organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Thio­phen-2-yl)-N-(4-{(E)-[(thio­phen-2-yl)meth­yl]imino­meth­yl}benzyl­­idene)methanamine

aDepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7707, South Africa, bDivision of Medical Biochemistry, Faculty of Health Sciences, Private Bag X3, Observatory 7935, South Africa, and cResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 18 September 2012; accepted 27 September 2012; online 20 October 2012)

The title compound C18H16N2S2, crystallizes with two independent half-mol­ecules in the asymmetric unit, in one of which the thio­phene rings are disordered in a 0.67:0.33 ratio. Each independent mol­ecule lies across a crystallographic centre of symmetry. The dihedral angle between central (half) benzene ring and the thiophene ring is 11.82°.

Related literature

For similar thio­phenyl­dimine-based bridging ligands, see: Chakraborty et al. (1999[Chakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437-1444.]); Haga & Koizumi (1985[Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47-50.]); Chiririwa et al. (2011a[Chiririwa, H., Moss, J. R., Su, H., Hendricks, D. & Meijboom, R. (2011a). Acta Cryst. E67, o921.],b[Chiririwa, H., Meijboom, R. & Omondi, B. (2011b). Acta Cryst. E67, o922.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2S2

  • Mr = 324.45

  • Triclinic, [P \overline 1]

  • a = 8.8517 (3) Å

  • b = 10.3937 (5) Å

  • c = 10.5763 (4) Å

  • α = 63.836 (2)°

  • β = 69.023 (2)°

  • γ = 72.394 (2)°

  • V = 803.22 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.959

  • 34407 measured reflections

  • 3282 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.06

  • 3282 reflections

  • 206 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound belongs to a class of tetradentate ligands. To the best of our knowledge, this is the second example of a neutral thiophenyldimine-based bridging ligand, the first of which was reported earlier by our group (Chiririwa et al., 2011a) and (Chiririwa et al., 2011b). This compound is expected to chelate in a tetradentate manner with both nitrogen atoms coordinating along with the two thiophenyl sulphur atoms. Chakraborty et al. reported coordination of similar ligands to ruthenium (Chakraborty et al. 1999) whilst Haga and Kiozumi reported their coordination to molybednum, (Haga & Koizumi,1985). The bond lengths N1A—C6A = 1.265 (3)and N1B—C6B = 1.266 (3) Å are consistent with C=N double bonding.

Related literature top

For similar thiophenyldimine-based bridging ligands, see: Chakraborty et al. (1999); Haga & Koizumi(1985); Chiririwa et al. (2011a,b).

Experimental top

A solution of benzene 1,4-dicarboxaldehyde (0.50 g, 3.73 mmol) in methanol (10 ml) was added dropwise to a stirred solution of 2-thiophenylmethylamine (1.20 g, 7.42 mmol) in methanol (10 ml). The mixture stirred at room temperature for ca 16 h. The precipitate was filtered off and washed with diethylether and dried under vacuum for 4 h affording a white powder in 85% yield. Crystals suitable for X-ray determination were obtained by recrystallization from CH2Cl2– hexane mixture at room temperature.: Calc. for C18H16N2S2: C, 66.63%; H, 4.97%; N, 8.63%; S, 19.77 Found: C, 66.59%; H, 4.62%; N, 8.72%; S, 19.65 1H NMR: (400 MHz) ?H 8.38 (t, 2H, J = 1.3 Hz) 7.82 (s, 2H) 7.25 (m, 4H) 7.00 (d, 4H, J = 3.4 Hz) 5.00 (d, 4H, J = 1.3 Hz. IR (KBr): 1612 cm-1 (C=N, imine)

Refinement top

The methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH. Disorder refinement models were applied to the thiophenes of one independent molecule in the asymmetric unit. Geometrical (FLAT) restaraints were applied to keep the ring C1B1-C2B2-C3B1-C3B2-S1B1-S1B2 planar. Bond distance (DFIX) and 1,3 distance similarity restraints (SADI) were applied to obtain reasonable geometries. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moieties. Free variables were connected to the disordered component to add to unity.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the (1,4-phenylenebis(methan-1-yl-1-ylidene)) bis(1-(thiophen-2-yl)methanamine) showing 40% probability displacement ellipsoids. Hydrogen atoms were omitted for clarity.
1-(Thiophen-2-yl)-N-(4-{(E)-[(thiophen-2- yl)methyl]iminomethyl}benzylidene)methanamine top
Crystal data top
C18H16N2S2Z = 2
Mr = 324.45F(000) = 340
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8517 (3) ÅCell parameters from 34407 reflections
b = 10.3937 (5) Åθ = 2.9–26.4°
c = 10.5763 (4) ŵ = 0.33 mm1
α = 63.836 (2)°T = 173 K
β = 69.023 (2)°Plate, colourless
γ = 72.394 (2)°0.22 × 0.20 × 0.13 mm
V = 803.22 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
3282 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
1.2° ϕ scans and ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 011
Tmin = 0.931, Tmax = 0.959k = 1113
34407 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.056P)2 + 0.4946P]
where P = (Fo2 + 2Fc2)/3
3282 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.34 e Å3
9 restraintsΔρmin = 0.48 e Å3
Crystal data top
C18H16N2S2γ = 72.394 (2)°
Mr = 324.45V = 803.22 (6) Å3
Triclinic, P1Z = 2
a = 8.8517 (3) ÅMo Kα radiation
b = 10.3937 (5) ŵ = 0.33 mm1
c = 10.5763 (4) ÅT = 173 K
α = 63.836 (2)°0.22 × 0.20 × 0.13 mm
β = 69.023 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3282 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2478 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.959Rint = 0.052
34407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0459 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3282 reflectionsΔρmin = 0.48 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.69140 (9)0.07229 (9)0.71753 (8)0.0551 (3)
N1A0.8877 (2)0.1968 (2)0.4771 (2)0.0338 (5)
C1A0.4849 (3)0.0628 (3)0.7957 (3)0.0479 (7)
H1A0.43720.12420.89180.058*
C2A0.3981 (3)0.0419 (3)0.7047 (3)0.0431 (6)
H2A0.28150.06270.72950.052*
C3A0.4989 (3)0.1187 (3)0.5671 (3)0.0383 (6)
H3A0.45710.19660.49050.046*
C4A0.6632 (3)0.0676 (3)0.5574 (3)0.0322 (5)
C5A0.8063 (3)0.1240 (3)0.4339 (3)0.0352 (6)
H5A10.88500.04250.40920.042*
H5A20.76780.19380.34650.042*
C6A0.8751 (3)0.3337 (3)0.4146 (3)0.0312 (5)
H6A0.82040.38330.33890.037*
C7A0.9431 (3)0.4184 (2)0.4562 (2)0.0284 (5)
C8A1.0455 (3)0.3496 (3)0.5499 (3)0.0327 (5)
H8A1.07770.24680.58380.039*
C9A0.8997 (3)0.5696 (3)0.4064 (3)0.0334 (5)
H9A0.83130.61770.34130.040*
N1B0.1122 (2)0.6222 (2)1.0089 (2)0.0352 (5)
C4B0.3208 (3)0.4419 (2)0.9269 (3)0.0335 (5)
C5B0.1887 (3)0.4689 (3)1.0535 (3)0.0366 (6)
H5B10.10480.40741.08810.044*
H5B20.23670.44261.13490.044*
C6B0.1358 (3)0.6967 (3)1.0657 (3)0.0324 (5)
H6B0.20090.65041.13350.039*
C7B0.0661 (3)0.8528 (3)1.0305 (3)0.0316 (5)
C8B0.0294 (3)0.9267 (3)0.9307 (3)0.0327 (5)
H8B0.04960.87670.88330.039*
C9B0.0946 (3)0.9276 (3)1.0991 (3)0.0332 (5)
H9B0.15950.87791.16700.040*
S1B10.34911 (15)0.29538 (12)0.88477 (13)0.0351 (3)0.67
C1B10.5072 (4)0.3432 (3)0.7441 (3)0.0555 (8)
H1B10.56470.28630.68580.067*
C2B10.5492 (3)0.4673 (3)0.7172 (3)0.0534 (8)
H2B10.63710.51030.64020.064*
C3B10.4387 (8)0.5249 (7)0.8248 (6)0.0351 (3)0.67
H3B10.44600.61370.82600.042*0.67
S1B20.4503 (4)0.5553 (3)0.8214 (4)0.0443 (7)0.33
C3B20.3679 (13)0.3308 (11)0.8727 (12)0.0443 (7)0.33
H3B20.31150.25050.91790.053*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0367 (4)0.0570 (5)0.0504 (5)0.0094 (3)0.0160 (3)0.0026 (4)
N1A0.0311 (11)0.0349 (11)0.0371 (11)0.0090 (9)0.0081 (9)0.0134 (9)
C1A0.0417 (15)0.0519 (17)0.0424 (16)0.0179 (13)0.0059 (12)0.0085 (13)
C2A0.0320 (13)0.0457 (15)0.0534 (17)0.0068 (11)0.0105 (12)0.0204 (13)
C3A0.0357 (13)0.0390 (14)0.0441 (15)0.0068 (11)0.0132 (11)0.0167 (12)
C4A0.0354 (13)0.0311 (12)0.0367 (13)0.0079 (10)0.0115 (10)0.0155 (10)
C5A0.0368 (13)0.0357 (13)0.0384 (14)0.0084 (11)0.0099 (11)0.0171 (11)
C6A0.0295 (12)0.0350 (13)0.0275 (12)0.0078 (10)0.0066 (9)0.0097 (10)
C7A0.0260 (11)0.0302 (12)0.0252 (11)0.0086 (9)0.0034 (9)0.0073 (9)
C8A0.0319 (12)0.0281 (12)0.0344 (13)0.0068 (10)0.0098 (10)0.0064 (10)
C9A0.0324 (12)0.0332 (13)0.0317 (13)0.0070 (10)0.0135 (10)0.0049 (10)
N1B0.0316 (11)0.0335 (11)0.0402 (12)0.0020 (9)0.0094 (9)0.0160 (9)
C4B0.0346 (13)0.0326 (13)0.0354 (13)0.0008 (10)0.0162 (10)0.0123 (10)
C5B0.0391 (14)0.0308 (12)0.0384 (14)0.0037 (10)0.0112 (11)0.0125 (11)
C6B0.0275 (12)0.0340 (13)0.0324 (13)0.0038 (10)0.0063 (10)0.0118 (10)
C7B0.0252 (11)0.0348 (13)0.0322 (13)0.0048 (10)0.0033 (9)0.0137 (10)
C8B0.0313 (12)0.0356 (13)0.0330 (13)0.0078 (10)0.0049 (10)0.0158 (10)
C9B0.0287 (12)0.0367 (13)0.0328 (13)0.0047 (10)0.0079 (10)0.0126 (10)
S1B10.0441 (6)0.0294 (6)0.0375 (5)0.0095 (4)0.0131 (4)0.0136 (5)
C1B10.0624 (19)0.0591 (19)0.0555 (19)0.0135 (15)0.0272 (16)0.0368 (16)
C2B10.0373 (15)0.067 (2)0.0419 (16)0.0066 (14)0.0023 (12)0.0158 (14)
C3B10.0441 (6)0.0294 (6)0.0375 (5)0.0095 (4)0.0131 (4)0.0136 (5)
S1B20.0408 (12)0.0379 (16)0.0556 (13)0.0146 (10)0.0074 (10)0.0177 (11)
C3B20.0408 (12)0.0379 (16)0.0556 (13)0.0146 (10)0.0074 (10)0.0177 (11)
Geometric parameters (Å, º) top
S1A—C1A1.708 (3)C4B—C3B21.399 (5)
S1A—C4A1.719 (3)C4B—C5B1.500 (3)
N1A—C6A1.265 (3)C4B—S1B21.640 (3)
N1A—C5A1.473 (3)C4B—S1B11.694 (2)
C1A—C2A1.342 (4)C5B—H5B10.9900
C1A—H1A0.9500C5B—H5B20.9900
C2A—C3A1.424 (4)C6B—C7B1.476 (3)
C2A—H2A0.9500C6B—H6B0.9500
C3A—C4A1.372 (3)C7B—C9B1.394 (3)
C3A—H3A0.9500C7B—C8B1.396 (3)
C4A—C5A1.498 (3)C8B—C9Bii1.381 (3)
C5A—H5A10.9900C8B—H8B0.9500
C5A—H5A20.9900C9B—C8Bii1.381 (3)
C6A—C7A1.478 (3)C9B—H9B0.9500
C6A—H6A0.9500S1B1—C1B11.642 (3)
C7A—C8A1.394 (3)C1B1—C2B11.332 (3)
C7A—C9A1.394 (3)C1B1—C3B21.459 (5)
C8A—C9Ai1.380 (3)C1B1—H1B10.9500
C8A—H8A0.9500C2B1—C3B11.435 (5)
C9A—C8Ai1.380 (3)C2B1—S1B21.591 (3)
C9A—H9A0.9500C2B1—H2B10.9500
N1B—C6B1.266 (3)C3B1—H3B10.9500
N1B—C5B1.461 (3)C3B2—H3B20.9500
C4B—C3B11.384 (5)
C1A—S1A—C4A92.37 (13)C5B—C4B—S1B1123.56 (17)
C6A—N1A—C5A117.3 (2)S1B2—C4B—S1B1115.94 (16)
C2A—C1A—S1A111.7 (2)N1B—C5B—C4B109.8 (2)
C2A—C1A—H1A124.1N1B—C5B—H5B1109.7
S1A—C1A—H1A124.1C4B—C5B—H5B1109.7
C1A—C2A—C3A113.0 (2)N1B—C5B—H5B2109.7
C1A—C2A—H2A123.5C4B—C5B—H5B2109.7
C3A—C2A—H2A123.5H5B1—C5B—H5B2108.2
C4A—C3A—C2A112.4 (2)N1B—C6B—C7B122.5 (2)
C4A—C3A—H3A123.8N1B—C6B—H6B118.8
C2A—C3A—H3A123.8C7B—C6B—H6B118.8
C3A—C4A—C5A128.2 (2)C9B—C7B—C8B119.3 (2)
C3A—C4A—S1A110.46 (19)C9B—C7B—C6B119.5 (2)
C5A—C4A—S1A121.24 (18)C8B—C7B—C6B121.2 (2)
N1A—C5A—C4A109.30 (19)C9Bii—C8B—C7B120.0 (2)
N1A—C5A—H5A1109.8C9Bii—C8B—H8B120.0
C4A—C5A—H5A1109.8C7B—C8B—H8B120.0
N1A—C5A—H5A2109.8C8Bii—C9B—C7B120.7 (2)
C4A—C5A—H5A2109.8C8Bii—C9B—H9B119.7
H5A1—C5A—H5A2108.3C7B—C9B—H9B119.7
N1A—C6A—C7A121.8 (2)C1B1—S1B1—C4B94.00 (13)
N1A—C6A—H6A119.1C2B1—C1B1—C3B2102.2 (3)
C7A—C6A—H6A119.1C2B1—C1B1—S1B1115.4 (2)
C8A—C7A—C9A118.8 (2)C2B1—C1B1—H1B1122.3
C8A—C7A—C6A121.2 (2)C3B2—C1B1—H1B1135.5
C9A—C7A—C6A120.0 (2)S1B1—C1B1—H1B1122.3
C9Ai—C8A—C7A120.2 (2)C1B1—C2B1—C3B1108.1 (3)
C9Ai—C8A—H8A119.9C1B1—C2B1—S1B2119.7 (2)
C7A—C8A—H8A119.9C1B1—C2B1—H2B1126.0
C8Ai—C9A—C7A121.1 (2)C3B1—C2B1—H2B1126.0
C8Ai—C9A—H9A119.5S1B2—C2B1—H2B1114.3
C7A—C9A—H9A119.5C4B—C3B1—C2B1115.3 (4)
C6B—N1B—C5B116.7 (2)C4B—C3B1—H3B1122.3
C3B1—C4B—C3B297.2 (4)C2B1—C3B1—H3B1122.3
C3B1—C4B—C5B129.2 (3)C2B1—S1B2—C4B94.97 (16)
C3B2—C4B—C5B133.6 (3)C4B—C3B2—C1B1117.2 (5)
C3B2—C4B—S1B2105.9 (3)C4B—C3B2—H3B2121.4
C5B—C4B—S1B2120.50 (18)C1B1—C3B2—H3B2121.4
C3B1—C4B—S1B1107.2 (3)
C4A—S1A—C1A—C2A0.1 (2)C3B1—C4B—S1B1—C1B10.7 (4)
S1A—C1A—C2A—C3A0.2 (3)C3B2—C4B—S1B1—C1B12 (4)
C1A—C2A—C3A—C4A0.5 (3)C5B—C4B—S1B1—C1B1179.4 (2)
C2A—C3A—C4A—C5A177.0 (2)S1B2—C4B—S1B1—C1B10.5 (2)
C2A—C3A—C4A—S1A0.6 (3)C4B—S1B1—C1B1—C2B10.5 (3)
C1A—S1A—C4A—C3A0.4 (2)C4B—S1B1—C1B1—C3B22 (3)
C1A—S1A—C4A—C5A177.1 (2)C3B2—C1B1—C2B1—C3B10.3 (9)
C6A—N1A—C5A—C4A110.5 (2)S1B1—C1B1—C2B1—C3B10.2 (5)
C3A—C4A—C5A—N1A108.5 (3)C3B2—C1B1—C2B1—S1B20.9 (7)
S1A—C4A—C5A—N1A67.7 (2)S1B1—C1B1—C2B1—S1B21.5 (4)
C5A—N1A—C6A—C7A176.1 (2)C3B2—C4B—C3B1—C2B10.2 (8)
N1A—C6A—C7A—C8A10.0 (3)C5B—C4B—C3B1—C2B1179.4 (3)
N1A—C6A—C7A—C9A167.3 (2)S1B2—C4B—C3B1—C2B1172 (4)
C9A—C7A—C8A—C9Ai0.9 (4)S1B1—C4B—C3B1—C2B10.7 (7)
C6A—C7A—C8A—C9Ai176.4 (2)C1B1—C2B1—C3B1—C4B0.4 (7)
C8A—C7A—C9A—C8Ai0.9 (4)S1B2—C2B1—C3B1—C4B174 (3)
C6A—C7A—C9A—C8Ai176.4 (2)C1B1—C2B1—S1B2—C4B1.5 (4)
C6B—N1B—C5B—C4B112.6 (2)C3B1—C2B1—S1B2—C4B4 (2)
C3B1—C4B—C5B—N1B42.8 (6)C3B1—C4B—S1B2—C2B16 (3)
C3B2—C4B—C5B—N1B137.8 (9)C3B2—C4B—S1B2—C2B11.4 (8)
S1B2—C4B—C5B—N1B44.0 (3)C5B—C4B—S1B2—C2B1179.9 (2)
S1B1—C4B—C5B—N1B137.1 (2)S1B1—C4B—S1B2—C2B11.1 (3)
C5B—N1B—C6B—C7B179.9 (2)C3B1—C4B—C3B2—C1B10.1 (11)
N1B—C6B—C7B—C9B178.8 (2)C5B—C4B—C3B2—C1B1179.6 (5)
N1B—C6B—C7B—C8B0.5 (4)S1B2—C4B—C3B2—C1B11.2 (13)
C9B—C7B—C8B—C9Bii0.0 (4)S1B1—C4B—C3B2—C1B1177 (5)
C6B—C7B—C8B—C9Bii179.3 (2)C2B1—C1B1—C3B2—C4B0.3 (12)
C8B—C7B—C9B—C8Bii0.0 (4)S1B1—C1B1—C3B2—C4B178 (4)
C6B—C7B—C9B—C8Bii179.3 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H16N2S2
Mr324.45
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8517 (3), 10.3937 (5), 10.5763 (4)
α, β, γ (°)63.836 (2), 69.023 (2), 72.394 (2)
V3)803.22 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.22 × 0.20 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.931, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
34407, 3282, 2478
Rint0.052
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.06
No. of reflections3282
No. of parameters206
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.48

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

Mintek and Project AuTEK are acknowledged for funding this project.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437–1444.  Web of Science CrossRef CAS Google Scholar
First citationChiririwa, H., Meijboom, R. & Omondi, B. (2011b). Acta Cryst. E67, o922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChiririwa, H., Moss, J. R., Su, H., Hendricks, D. & Meijboom, R. (2011a). Acta Cryst. E67, o921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47–50.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds