150.49450.047*
H60.22410.59770.51650.047*
P10.20553 (6)0.77721 (11)0.23054 (7)0.0232 (3)
C30.1951 (3)0.9383 (4)0.2376 (3)0.0271 (12)
H70.21910.97980.21010.032*
H80.14790.95870.22030.032*
C40.2210 (3)0.9779 (4)0.3095 (3)0.0280 (12)
H90.20971.06140.31310.034*
H100.26950.97040.32430.034*
P20.18515 (6)0.88868 (11)0.36321 (7)0.0242 (3)
C50.1565 (2)0.7499 (4)0.1439 (3)0.0259 (12)
C60.1508 (2)0.6354 (4)0.1183 (3)0.0263 (12)
H110.17180.57270.14630.032*
C70.1152 (3)0.6119 (5)0.0530 (3)0.0347 (13)
H120.11130.53360.03670.042*
C80.0855 (3)0.7025 (5)0.0118 (3)0.0401 (14)
H130.06110.68670.03310.048*
C90.0910 (3)0.8159 (5)0.0354 (3)0.0324 (13)
H140.07080.87820.00660.039*
C100.1258 (3)0.8400 (5)0.1010 (3)0.0293 (12)
H150.12890.91850.11690.035*
C110.2893 (2)0.7749 (4)0.2191 (3)0.0242 (11)
C120.3020 (3)0.7339 (5)0.1614 (3)0.0343 (14)
H160.26680.70310.12650.041*
C130.3647 (3)0.7372 (6)0.1539 (3)0.0407 (16)
H170.37230.70720.11440.049*
C140.4161 (3)0.7835 (5)0.2031 (3)0.0381 (15)
H180.45910.78600.19780.046*
C150.4046 (3)0.8260 (5)0.2602 (4)0.0407 (15)
H190.43960.86020.29390.049*
C160.3418 (3)0.8194 (5)0.2691 (3)0.0345 (13)
H200.33500.84560.30970.041*
C170.1085 (3)0.9649 (4)0.3618 (3)0.0300 (12)
C180.0946 (3)1.0811 (5)0.3404 (3)0.0414 (15)
H210.12621.12460.32600.050*
C190.0363 (3)1.1332 (5)0.3400 (4)0.0476 (17)
H220.02801.21210.32540.057*
C200.0103 (3)1.0720 (6)0.3606 (4)0.0460 (17)
H230.05101.10810.35940.055*
C210.0020 (3)0.9582 (5)0.3828 (3)0.0417 (15)
H240.02950.91640.39820.050*
C220.0606 (3)0.9053 (5)0.3826 (3)0.0314 (13)
H250.06830.82620.39690.038*
C230.2367 (3)0.9304 (4)0.4463 (3)0.0304 (12)
C240.3053 (3)0.9331 (4)0.4623 (3)0.0350 (14)
H260.32570.91820.42820.042*
C250.3442 (3)0.9567 (5)0.5257 (3)0.0416 (15)
H270.39070.95860.53460.050*
C260.3164 (3)0.9775 (5)0.5764 (3)0.0435 (16)
H280.34330.99140.62050.052*
C270.2482 (3)0.9779 (5)0.5621 (3)0.0455 (16)
H290.22840.99560.59640.055*
C280.2089 (3)0.9527 (4)0.4985 (3)0.0336 (13)
H300.16240.95050.49010.040*
P30.19576 (6)0.48846 (10)0.29860 (7)0.0233 (3)
C290.1124 (3)0.4253 (4)0.2654 (3)0.0277 (13)
H310.11470.35370.23930.033*
H320.09500.40280.30280.033*
C300.0667 (2)0.5138 (4)0.2212 (3)0.0272 (12)
H330.02080.48460.21030.033*
H340.07850.52290.17900.033*
P40.07221 (7)0.65771 (13)0.26321 (8)0.0236 (3)
C310.2428 (3)0.4391 (4)0.2423 (3)0.0276 (12)
C320.2228 (3)0.3441 (5)0.2001 (3)0.0420 (15)
H350.18230.30590.19730.050*
C330.2627 (3)0.3046 (6)0.1613 (4)0.0479 (17)
H360.24840.24150.13100.057*
C340.3218 (3)0.3564 (6)0.1672 (3)0.0496 (17)
H370.34950.32690.14230.060*
C350.3420 (3)0.4508 (5)0.2086 (4)0.0449 (17)
H380.38300.48720.21130.054*
C360.3034 (3)0.4934 (5)0.2464 (3)0.0337 (13)
H390.31760.55890.27500.040*
C370.2340 (3)0.3912 (4)0.3691 (3)0.0301 (13)
C380.1971 (3)0.3350 (4)0.4064 (3)0.0375 (14)
H400.15080.34520.39500.045*
C390.2292 (3)0.2641 (5)0.4604 (4)0.0464 (17)
H410.20410.22530.48510.056*
C400.2959 (4)0.2496 (5)0.4783 (3)0.0465 (17)
H420.31680.20190.51550.056*
C410.3328 (3)0.3040 (5)0.4426 (4)0.0454 (16)
H430.37910.29300.45440.054*
C420.3018 (3)0.3752 (5)0.3890 (3)0.0393 (15)
H440.32770.41400.36520.047*
C430.0088 (2)0.6345 (4)0.3075 (3)0.0265 (12)
C440.0192 (3)0.5576 (5)0.3614 (3)0.0318 (13)
H450.06010.51760.37610.038*
C450.0281 (3)0.5374 (5)0.3944 (3)0.0347 (13)
H460.01950.48520.43120.042*
C460.0878 (3)0.5947 (5)0.3726 (3)0.0392 (15)
H470.12060.58200.39470.047*
C470.1001 (3)0.6699 (5)0.3190 (4)0.0441 (16)
H480.14130.70870.30420.053*
C480.0525 (3)0.6894 (5)0.2866 (3)0.0388 (15)
H490.06180.74090.24940.047*
C490.0269 (2)0.7526 (4)0.1944 (3)0.0260 (11)
C500.0080 (3)0.7093 (5)0.1318 (3)0.0320 (13)
H500.00920.62720.12360.038*
C510.0407 (3)0.7846 (5)0.0820 (3)0.0353 (13)
H510.06390.75340.03970.042*
C520.0407 (3)0.9047 (5)0.0917 (3)0.0338 (13)
H520.06220.95600.05640.041*
C530.0087 (3)0.9477 (5)0.1540 (3)0.0347 (14)
H530.00961.02960.16220.042*
C540.0249 (2)0.8734 (4)0.2051 (3)0.0283 (12)
H540.04660.90510.24770.034*
P50.54660 (9)0.74420 (15)0.06486 (10)0.0454 (4)
F10.5545 (6)0.6026 (9)0.0426 (6)0.050 (3)*0.40
F20.6147 (7)0.7668 (12)0.0489 (8)0.080 (4)*0.40
F30.5868 (8)0.6925 (13)0.1387 (9)0.099 (5)*0.40
F40.5469 (10)0.8632 (12)0.0914 (8)0.093 (4)*0.40
F50.4805 (7)0.7031 (11)0.0818 (8)0.061 (4)*0.40
F60.5053 (7)0.7599 (12)0.0126 (7)0.063 (4)*0.40
F70.4865 (10)0.8345 (18)0.0424 (11)0.091 (6)*0.30
F80.5342 (11)0.7245 (15)0.1337 (10)0.075 (6)*0.30
F90.5920 (7)0.8583 (10)0.1011 (7)0.040 (3)*0.30
F100.6126 (8)0.6707 (13)0.0894 (9)0.062 (4)*0.30
F110.5743 (9)0.7863 (13)0.0019 (9)0.063 (4)*0.30
F120.5083 (10)0.6387 (15)0.0333 (10)0.084 (5)*0.30
F130.4740 (8)0.6838 (14)0.0584 (10)0.053 (5)*0.30
F140.5076 (7)0.8755 (11)0.0654 (8)0.040 (3)*0.30
F150.5624 (9)0.7389 (13)0.1454 (8)0.043 (4)*0.30
F160.6071 (8)0.8210 (16)0.0700 (10)0.073 (5)*0.30
F170.5809 (9)0.6314 (14)0.0656 (9)0.056 (4)*0.30
F180.5308 (11)0.7675 (15)0.0113 (9)0.057 (5)*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01844 (17)0.02342 (17)0.0212 (2)0.00033 (19)0.00615 (14)0.00016 (19)
S10.0202 (7)0.0355 (8)0.0317 (10)0.0002 (6)0.0031 (7)0.0012 (6)
N10.030 (2)0.036 (2)0.025 (3)0.003 (2)0.009 (2)0.005 (2)
C10.032 (3)0.051 (4)0.036 (4)0.005 (3)0.005 (3)0.001 (3)
C20.041 (3)0.042 (3)0.029 (4)0.003 (3)0.002 (3)0.007 (3)
P10.0218 (6)0.0257 (6)0.0225 (8)0.0015 (5)0.0071 (6)0.0001 (6)
C30.029 (3)0.026 (2)0.028 (3)0.001 (2)0.010 (2)0.005 (2)
C40.027 (3)0.031 (3)0.029 (3)0.004 (2)0.013 (3)0.001 (2)
P20.0249 (7)0.0241 (6)0.0241 (8)0.0012 (5)0.0078 (6)0.0014 (6)
C50.016 (2)0.031 (3)0.031 (3)0.001 (2)0.008 (2)0.002 (2)
C60.025 (3)0.028 (3)0.026 (3)0.002 (2)0.007 (2)0.001 (2)
C70.037 (3)0.040 (3)0.027 (3)0.008 (2)0.007 (3)0.007 (3)
C80.046 (4)0.049 (4)0.023 (4)0.007 (3)0.007 (3)0.004 (3)
C90.023 (3)0.048 (3)0.023 (3)0.003 (2)0.002 (2)0.007 (3)
C100.025 (3)0.035 (3)0.031 (3)0.006 (2)0.012 (3)0.002 (2)
C110.023 (2)0.022 (2)0.029 (3)0.001 (2)0.009 (2)0.002 (2)
C120.028 (3)0.051 (3)0.027 (4)0.004 (3)0.013 (3)0.002 (3)
C130.031 (3)0.063 (4)0.032 (4)0.004 (3)0.015 (3)0.012 (3)
C140.024 (3)0.043 (3)0.051 (4)0.004 (2)0.017 (3)0.010 (3)
C150.024 (3)0.045 (3)0.052 (4)0.007 (3)0.009 (3)0.008 (3)
C160.026 (3)0.043 (3)0.033 (4)0.001 (2)0.006 (3)0.004 (3)
C170.036 (3)0.026 (3)0.031 (3)0.004 (2)0.014 (3)0.006 (2)
C180.038 (3)0.037 (3)0.045 (4)0.002 (3)0.004 (3)0.000 (3)
C190.032 (3)0.040 (3)0.067 (5)0.010 (3)0.008 (3)0.008 (3)
C200.029 (3)0.050 (4)0.056 (5)0.012 (3)0.007 (3)0.009 (3)
C210.034 (3)0.047 (4)0.048 (4)0.004 (3)0.018 (3)0.003 (3)
C220.025 (3)0.034 (3)0.034 (4)0.005 (2)0.007 (3)0.001 (2)
C230.039 (3)0.020 (2)0.029 (3)0.002 (2)0.004 (3)0.000 (2)
C240.037 (3)0.026 (3)0.039 (4)0.001 (2)0.005 (3)0.000 (3)
C250.037 (3)0.042 (3)0.036 (4)0.004 (3)0.005 (3)0.006 (3)
C260.053 (4)0.034 (3)0.032 (4)0.004 (3)0.006 (3)0.008 (3)
C270.067 (5)0.043 (3)0.023 (4)0.013 (3)0.007 (3)0.004 (3)
C280.042 (3)0.030 (3)0.027 (3)0.005 (2)0.007 (3)0.003 (2)
P30.0215 (6)0.0231 (6)0.0253 (8)0.0010 (5)0.0069 (6)0.0006 (6)
C290.030 (3)0.022 (2)0.032 (3)0.002 (2)0.009 (3)0.000 (2)
C300.022 (3)0.029 (3)0.032 (3)0.001 (2)0.011 (2)0.001 (2)
P40.0194 (7)0.0261 (6)0.0254 (9)0.0009 (6)0.0064 (6)0.0002 (6)
C310.026 (3)0.030 (3)0.027 (3)0.012 (2)0.008 (2)0.002 (2)
C320.039 (3)0.053 (4)0.033 (4)0.001 (3)0.009 (3)0.009 (3)
C330.053 (4)0.059 (4)0.034 (4)0.012 (3)0.018 (3)0.013 (3)
C340.049 (4)0.067 (4)0.039 (4)0.024 (3)0.023 (3)0.005 (4)
C350.039 (4)0.045 (4)0.059 (5)0.013 (3)0.027 (3)0.005 (3)
C360.032 (3)0.029 (3)0.041 (4)0.004 (2)0.013 (3)0.003 (3)
C370.036 (3)0.028 (3)0.029 (4)0.004 (2)0.013 (3)0.003 (2)
C380.046 (3)0.029 (3)0.041 (4)0.002 (2)0.018 (3)0.011 (3)
C390.061 (4)0.034 (3)0.049 (5)0.011 (3)0.023 (4)0.017 (3)
C400.071 (5)0.036 (3)0.031 (4)0.018 (3)0.012 (4)0.007 (3)
C410.054 (4)0.037 (3)0.043 (4)0.017 (3)0.010 (3)0.008 (3)
C420.038 (3)0.038 (3)0.041 (4)0.011 (3)0.010 (3)0.008 (3)
C430.021 (3)0.028 (3)0.031 (3)0.001 (2)0.009 (2)0.001 (2)
C440.028 (3)0.036 (3)0.035 (4)0.003 (2)0.014 (3)0.000 (3)
C450.039 (3)0.036 (3)0.033 (4)0.008 (2)0.018 (3)0.002 (3)
C460.035 (3)0.043 (3)0.051 (4)0.009 (3)0.031 (3)0.004 (3)
C470.029 (3)0.052 (4)0.056 (5)0.009 (3)0.020 (3)0.006 (3)
C480.024 (3)0.046 (3)0.053 (4)0.008 (2)0.021 (3)0.011 (3)
C490.015 (2)0.032 (3)0.030 (3)0.004 (2)0.006 (2)0.001 (2)
C500.025 (3)0.038 (3)0.032 (3)0.004 (2)0.006 (3)0.002 (3)
C510.024 (3)0.047 (3)0.031 (4)0.001 (2)0.001 (3)0.007 (3)
C520.024 (3)0.045 (3)0.029 (3)0.001 (2)0.000 (2)0.011 (3)
C530.029 (3)0.029 (3)0.048 (4)0.002 (2)0.014 (3)0.011 (3)
C540.023 (3)0.031 (3)0.029 (3)0.003 (2)0.004 (2)0.003 (2)
P50.0505 (10)0.0507 (10)0.0380 (11)0.0106 (8)0.0173 (9)0.0057 (8)
Geometric parameters (Å, º) top
Ru1—N12.209 (5)C28—H300.9500
Ru1—P12.3586 (14)P3—C311.835 (5)
Ru1—P42.3672 (15)P3—C371.838 (6)
Ru1—P32.3698 (13)P3—C291.850 (5)
Ru1—P22.4249 (13)C29—C301.517 (7)
Ru1—S12.4317 (15)C29—H310.9900
S1—C11.831 (7)C29—H320.9900
N1—C21.484 (8)C30—P41.849 (5)
N1—H10.90 (2)C30—H330.9900
N1—H20.91 (2)C30—H340.9900
C1—C21.478 (8)P4—C491.837 (6)
C1—H30.9900P4—C431.856 (5)
C1—H40.9900C31—C321.386 (8)
C2—H50.9900C31—C361.406 (7)
C2—H60.9900C32—C331.404 (9)
P1—C51.842 (6)C32—H350.9500
P1—C111.859 (5)C33—C341.358 (9)
P1—C31.860 (5)C33—H360.9500
C3—C41.517 (8)C34—C351.372 (9)
C3—H70.9900C34—H370.9500
C3—H80.9900C35—C361.379 (8)
C4—P21.833 (5)C35—H380.9500
C4—H90.9900C36—H390.9500
C4—H100.9900C37—C421.390 (8)
P2—C231.834 (6)C37—C381.407 (8)
P2—C171.835 (5)C38—C391.397 (8)
C5—C101.396 (7)C38—H400.9500
C5—C61.403 (7)C39—C401.366 (9)
C6—C71.386 (8)C39—H410.9500
C6—H110.9500C40—C411.375 (10)
C7—C81.378 (8)C40—H420.9500
C7—H120.9500C41—C421.388 (8)
C8—C91.377 (8)C41—H430.9500
C8—H130.9500C42—H440.9500
C9—C101.389 (8)C43—C481.395 (7)
C9—H140.9500C43—C441.396 (8)
C10—H150.9500C44—C451.389 (7)
C11—C161.388 (8)C44—H450.9500
C11—C121.389 (8)C45—C461.380 (8)
C12—C131.385 (8)C45—H460.9500
C12—H160.9500C46—C471.376 (9)
C13—C141.373 (9)C46—H470.9500
C13—H170.9500C47—C481.386 (8)
C14—C151.375 (9)C47—H480.9500
C14—H180.9500C48—H490.9500
C15—C161.396 (8)C49—C541.398 (7)
C15—H190.9500C49—C501.400 (8)
C16—H200.9500C50—C511.375 (8)
C17—C221.391 (7)C50—H500.9500
C17—C181.403 (7)C51—C521.384 (8)
C18—C191.369 (8)C51—H510.9500
C18—H210.9500C52—C531.378 (8)
C19—C201.375 (9)C52—H520.9500
C19—H220.9500C53—C541.390 (8)
C20—C211.377 (9)C53—H530.9500
C20—H230.9500C54—H540.9500
C21—C221.381 (7)P5—F41.466 (14)
C21—H240.9500P5—F171.475 (14)
C22—H250.9500P5—F121.495 (17)
C23—C241.396 (8)P5—F161.531 (16)
C23—C281.405 (8)P5—F81.552 (19)
C24—C251.375 (8)P5—F181.555 (18)
C24—H260.9500P5—F101.585 (15)
C25—C261.374 (9)P5—F21.592 (13)
C25—H270.9500P5—F71.601 (19)
C26—C271.390 (9)P5—F51.610 (13)
C26—H280.9500P5—F61.617 (14)
C27—C281.384 (8)P5—F151.623 (15)
C27—H290.9500
N1—Ru1—P1171.03 (13)C25—C26—H28120.5
N1—Ru1—P495.14 (13)C27—C26—H28120.5
P1—Ru1—P491.27 (5)C28—C27—C26120.6 (6)
N1—Ru1—P387.17 (13)C28—C27—H29119.7
P1—Ru1—P399.77 (5)C26—C27—H29119.7
P4—Ru1—P383.88 (5)C27—C28—C23121.0 (6)
N1—Ru1—P288.63 (13)C27—C28—H30119.5
P1—Ru1—P283.76 (5)C23—C28—H30119.5
P4—Ru1—P2103.62 (5)C31—P3—C3797.8 (2)
P3—Ru1—P2171.71 (5)C31—P3—C29105.9 (3)
N1—Ru1—S180.92 (13)C37—P3—C29102.8 (3)
P1—Ru1—S193.86 (5)C31—P3—Ru1123.39 (17)
P4—Ru1—S1169.03 (5)C37—P3—Ru1116.92 (18)
P3—Ru1—S185.70 (5)C29—P3—Ru1107.81 (16)
P2—Ru1—S186.59 (5)C30—C29—P3110.2 (3)
C1—S1—Ru1101.18 (19)C30—C29—H31109.6
C2—N1—Ru1116.7 (4)P3—C29—H31109.6
C2—N1—H1104 (4)C30—C29—H32109.6
Ru1—N1—H1118 (4)P3—C29—H32109.6
C2—N1—H299 (4)H31—C29—H32108.1
Ru1—N1—H2118 (4)C29—C30—P4111.0 (4)
H1—N1—H298 (5)C29—C30—H33109.4
C2—C1—S1114.3 (4)P4—C30—H33109.4
C2—C1—H3108.7C29—C30—H34109.4
S1—C1—H3108.7P4—C30—H34109.4
C2—C1—H4108.7H33—C30—H34108.0
S1—C1—H4108.7C49—P4—C30101.7 (3)
H3—C1—H4107.6C49—P4—C43100.6 (2)
C1—C2—N1112.9 (5)C30—P4—C4398.9 (2)
C1—C2—H5109.0C49—P4—Ru1123.42 (16)
N1—C2—H5109.0C30—P4—Ru1107.70 (17)
C1—C2—H6109.0C43—P4—Ru1120.52 (19)
N1—C2—H6109.0C32—C31—C36119.3 (5)
H5—C2—H6107.8C32—C31—P3121.7 (4)
C5—P1—C1199.3 (2)C36—C31—P3118.7 (4)
C5—P1—C3101.4 (2)C31—C32—C33119.6 (6)
C11—P1—C399.4 (2)C31—C32—H35120.2
C5—P1—Ru1123.58 (17)C33—C32—H35120.2
C11—P1—Ru1121.42 (18)C34—C33—C32120.1 (6)
C3—P1—Ru1107.59 (18)C34—C33—H36120.0
C4—C3—P1110.8 (4)C32—C33—H36120.0
C4—C3—H7109.5C33—C34—C35120.8 (6)
P1—C3—H7109.5C33—C34—H37119.6
C4—C3—H8109.5C35—C34—H37119.6
P1—C3—H8109.5C34—C35—C36120.6 (6)
H7—C3—H8108.1C34—C35—H38119.7
C3—C4—P2110.4 (3)C36—C35—H38119.7
C3—C4—H9109.6C35—C36—C31119.5 (5)
P2—C4—H9109.6C35—C36—H39120.3
C3—C4—H10109.6C31—C36—H39120.3
P2—C4—H10109.6C42—C37—C38117.6 (5)
H9—C4—H10108.1C42—C37—P3120.1 (4)
C4—P2—C23101.5 (3)C38—C37—P3122.2 (4)
C4—P2—C17104.3 (2)C39—C38—C37119.6 (6)
C23—P2—C17100.2 (3)C39—C38—H40120.2
C4—P2—Ru1106.29 (18)C37—C38—H40120.2
C23—P2—Ru1120.91 (17)C40—C39—C38121.2 (6)
C17—P2—Ru1121.00 (17)C40—C39—H41119.4
C10—C5—C6117.8 (5)C38—C39—H41119.4
C10—C5—P1122.4 (4)C39—C40—C41120.1 (6)
C6—C5—P1119.7 (4)C39—C40—H42119.9
C7—C6—C5121.3 (5)C41—C40—H42119.9
C7—C6—H11119.4C40—C41—C42119.4 (6)
C5—C6—H11119.4C40—C41—H43120.3
C8—C7—C6119.7 (5)C42—C41—H43120.3
C8—C7—H12120.1C41—C42—C37122.0 (6)
C6—C7—H12120.1C41—C42—H44119.0
C9—C8—C7120.1 (6)C37—C42—H44119.0
C9—C8—H13119.9C48—C43—C44116.9 (5)
C7—C8—H13119.9C48—C43—P4121.4 (4)
C8—C9—C10120.5 (5)C44—C43—P4121.6 (4)
C8—C9—H14119.7C45—C44—C43122.5 (5)
C10—C9—H14119.7C45—C44—H45118.8
C9—C10—C5120.6 (5)C43—C44—H45118.8
C9—C10—H15119.7C46—C45—C44118.8 (5)
C5—C10—H15119.7C46—C45—H46120.6
C16—C11—C12117.8 (5)C44—C45—H46120.6
C16—C11—P1119.2 (4)C47—C46—C45120.4 (5)
C12—C11—P1123.0 (4)C47—C46—H47119.8
C13—C12—C11121.3 (6)C45—C46—H47119.8
C13—C12—H16119.3C46—C47—C48120.3 (5)
C11—C12—H16119.3C46—C47—H48119.9
C14—C13—C12120.5 (6)C48—C47—H48119.9
C14—C13—H17119.8C47—C48—C43121.2 (6)
C12—C13—H17119.8C47—C48—H49119.4
C13—C14—C15119.1 (5)C43—C48—H49119.4
C13—C14—H18120.4C54—C49—C50117.7 (5)
C15—C14—H18120.4C54—C49—P4119.2 (4)
C14—C15—C16120.7 (6)C50—C49—P4123.0 (4)
C14—C15—H19119.7C51—C50—C49120.5 (5)
C16—C15—H19119.7C51—C50—H50119.8
C11—C16—C15120.6 (6)C49—C50—H50119.8
C11—C16—H20119.7C50—C51—C52121.9 (6)
C15—C16—H20119.7C50—C51—H51119.1
C22—C17—C18117.0 (5)C52—C51—H51119.1
C22—C17—P2119.1 (4)C53—C52—C51118.0 (5)
C18—C17—P2123.9 (4)C53—C52—H52121.0
C19—C18—C17121.3 (6)C51—C52—H52121.0
C19—C18—H21119.3C52—C53—C54121.1 (5)
C17—C18—H21119.3C52—C53—H53119.4
C18—C19—C20120.4 (6)C54—C53—H53119.4
C18—C19—H22119.8C53—C54—C49120.7 (5)
C20—C19—H22119.8C53—C54—H54119.7
C19—C20—C21119.9 (5)C49—C54—H54119.7
C19—C20—H23120.0F17—P5—F1695.6 (11)
C21—C20—H23120.0F12—P5—F894.6 (10)
C20—C21—C22119.6 (5)F17—P5—F1897.0 (9)
C20—C21—H24120.2F16—P5—F1884.6 (11)
C22—C21—H24120.2F12—P5—F1092.0 (9)
C21—C22—C17121.7 (5)F8—P5—F1089.5 (9)
C21—C22—H25119.2F4—P5—F291.4 (8)
C17—C22—H25119.2F12—P5—F795.8 (11)
C24—C23—C28116.7 (5)F8—P5—F792.0 (10)
C24—C23—P2122.0 (5)F10—P5—F7171.9 (10)
C28—C23—P2121.1 (4)F4—P5—F595.4 (8)
C25—C24—C23122.2 (6)F2—P5—F5172.3 (7)
C25—C24—H26118.9F4—P5—F6102.7 (9)
C23—C24—H26118.9F2—P5—F692.0 (8)
C26—C25—C24120.5 (6)F5—P5—F689.8 (8)
C26—C25—H27119.7F17—P5—F1590.1 (9)
C24—C25—H27119.7F16—P5—F1591.6 (10)
C25—C26—C27118.9 (6)F18—P5—F15172.2 (8)
N1—Ru1—S1—C11.0 (2)C25—C26—C27—C282.8 (9)
P1—Ru1—S1—C1173.7 (2)C26—C27—C28—C232.4 (9)
P4—Ru1—S1—C168.6 (4)C24—C23—C28—C271.0 (8)
P3—Ru1—S1—C186.8 (2)P2—C23—C28—C27176.4 (4)
P2—Ru1—S1—C190.2 (2)N1—Ru1—P3—C31152.5 (2)
P4—Ru1—N1—C2169.9 (4)P1—Ru1—P3—C3121.8 (2)
P3—Ru1—N1—C2106.5 (4)P4—Ru1—P3—C31112.0 (2)
P2—Ru1—N1—C266.4 (4)S1—Ru1—P3—C3171.4 (2)
S1—Ru1—N1—C220.4 (4)N1—Ru1—P3—C3731.4 (2)
Ru1—S1—C1—C222.2 (5)P1—Ru1—P3—C37142.8 (2)
S1—C1—C2—N141.0 (6)P4—Ru1—P3—C37126.9 (2)
Ru1—N1—C2—C140.8 (6)S1—Ru1—P3—C3749.7 (2)
P4—Ru1—P1—C523.9 (2)N1—Ru1—P3—C2983.6 (2)
P3—Ru1—P1—C560.1 (2)P1—Ru1—P3—C29102.1 (2)
P2—Ru1—P1—C5127.5 (2)P4—Ru1—P3—C2911.8 (2)
S1—Ru1—P1—C5146.40 (19)S1—Ru1—P3—C29164.7 (2)
P4—Ru1—P1—C11153.23 (19)C31—P3—C29—C3095.6 (4)
P3—Ru1—P1—C1169.21 (19)C37—P3—C29—C30162.4 (4)
P2—Ru1—P1—C11103.22 (19)Ru1—P3—C29—C3038.3 (4)
S1—Ru1—P1—C1117.08 (19)P3—C29—C30—P449.2 (5)
P4—Ru1—P1—C393.51 (18)C29—C30—P4—C49168.7 (4)
P3—Ru1—P1—C3177.52 (18)C29—C30—P4—C4388.4 (4)
P2—Ru1—P1—C310.05 (18)C29—C30—P4—Ru137.7 (4)
S1—Ru1—P1—C396.19 (18)N1—Ru1—P4—C49144.9 (3)
C5—P1—C3—C4169.2 (4)P1—Ru1—P4—C4928.8 (2)
C11—P1—C3—C489.1 (4)P3—Ru1—P4—C49128.5 (2)
Ru1—P1—C3—C438.2 (4)P2—Ru1—P4—C4955.1 (2)
P1—C3—C4—P251.7 (4)S1—Ru1—P4—C49146.7 (4)
C3—C4—P2—C23168.0 (4)N1—Ru1—P4—C3097.4 (2)
C3—C4—P2—C1788.2 (4)P1—Ru1—P4—C3088.91 (19)
C3—C4—P2—Ru140.8 (4)P3—Ru1—P4—C3010.79 (19)
N1—Ru1—P2—C4161.9 (2)P2—Ru1—P4—C30172.79 (19)
P1—Ru1—P2—C413.36 (19)S1—Ru1—P4—C3029.0 (4)
P4—Ru1—P2—C4103.16 (19)N1—Ru1—P4—C4314.7 (2)
S1—Ru1—P2—C480.90 (19)P1—Ru1—P4—C43159.01 (19)
N1—Ru1—P2—C2347.2 (3)P3—Ru1—P4—C43101.30 (19)
P1—Ru1—P2—C23128.0 (2)P2—Ru1—P4—C4375.12 (19)
P4—Ru1—P2—C23142.2 (2)S1—Ru1—P4—C4383.1 (4)
S1—Ru1—P2—C2333.8 (2)C37—P3—C31—C3286.9 (5)
N1—Ru1—P2—C1779.7 (3)C29—P3—C31—C3218.9 (5)
P1—Ru1—P2—C17105.1 (2)Ru1—P3—C31—C32143.6 (4)
P4—Ru1—P2—C1715.3 (2)C37—P3—C31—C3687.8 (5)
S1—Ru1—P2—C17160.6 (2)C29—P3—C31—C36166.5 (4)
C11—P1—C5—C1098.7 (4)Ru1—P3—C31—C3641.8 (5)
C3—P1—C5—C103.0 (5)C36—C31—C32—C331.0 (9)
Ru1—P1—C5—C10123.3 (4)P3—C31—C32—C33175.6 (5)
C11—P1—C5—C679.1 (4)C31—C32—C33—C342.6 (10)
C3—P1—C5—C6179.2 (4)C32—C33—C34—C352.9 (11)
Ru1—P1—C5—C658.9 (4)C33—C34—C35—C361.5 (10)
C10—C5—C6—C71.0 (7)C34—C35—C36—C310.1 (10)
P1—C5—C6—C7178.9 (4)C32—C31—C36—C350.3 (9)
C5—C6—C7—C81.0 (8)P3—C31—C36—C35174.4 (5)
C6—C7—C8—C90.1 (9)C31—P3—C37—C4243.7 (5)
C7—C8—C9—C100.7 (9)C29—P3—C37—C42152.1 (5)
C8—C9—C10—C50.7 (8)Ru1—P3—C37—C4290.1 (5)
C6—C5—C10—C90.1 (7)C31—P3—C37—C38139.2 (5)
P1—C5—C10—C9178.0 (4)C29—P3—C37—C3830.8 (6)
C5—P1—C11—C16164.8 (4)Ru1—P3—C37—C3887.0 (5)
C3—P1—C11—C1661.4 (5)C42—C37—C38—C391.4 (9)
Ru1—P1—C11—C1656.0 (5)P3—C37—C38—C39178.6 (5)
C5—P1—C11—C1213.1 (5)C37—C38—C39—C401.0 (10)
C3—P1—C11—C12116.4 (5)C38—C39—C40—C410.8 (10)
Ru1—P1—C11—C12126.1 (4)C39—C40—C41—C421.1 (10)
C16—C11—C12—C130.0 (9)C40—C41—C42—C371.6 (10)
P1—C11—C12—C13177.9 (5)C38—C37—C42—C411.7 (9)
C11—C12—C13—C141.3 (10)P3—C37—C42—C41179.0 (5)
C12—C13—C14—C150.3 (10)C49—P4—C43—C482.9 (5)
C13—C14—C15—C161.8 (9)C30—P4—C43—C48106.6 (5)
C12—C11—C16—C152.1 (8)Ru1—P4—C43—C48136.7 (4)
P1—C11—C16—C15175.8 (4)C49—P4—C43—C44174.3 (4)
C14—C15—C16—C113.1 (9)C30—P4—C43—C4470.5 (5)
C4—P2—C17—C22162.9 (5)Ru1—P4—C43—C4446.1 (5)
C23—P2—C17—C2292.3 (5)C48—C43—C44—C451.5 (8)
Ru1—P2—C17—C2243.5 (6)P4—C43—C44—C45178.7 (4)
C4—P2—C17—C1816.6 (6)C43—C44—C45—C460.7 (9)
C23—P2—C17—C1888.2 (5)C44—C45—C46—C470.2 (9)
Ru1—P2—C17—C18136.1 (5)C45—C46—C47—C480.3 (10)
C22—C17—C18—C190.1 (9)C46—C47—C48—C430.6 (10)
P2—C17—C18—C19179.5 (5)C44—C43—C48—C471.4 (9)
C17—C18—C19—C200.2 (11)P4—C43—C48—C47178.7 (5)
C18—C19—C20—C211.1 (11)C30—P4—C49—C54174.5 (4)
C19—C20—C21—C221.8 (10)C43—P4—C49—C5484.0 (4)
C20—C21—C22—C171.5 (10)Ru1—P4—C49—C5454.0 (5)
C18—C17—C22—C210.6 (9)C30—P4—C49—C507.9 (5)
P2—C17—C22—C21179.8 (5)C43—P4—C49—C5093.6 (5)
C4—P2—C23—C2447.9 (5)Ru1—P4—C49—C50128.4 (4)
C17—P2—C23—C24155.0 (4)C54—C49—C50—C512.8 (7)
Ru1—P2—C23—C2469.2 (5)P4—C49—C50—C51179.6 (4)
C4—P2—C23—C28136.9 (4)C49—C50—C51—C520.4 (8)
C17—P2—C23—C2829.8 (5)C50—C51—C52—C532.2 (8)
Ru1—P2—C23—C28106.0 (4)C51—C52—C53—C542.4 (8)
C28—C23—C24—C250.2 (8)C52—C53—C54—C490.0 (8)
P2—C23—C24—C25175.5 (4)C50—C49—C54—C532.6 (7)
C23—C24—C25—C260.7 (9)P4—C49—C54—C53179.7 (4)
C24—C25—C26—C271.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F11i0.90 (2)2.34 (4)3.198 (17)159 (6)
Symmetry code: (i) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C2H6NS)(C26H24P2)2]PF6
Mr1118.96
Crystal system, space groupMonoclinic, Cc
Temperature (K)200
a, b, c (Å)21.1985 (17), 11.4000 (9), 20.9346 (17)
β (°) 106.588 (2)
V3)4848.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.15 × 0.08 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.684, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
23148, 9513, 7722
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.20
No. of reflections9513
No. of parameters638
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.88
Absolute structureFlack (1983), 3981 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: PROCESS-AUTO (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto et al., 2009).

Selected geometric parameters (Å, º) top
Ru1—N12.209 (5)Ru1—P32.3698 (13)
Ru1—P12.3586 (14)Ru1—P22.4249 (13)
Ru1—P42.3672 (15)Ru1—S12.4317 (15)
N1—Ru1—P1171.03 (13)P4—Ru1—S1169.03 (5)
P3—Ru1—P2171.71 (5)
 

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research (grant No. 23350026) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A. & Zubkowsky, J. (1991). J. Am. Chem. Soc. 113, 4876–4887.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGispert, J. R. (2008). Coordination Chemistry, pp. 103–107. Weinheim: Wiley-VCH.  Google Scholar
First citationHanif, K. M., Hursthouse, M. B., Kabir, S. E., Malik, K. M. A. & Rosenberg, E. (1999). J. Organomet. Chem. 580, 60–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218–224.  CrossRef Google Scholar
First citationMatsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401–408.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamura, M., Matsuura, N., Kawamoto, T. & Konno, T. (2007). Inorg. Chem. 46, 6834–6836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds