organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3064-o3065

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-N-(3-meth­­oxy­benz­yl)acetamide

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: matloob_123@yahoo.com

(Received 16 September 2012; accepted 22 September 2012; online 3 October 2012)

The asymmetric unit of the title compound, C21H22N4O4S, contains two mol­ecules (A and B), in which the thia­zine rings adopt an S-envelope conformation with the S atoms displaced by 0.621 (2) and 0.697 (2) Å from the mean planes formed by the remaining ring atoms. The dihedral angles between the N-methyl­acetamide groups and the meth­oxy­benzene rings are 8.67 (10) and 54.49 (6)° in the two mol­ecules and the equivalent torsion angles in the N-methyl­acetamide chains connecting the ring systems also differ. In the crystal, N—H⋯O hydrogen bonds connect the components into C(4) [100] chains of alternating A and B mol­ecules. The packing is consolidated by weak C—H⋯O inter­actions, which generate a three-dimensional network.

Related literature

For therapeutic applications of benzothia­zines, see: Turck et al. (1996)[Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13-16.]; Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zinnes et al. (1973[Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44-48.]). For therapeutic applications of pyrrazoles, see: Silverstein et al. (2000[Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247-1255.]). For the properties and crystal structures of related pyrazolo­benzothia­zine derivatives, see: Ahmad et al. (2010a[Ahmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010a). J. Chem. Crystallogr. 40, 1188-1194.],b[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010b). Eur. J. Med. Chem. 45, 698-704.], 2012[Ahmad, M., Siddiqui, H. L., Gardiner, J. M., Parvez, M. & Aslam, S. (2012). Med. Chem. Res. doi:10.1007/s00044-012-0062-6.]; 2011a[Ahmad, M., Siddiqui, H. L., Khattak, M. I., Ahmad, S. & Parvez, M. (2011a). Acta Cryst. E67, o216-o217.],b[Ahmad, M., Siddiqui, H. L., Khattak, M. I., Ahmad, S. & Parvez, M. (2011b). Acta Cryst. E67, o218-o219.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N4O4S

  • Mr = 426.49

  • Monoclinic, P 21 /c

  • a = 8.6541 (1) Å

  • b = 25.8809 (3) Å

  • c = 18.3892 (2) Å

  • β = 92.208 (1)°

  • V = 4115.68 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.71 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.967

  • 70993 measured reflections

  • 7975 independent reflections

  • 6621 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.02

  • 7975 reflections

  • 547 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O7i 0.88 2.12 2.9511 (17) 158
N8—H8N⋯O3ii 0.88 2.02 2.8928 (18) 171
C10—H10C⋯O6iii 0.98 2.45 3.349 (2) 152
C12—H12A⋯O7i 0.99 2.56 3.2099 (19) 123
C14—H14A⋯N6ii 0.99 2.58 3.556 (2) 168
C16—H16⋯O7i 0.95 2.43 3.369 (2) 172
C25—H25⋯O4iv 0.95 2.47 3.365 (2) 156
C31—H31C⋯O2v 0.98 2.49 3.203 (2) 129
C33—H33A⋯O3ii 0.99 2.46 3.320 (2) 145
C33—H33B⋯O5vi 0.99 2.45 3.352 (2) 151
C40—H40⋯O2 0.95 2.59 3.367 (3) 139
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-Benzothiazines are the core nuclei for their potent anti-inflammatory and analgesic drugs, known as oxicams (Turck et al., 1996; Lombardino et al., 1973; Zinnes et al., 1973). On the other hand, celecoxib, a pyrazole compound is an anti-inflammatory drug and a selective inhibitor of cox-2 enzyme (Silverstein et al., 2000). These structural and bioactivity features have led us to the synthesis of new carboxamides based on pyrazolobenzothiazines, which are structural hybrids of both of these medicinally important heterocycles (Ahmad et al., 2010a; 2010b, 2012). We report the synthesis and crystal structure of the title compound in this article.

The asymmetric unit of the title compound contains two independent conformers (Fig. 1). In both molecules, the heterocyclic thiazine rings adopt S-envelope conformations with atoms S1 and S2 displaced by 0.621 (2) and 0.697 (2) Å, respectively, from the mean planes formed by the remaining ring atoms (rmsd 0.0469 and 0.0608 Å, respectively). In both molecules, the atoms N1–N3/C1/C6–C9 and N5–N6/C22/C27–C30 of the thiazine and pyrrazole rings are individually close to coplanar (rmsd 0.0392 and 0.0548 Å) and form dihedral angles 14.01 (7) and 15.69 (8)° with the mean-planes of the benzene rings (C1–C6) and (C22–C27), respectively. The N-methylacetamide groups (O3/N4/C12–C14) and (O7/N8/C33–C35)) are individually almost planar (rmsd 0.0229 and 0.0047 Å, respectively) and their mean-planes are oriented at drastically different angles, 8.67 (10) and 54.49 (6)°, with respect to the benzene rings (C15–C20) and (C36–C41), respectively. The conformational differences in the two molecules are more pronounced from a comparison of torsion angles involving the N-methylacetamide chain connecting the methoxy benzene and pyrrazole rings, e.g., in one molecule the torsion angles, N2/N3–C12/C13, N3/C12–C13/N4, C12/C13–N4/C14, C13/N4–C14/C15 and N4/C14–C15/C16 are: 82.23 (17), -154.08 (14), -175.58 (14), -171.18 (14) and -13.3 (2)°, respectively. The corresponnding torsion angles in the second molecule are: 72.54 (17), -136.44 (14), 179.52 (15), -132.81 (17) and -61.8 (2)°, respectively. The bond distances and angles in both molecules of the title compound agree very well with the corresponding bond distances and angles reported in closely related compounds (Ahmad et al., 2010b; Ahmad et al., 2011a; Ahmad et al., 2011b).

The crystal structure features intermolecular hydrogen bonding interactions N4—H4N···O7 and N8—H8N···O3 resulting in chains of molecules extended along [100] (Fig. 2 & Tab. 1). The crystal structure is further consolidated by weak C—H···O hydrogen bonds, which result in a 3-D network (Fig. 3 & Tab. 1).

#——————————————————————————

Related literature top

For therapeutic applications of benzothiazines, see: Turck et al. (1996); Lombardino et al. (1973); Zinnes et al. (1973). For therapeutic applications of pyrrazoles, see: Silverstein et al. (2000). For the properties and crystal structures of related pyrazolobenzothiazine derivatives, see: Ahmad et al. (2010a,b, 2012; 2011a,b).

Experimental top

3,4-Dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2] benzothiazin-2(4H)-yl acetic acid (1.013 g, 3.3 mmoles) was dissolved in toluene:THF (2:1) and boran–THF complex (1.1 mmoles) was added ton it. The reaction mixture was stirred for a period of 40 minutes and 3-methoxybenzyl amine (0.45 g, 3.3 mmoles) was added to it. The contents of the flask were refluxed for 5 hrs. The solvent was evaporated under vacuum and the title compound as the end product was purified by column chromatography. Colourless plates were grown from ethyl acetate solution at room temperature by slow evaporation; m.p. 425–426 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene type H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(N/C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···O hydrogen bonds shown as dashed lines. H atoms non-participating in hydrogen-bonding are omitted for clarity.
[Figure 3] Fig. 3. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3- c][1,2]benzothiazin-2-yl)-N-(3-methoxybenzyl)acetamide top
Crystal data top
C21H22N4O4SF(000) = 1792
Mr = 426.49Dx = 1.377 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9915 reflections
a = 8.6541 (1) Åθ = 3.4–71.7°
b = 25.8809 (3) ŵ = 1.71 mm1
c = 18.3892 (2) ÅT = 173 K
β = 92.208 (1)°Plate, colorless
V = 4115.68 (8) Å30.14 × 0.12 × 0.02 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
7975 independent reflections
Radiation source: fine-focus sealed tube6621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and ϕ scansθmax = 72.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.796, Tmax = 0.967k = 3132
70993 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.780P]
where P = (Fo2 + 2Fc2)/3
7975 reflections(Δ/σ)max = 0.001
547 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C21H22N4O4SV = 4115.68 (8) Å3
Mr = 426.49Z = 8
Monoclinic, P21/cCu Kα radiation
a = 8.6541 (1) ŵ = 1.71 mm1
b = 25.8809 (3) ÅT = 173 K
c = 18.3892 (2) Å0.14 × 0.12 × 0.02 mm
β = 92.208 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6621 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.967Rint = 0.049
70993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
7975 reflectionsΔρmin = 0.37 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73006 (5)0.718057 (16)0.68662 (2)0.03077 (11)
O10.73608 (18)0.75309 (5)0.74693 (7)0.0448 (3)
O20.58770 (14)0.69282 (5)0.66768 (8)0.0427 (3)
O30.66878 (13)0.64371 (5)0.36992 (6)0.0305 (3)
O41.13937 (15)0.51550 (5)0.09408 (7)0.0442 (3)
N10.78516 (16)0.74988 (5)0.61494 (7)0.0283 (3)
N20.94469 (15)0.64777 (5)0.50587 (7)0.0268 (3)
N30.90464 (15)0.68467 (5)0.45640 (7)0.0258 (3)
N40.83869 (15)0.61454 (5)0.28889 (7)0.0257 (3)
H4N0.93570.61400.27620.031*
C10.86939 (19)0.66886 (6)0.70074 (9)0.0277 (3)
C20.9089 (2)0.65336 (7)0.77123 (10)0.0379 (4)
H20.86810.67090.81160.045*
C31.0082 (2)0.61207 (8)0.78196 (11)0.0439 (5)
H31.03660.60120.83000.053*
C41.0666 (2)0.58638 (7)0.72289 (11)0.0398 (4)
H41.13260.55740.73080.048*
C51.02988 (19)0.60238 (6)0.65256 (10)0.0310 (4)
H51.07170.58470.61260.037*
C60.93145 (18)0.64456 (6)0.64015 (9)0.0252 (3)
C70.90162 (17)0.66776 (6)0.56918 (8)0.0238 (3)
C80.83336 (18)0.71665 (6)0.55833 (8)0.0242 (3)
C90.83390 (18)0.72636 (6)0.48488 (8)0.0247 (3)
C100.7748 (2)0.77070 (7)0.44095 (9)0.0324 (4)
H10A0.70040.79020.46890.039*
H10B0.72380.75790.39600.039*
H10C0.86120.79320.42890.039*
C110.8664 (2)0.79951 (7)0.62507 (10)0.0343 (4)
H11A0.89640.81270.57770.041*
H11B0.95900.79440.65660.041*
H11C0.79770.82440.64770.041*
C120.93011 (19)0.67463 (7)0.38043 (8)0.0288 (3)
H12A1.02920.65600.37600.035*
H12B0.93770.70780.35410.035*
C130.79951 (18)0.64258 (6)0.34597 (8)0.0237 (3)
C140.72376 (19)0.58481 (7)0.24711 (9)0.0303 (4)
H14A0.65160.60910.22180.036*
H14B0.66320.56420.28130.036*
C150.78873 (19)0.54888 (6)0.19144 (8)0.0260 (3)
C160.94083 (19)0.55117 (6)0.16971 (9)0.0290 (3)
H161.01030.57590.19090.035*
C170.9909 (2)0.51720 (7)0.11689 (9)0.0315 (4)
C180.8897 (2)0.48220 (7)0.08388 (9)0.0350 (4)
H180.92400.45960.04710.042*
C190.7390 (2)0.48049 (7)0.10484 (10)0.0381 (4)
H190.66880.45670.08210.046*
C200.6881 (2)0.51308 (7)0.15891 (10)0.0339 (4)
H200.58440.51090.17370.041*
C211.2412 (2)0.55582 (9)0.11614 (13)0.0518 (5)
H21A1.33920.55190.09170.062*
H21B1.26050.55420.16900.062*
H21C1.19450.58920.10300.062*
S20.75867 (5)0.300172 (18)1.06466 (2)0.03455 (11)
O50.77325 (18)0.27220 (6)1.13161 (7)0.0496 (4)
O60.88416 (15)0.33157 (6)1.04272 (7)0.0425 (3)
O70.84261 (13)0.35681 (5)0.74617 (6)0.0311 (3)
O80.25890 (16)0.51780 (5)0.54673 (8)0.0489 (4)
N50.72180 (17)0.25814 (6)0.99927 (7)0.0318 (3)
N60.54399 (15)0.34265 (5)0.86314 (7)0.0248 (3)
N70.61082 (15)0.30530 (5)0.82299 (7)0.0240 (3)
N80.64844 (16)0.38308 (6)0.66855 (8)0.0308 (3)
H8N0.55340.37650.65240.037*
C220.5931 (2)0.34022 (7)1.06449 (9)0.0307 (4)
C230.5371 (2)0.35857 (8)1.12924 (10)0.0404 (4)
H230.58120.34731.17460.048*
C240.4164 (2)0.39335 (8)1.12678 (11)0.0457 (5)
H240.37660.40601.17080.055*
C250.3525 (2)0.41003 (7)1.06055 (11)0.0411 (4)
H250.27170.43491.05950.049*
C260.4056 (2)0.39074 (7)0.99589 (10)0.0328 (4)
H260.35990.40200.95080.039*
C270.52598 (19)0.35489 (6)0.99667 (9)0.0273 (3)
C280.57863 (18)0.32881 (6)0.93188 (8)0.0240 (3)
C290.66903 (18)0.28375 (6)0.93412 (9)0.0256 (3)
C300.68912 (18)0.26942 (6)0.86324 (9)0.0257 (3)
C310.7701 (2)0.22448 (7)0.83220 (10)0.0354 (4)
H31A0.83160.20710.87080.042*
H31B0.83850.23640.79440.042*
H31C0.69390.20030.81090.042*
C320.6376 (3)0.21044 (7)1.01727 (11)0.0452 (5)
H32A0.63350.18740.97490.054*
H32B0.53220.21921.03050.054*
H32C0.69120.19301.05830.054*
C330.60293 (19)0.30988 (6)0.74456 (8)0.0257 (3)
H33A0.49540.31770.72780.031*
H33B0.63330.27670.72250.031*
C340.71003 (17)0.35267 (6)0.72004 (8)0.0236 (3)
C350.7295 (2)0.42690 (8)0.63715 (11)0.0396 (4)
H35A0.76030.41790.58740.048*
H35B0.82460.43430.66700.048*
C360.6281 (2)0.47419 (7)0.63410 (10)0.0354 (4)
C370.4907 (2)0.47291 (7)0.59220 (9)0.0326 (4)
H370.46110.44210.56720.039*
C380.3965 (2)0.51621 (7)0.58663 (10)0.0387 (4)
C390.4419 (3)0.56167 (8)0.62194 (13)0.0509 (5)
H390.37950.59180.61720.061*
C400.5767 (3)0.56283 (8)0.66352 (13)0.0565 (6)
H400.60660.59380.68790.068*
C410.6705 (3)0.51915 (9)0.67061 (12)0.0496 (5)
H410.76280.52020.70020.059*
C420.2039 (2)0.47010 (9)0.51694 (13)0.0520 (5)
H42A0.10650.47600.48930.062*
H42B0.18670.44560.55650.062*
H42C0.28070.45590.48460.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (2)0.0311 (2)0.0291 (2)0.00564 (16)0.00925 (17)0.00061 (15)
O10.0658 (9)0.0403 (7)0.0290 (6)0.0125 (7)0.0132 (6)0.0043 (5)
O20.0280 (6)0.0434 (8)0.0573 (8)0.0044 (6)0.0111 (6)0.0064 (6)
O30.0220 (6)0.0431 (7)0.0266 (6)0.0017 (5)0.0033 (5)0.0041 (5)
O40.0383 (7)0.0459 (8)0.0493 (8)0.0035 (6)0.0146 (6)0.0187 (6)
N10.0340 (8)0.0260 (7)0.0250 (7)0.0039 (6)0.0045 (6)0.0037 (5)
N20.0250 (7)0.0284 (7)0.0267 (7)0.0026 (5)0.0011 (6)0.0039 (5)
N30.0229 (7)0.0314 (7)0.0229 (6)0.0013 (5)0.0001 (5)0.0040 (5)
N40.0201 (6)0.0330 (7)0.0242 (6)0.0010 (5)0.0029 (5)0.0037 (5)
C10.0274 (8)0.0274 (8)0.0285 (8)0.0017 (6)0.0026 (7)0.0018 (6)
C20.0462 (11)0.0396 (10)0.0281 (9)0.0011 (8)0.0040 (8)0.0022 (7)
C30.0519 (12)0.0451 (11)0.0342 (10)0.0007 (9)0.0046 (9)0.0124 (8)
C40.0384 (10)0.0344 (10)0.0461 (11)0.0049 (8)0.0058 (9)0.0098 (8)
C50.0269 (8)0.0289 (8)0.0372 (9)0.0005 (7)0.0003 (7)0.0003 (7)
C60.0217 (7)0.0251 (8)0.0287 (8)0.0034 (6)0.0013 (6)0.0008 (6)
C70.0192 (7)0.0260 (8)0.0262 (8)0.0000 (6)0.0009 (6)0.0041 (6)
C80.0220 (7)0.0263 (8)0.0243 (7)0.0021 (6)0.0001 (6)0.0032 (6)
C90.0199 (7)0.0285 (8)0.0256 (8)0.0005 (6)0.0005 (6)0.0037 (6)
C100.0324 (9)0.0363 (9)0.0286 (8)0.0050 (7)0.0009 (7)0.0023 (7)
C110.0415 (10)0.0282 (8)0.0332 (9)0.0004 (7)0.0007 (8)0.0053 (7)
C120.0243 (8)0.0378 (9)0.0244 (8)0.0029 (7)0.0034 (7)0.0061 (7)
C130.0214 (7)0.0286 (8)0.0209 (7)0.0018 (6)0.0001 (6)0.0031 (6)
C140.0234 (8)0.0382 (9)0.0292 (8)0.0033 (7)0.0004 (7)0.0069 (7)
C150.0283 (8)0.0270 (8)0.0225 (7)0.0001 (6)0.0016 (7)0.0009 (6)
C160.0288 (8)0.0305 (8)0.0277 (8)0.0035 (7)0.0003 (7)0.0043 (6)
C170.0340 (9)0.0322 (9)0.0286 (8)0.0001 (7)0.0048 (7)0.0016 (7)
C180.0464 (11)0.0294 (9)0.0293 (9)0.0002 (8)0.0014 (8)0.0062 (7)
C190.0430 (10)0.0327 (9)0.0381 (10)0.0089 (8)0.0053 (8)0.0071 (7)
C200.0290 (9)0.0364 (9)0.0361 (9)0.0053 (7)0.0015 (8)0.0017 (7)
C210.0338 (10)0.0597 (13)0.0632 (14)0.0082 (9)0.0192 (10)0.0177 (11)
S20.0328 (2)0.0449 (3)0.0257 (2)0.00011 (18)0.00307 (17)0.00447 (17)
O50.0581 (9)0.0620 (9)0.0283 (7)0.0026 (7)0.0064 (6)0.0098 (6)
O60.0301 (7)0.0562 (8)0.0409 (7)0.0053 (6)0.0041 (6)0.0006 (6)
O70.0211 (6)0.0437 (7)0.0284 (6)0.0027 (5)0.0003 (5)0.0008 (5)
O80.0414 (8)0.0413 (8)0.0641 (9)0.0124 (6)0.0046 (7)0.0058 (7)
N50.0333 (8)0.0337 (8)0.0283 (7)0.0045 (6)0.0008 (6)0.0066 (6)
N60.0235 (7)0.0260 (7)0.0252 (7)0.0017 (5)0.0032 (5)0.0012 (5)
N70.0223 (6)0.0269 (7)0.0230 (6)0.0019 (5)0.0027 (5)0.0013 (5)
N80.0217 (7)0.0377 (8)0.0327 (7)0.0052 (6)0.0018 (6)0.0060 (6)
C220.0307 (9)0.0338 (9)0.0278 (8)0.0063 (7)0.0047 (7)0.0002 (7)
C230.0463 (11)0.0487 (11)0.0267 (9)0.0112 (9)0.0074 (8)0.0039 (8)
C240.0496 (12)0.0515 (12)0.0374 (10)0.0103 (10)0.0204 (9)0.0148 (9)
C250.0376 (10)0.0367 (10)0.0501 (11)0.0014 (8)0.0144 (9)0.0108 (8)
C260.0308 (9)0.0309 (9)0.0371 (9)0.0012 (7)0.0066 (8)0.0020 (7)
C270.0267 (8)0.0278 (8)0.0278 (8)0.0052 (6)0.0069 (7)0.0001 (6)
C280.0213 (7)0.0270 (8)0.0239 (8)0.0017 (6)0.0029 (6)0.0018 (6)
C290.0225 (8)0.0282 (8)0.0262 (8)0.0019 (6)0.0006 (6)0.0037 (6)
C300.0192 (7)0.0272 (8)0.0307 (8)0.0012 (6)0.0011 (6)0.0001 (6)
C310.0305 (9)0.0364 (9)0.0392 (9)0.0102 (7)0.0003 (8)0.0047 (7)
C320.0568 (13)0.0354 (10)0.0434 (11)0.0003 (9)0.0001 (10)0.0115 (8)
C330.0247 (8)0.0304 (8)0.0219 (7)0.0012 (6)0.0003 (6)0.0024 (6)
C340.0206 (7)0.0314 (8)0.0191 (7)0.0004 (6)0.0036 (6)0.0055 (6)
C350.0276 (9)0.0452 (11)0.0460 (11)0.0052 (8)0.0027 (8)0.0148 (8)
C360.0342 (9)0.0364 (9)0.0361 (9)0.0084 (7)0.0065 (8)0.0056 (7)
C370.0343 (9)0.0298 (9)0.0343 (9)0.0024 (7)0.0076 (8)0.0021 (7)
C380.0377 (10)0.0360 (10)0.0431 (10)0.0017 (8)0.0120 (8)0.0041 (8)
C390.0550 (13)0.0318 (10)0.0672 (14)0.0017 (9)0.0199 (11)0.0030 (9)
C400.0708 (16)0.0388 (11)0.0610 (14)0.0169 (11)0.0181 (12)0.0129 (10)
C410.0510 (12)0.0506 (12)0.0471 (11)0.0193 (10)0.0016 (10)0.0020 (9)
C420.0365 (11)0.0541 (13)0.0649 (14)0.0035 (9)0.0064 (10)0.0050 (11)
Geometric parameters (Å, º) top
S1—O21.4257 (14)S2—O61.4270 (14)
S1—O11.4319 (13)S2—O51.4296 (13)
S1—N11.6406 (14)S2—N51.6436 (15)
S1—C11.7659 (17)S2—C221.7684 (18)
O3—C131.2302 (19)O7—C341.2314 (19)
O4—C171.367 (2)O8—C381.375 (3)
O4—C211.415 (2)O8—C421.425 (3)
N1—C81.4250 (19)N5—C291.429 (2)
N1—C111.473 (2)N5—C321.478 (2)
N2—C71.340 (2)N6—C281.337 (2)
N2—N31.3547 (19)N6—N71.3592 (18)
N3—C91.356 (2)N7—C301.353 (2)
N3—C121.4462 (19)N7—C331.4461 (19)
N4—C131.331 (2)N8—C341.327 (2)
N4—C141.453 (2)N8—C351.464 (2)
N4—H4N0.8800N8—H8N0.8800
C1—C21.387 (2)C22—C231.387 (2)
C1—C61.404 (2)C22—C271.408 (2)
C2—C31.381 (3)C23—C241.378 (3)
C2—H20.9500C23—H230.9500
C3—C41.385 (3)C24—C251.387 (3)
C3—H30.9500C24—H240.9500
C4—C51.383 (3)C25—C261.384 (2)
C4—H40.9500C25—H250.9500
C5—C61.398 (2)C26—C271.395 (2)
C5—H50.9500C26—H260.9500
C6—C71.451 (2)C27—C281.457 (2)
C7—C81.407 (2)C28—C291.404 (2)
C8—C91.374 (2)C29—C301.373 (2)
C9—C101.483 (2)C30—C311.483 (2)
C10—H10A0.9800C31—H31A0.9800
C10—H10B0.9800C31—H31B0.9800
C10—H10C0.9800C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—C131.521 (2)C33—C341.524 (2)
C12—H12A0.9900C33—H33A0.9900
C12—H12B0.9900C33—H33B0.9900
C14—C151.508 (2)C35—C361.506 (3)
C14—H14A0.9900C35—H35A0.9900
C14—H14B0.9900C35—H35B0.9900
C15—C201.391 (2)C36—C411.386 (3)
C15—C161.391 (2)C36—C371.392 (3)
C16—C171.392 (2)C37—C381.387 (3)
C16—H160.9500C37—H370.9500
C17—C181.384 (2)C38—C391.393 (3)
C18—C191.375 (3)C39—C401.370 (4)
C18—H180.9500C39—H390.9500
C19—C201.388 (3)C40—C411.395 (3)
C19—H190.9500C40—H400.9500
C20—H200.9500C41—H410.9500
C21—H21A0.9800C42—H42A0.9800
C21—H21B0.9800C42—H42B0.9800
C21—H21C0.9800C42—H42C0.9800
O2—S1—O1118.99 (9)O6—S2—O5119.27 (9)
O2—S1—N1107.99 (8)O6—S2—N5107.37 (8)
O1—S1—N1107.54 (8)O5—S2—N5107.64 (8)
O2—S1—C1106.52 (8)O6—S2—C22106.94 (8)
O1—S1—C1109.78 (8)O5—S2—C22110.05 (9)
N1—S1—C1105.20 (7)N5—S2—C22104.61 (8)
C17—O4—C21118.06 (14)C38—O8—C42116.66 (15)
C8—N1—C11117.85 (13)C29—N5—C32115.53 (14)
C8—N1—S1112.72 (11)C29—N5—S2110.68 (11)
C11—N1—S1119.23 (11)C32—N5—S2118.20 (12)
C7—N2—N3103.82 (12)C28—N6—N7103.79 (12)
N2—N3—C9114.16 (12)C30—N7—N6113.93 (12)
N2—N3—C12118.52 (13)C30—N7—C33127.25 (13)
C9—N3—C12127.16 (14)N6—N7—C33118.60 (12)
C13—N4—C14121.04 (13)C34—N8—C35123.75 (14)
C13—N4—H4N119.5C34—N8—H8N118.1
C14—N4—H4N119.5C35—N8—H8N118.1
C2—C1—C6121.61 (16)C23—C22—C27121.50 (17)
C2—C1—S1119.22 (13)C23—C22—S2120.63 (15)
C6—C1—S1119.08 (12)C27—C22—S2117.79 (12)
C3—C2—C1119.14 (17)C24—C23—C22119.02 (18)
C3—C2—H2120.4C24—C23—H23120.5
C1—C2—H2120.4C22—C23—H23120.5
C2—C3—C4120.21 (17)C23—C24—C25120.53 (17)
C2—C3—H3119.9C23—C24—H24119.7
C4—C3—H3119.9C25—C24—H24119.7
C5—C4—C3120.80 (17)C26—C25—C24120.52 (19)
C5—C4—H4119.6C26—C25—H25119.7
C3—C4—H4119.6C24—C25—H25119.7
C4—C5—C6120.19 (16)C25—C26—C27120.24 (18)
C4—C5—H5119.9C25—C26—H26119.9
C6—C5—H5119.9C27—C26—H26119.9
C5—C6—C1117.99 (15)C26—C27—C22118.10 (15)
C5—C6—C7123.80 (15)C26—C27—C28123.83 (15)
C1—C6—C7117.92 (14)C22—C27—C28117.91 (15)
N2—C7—C8110.69 (14)N6—C28—C29110.78 (14)
N2—C7—C6125.17 (14)N6—C28—C27125.66 (14)
C8—C7—C6123.98 (14)C29—C28—C27123.52 (14)
C9—C8—C7106.65 (13)C30—C29—C28106.71 (14)
C9—C8—N1128.31 (14)C30—C29—N5128.52 (15)
C7—C8—N1124.90 (14)C28—C29—N5124.72 (14)
N3—C9—C8104.64 (14)N7—C30—C29104.76 (13)
N3—C9—C10123.84 (14)N7—C30—C31124.18 (15)
C8—C9—C10131.52 (15)C29—C30—C31131.01 (15)
C9—C10—H10A109.5C30—C31—H31A109.5
C9—C10—H10B109.5C30—C31—H31B109.5
H10A—C10—H10B109.5H31A—C31—H31B109.5
C9—C10—H10C109.5C30—C31—H31C109.5
H10A—C10—H10C109.5H31A—C31—H31C109.5
H10B—C10—H10C109.5H31B—C31—H31C109.5
N1—C11—H11A109.5N5—C32—H32A109.5
N1—C11—H11B109.5N5—C32—H32B109.5
H11A—C11—H11B109.5H32A—C32—H32B109.5
N1—C11—H11C109.5N5—C32—H32C109.5
H11A—C11—H11C109.5H32A—C32—H32C109.5
H11B—C11—H11C109.5H32B—C32—H32C109.5
N3—C12—C13111.23 (13)N7—C33—C34110.42 (13)
N3—C12—H12A109.4N7—C33—H33A109.6
C13—C12—H12A109.4C34—C33—H33A109.6
N3—C12—H12B109.4N7—C33—H33B109.6
C13—C12—H12B109.4C34—C33—H33B109.6
H12A—C12—H12B108.0H33A—C33—H33B108.1
O3—C13—N4124.14 (15)O7—C34—N8124.70 (15)
O3—C13—C12121.12 (14)O7—C34—C33121.08 (14)
N4—C13—C12114.73 (13)N8—C34—C33114.21 (13)
N4—C14—C15114.83 (13)N8—C35—C36110.90 (14)
N4—C14—H14A108.6N8—C35—H35A109.5
C15—C14—H14A108.6C36—C35—H35A109.5
N4—C14—H14B108.6N8—C35—H35B109.5
C15—C14—H14B108.6C36—C35—H35B109.5
H14A—C14—H14B107.5H35A—C35—H35B108.0
C20—C15—C16119.23 (15)C41—C36—C37119.54 (19)
C20—C15—C14117.34 (15)C41—C36—C35121.41 (19)
C16—C15—C14123.39 (15)C37—C36—C35119.03 (17)
C15—C16—C17119.81 (16)C38—C37—C36120.55 (17)
C15—C16—H16120.1C38—C37—H37119.7
C17—C16—H16120.1C36—C37—H37119.7
O4—C17—C18115.50 (15)O8—C38—C37123.90 (18)
O4—C17—C16123.79 (16)O8—C38—C39116.50 (18)
C18—C17—C16120.71 (16)C37—C38—C39119.6 (2)
C19—C18—C17119.30 (16)C40—C39—C38119.8 (2)
C19—C18—H18120.4C40—C39—H39120.1
C17—C18—H18120.4C38—C39—H39120.1
C18—C19—C20120.76 (17)C39—C40—C41121.0 (2)
C18—C19—H19119.6C39—C40—H40119.5
C20—C19—H19119.6C41—C40—H40119.5
C19—C20—C15120.16 (17)C36—C41—C40119.5 (2)
C19—C20—H20119.9C36—C41—H41120.2
C15—C20—H20119.9C40—C41—H41120.2
O4—C21—H21A109.5O8—C42—H42A109.5
O4—C21—H21B109.5O8—C42—H42B109.5
H21A—C21—H21B109.5H42A—C42—H42B109.5
O4—C21—H21C109.5O8—C42—H42C109.5
H21A—C21—H21C109.5H42A—C42—H42C109.5
H21B—C21—H21C109.5H42B—C42—H42C109.5
O2—S1—N1—C870.02 (13)O6—S2—N5—C2964.49 (13)
O1—S1—N1—C8160.41 (12)O5—S2—N5—C29165.94 (12)
C1—S1—N1—C843.43 (13)C22—S2—N5—C2948.89 (13)
O2—S1—N1—C11145.41 (13)O6—S2—N5—C32159.02 (14)
O1—S1—N1—C1115.84 (15)O5—S2—N5—C3229.45 (16)
C1—S1—N1—C11101.13 (14)C22—S2—N5—C3287.59 (14)
C7—N2—N3—C91.96 (17)C28—N6—N7—C301.62 (17)
C7—N2—N3—C12177.68 (13)C28—N6—N7—C33176.66 (13)
O2—S1—C1—C299.39 (15)O6—S2—C22—C23103.66 (15)
O1—S1—C1—C230.69 (17)O5—S2—C22—C2327.27 (18)
N1—S1—C1—C2146.13 (14)N5—S2—C22—C23142.65 (15)
O2—S1—C1—C677.32 (14)O6—S2—C22—C2773.01 (15)
O1—S1—C1—C6152.60 (13)O5—S2—C22—C27156.06 (13)
N1—S1—C1—C637.16 (15)N5—S2—C22—C2740.69 (15)
C6—C1—C2—C31.9 (3)C27—C22—C23—C242.3 (3)
S1—C1—C2—C3174.73 (15)S2—C22—C23—C24174.25 (15)
C1—C2—C3—C40.4 (3)C22—C23—C24—C250.4 (3)
C2—C3—C4—C51.7 (3)C23—C24—C25—C262.1 (3)
C3—C4—C5—C60.7 (3)C24—C25—C26—C271.1 (3)
C4—C5—C6—C11.5 (2)C25—C26—C27—C221.5 (2)
C4—C5—C6—C7172.30 (16)C25—C26—C27—C28173.67 (16)
C2—C1—C6—C52.8 (2)C23—C22—C27—C263.2 (2)
S1—C1—C6—C5173.81 (12)S2—C22—C27—C26173.39 (12)
C2—C1—C6—C7171.34 (15)C23—C22—C27—C28172.24 (16)
S1—C1—C6—C712.0 (2)S2—C22—C27—C2811.1 (2)
N3—N2—C7—C80.75 (17)N7—N6—C28—C291.21 (17)
N3—N2—C7—C6174.70 (14)N7—N6—C28—C27176.35 (15)
C5—C6—C7—N210.3 (2)C26—C27—C28—N614.7 (3)
C1—C6—C7—N2175.85 (15)C22—C27—C28—N6170.05 (15)
C5—C6—C7—C8164.52 (16)C26—C27—C28—C29162.53 (16)
C1—C6—C7—C89.3 (2)C22—C27—C28—C2912.7 (2)
N2—C7—C8—C90.62 (18)N6—C28—C29—C300.46 (18)
C6—C7—C8—C9176.14 (14)C27—C28—C29—C30177.17 (15)
N2—C7—C8—N1175.25 (15)N6—C28—C29—N5178.22 (15)
C6—C7—C8—N10.3 (3)C27—C28—C29—N50.6 (3)
C11—N1—C8—C960.2 (2)C32—N5—C29—C3073.5 (2)
S1—N1—C8—C9154.68 (14)S2—N5—C29—C30148.71 (15)
C11—N1—C8—C7114.74 (18)C32—N5—C29—C28103.7 (2)
S1—N1—C8—C730.4 (2)S2—N5—C29—C2834.0 (2)
N2—N3—C9—C82.36 (18)N6—N7—C30—C291.36 (18)
C12—N3—C9—C8177.63 (14)C33—N7—C30—C29175.89 (14)
N2—N3—C9—C10177.77 (15)N6—N7—C30—C31179.17 (15)
C12—N3—C9—C102.5 (3)C33—N7—C30—C316.3 (3)
C7—C8—C9—N31.71 (17)C28—C29—C30—N70.52 (17)
N1—C8—C9—N3173.98 (15)N5—C29—C30—N7177.14 (16)
C7—C8—C9—C10178.43 (17)C28—C29—C30—C31178.12 (17)
N1—C8—C9—C105.9 (3)N5—C29—C30—C310.5 (3)
N2—N3—C12—C1382.23 (17)C30—N7—C33—C34101.77 (18)
C9—N3—C12—C1392.87 (19)N6—N7—C33—C3472.54 (17)
C14—N4—C13—O33.8 (2)C35—N8—C34—O71.8 (3)
C14—N4—C13—C12175.58 (14)C35—N8—C34—C33179.52 (15)
N3—C12—C13—O326.5 (2)N7—C33—C34—O744.81 (19)
N3—C12—C13—N4154.08 (14)N7—C33—C34—N8136.44 (14)
C13—N4—C14—C15171.18 (14)C34—N8—C35—C36132.81 (17)
N4—C14—C15—C20169.04 (15)N8—C35—C36—C41119.73 (19)
N4—C14—C15—C1613.3 (2)N8—C35—C36—C3761.8 (2)
C20—C15—C16—C171.1 (3)C41—C36—C37—C380.2 (3)
C14—C15—C16—C17178.74 (16)C35—C36—C37—C38178.29 (16)
C21—O4—C17—C18169.25 (18)C42—O8—C38—C377.5 (3)
C21—O4—C17—C1610.9 (3)C42—O8—C38—C39173.53 (18)
C15—C16—C17—O4177.66 (16)C36—C37—C38—O8179.58 (16)
C15—C16—C17—C182.1 (3)C36—C37—C38—C391.5 (3)
O4—C17—C18—C19178.50 (17)O8—C38—C39—C40179.12 (18)
C16—C17—C18—C191.3 (3)C37—C38—C39—C401.9 (3)
C17—C18—C19—C200.5 (3)C38—C39—C40—C410.6 (3)
C18—C19—C20—C151.5 (3)C37—C36—C41—C401.4 (3)
C16—C15—C20—C190.7 (3)C35—C36—C41—C40176.98 (18)
C14—C15—C20—C19177.06 (16)C39—C40—C41—C361.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O7i0.882.122.9511 (17)158
N8—H8N···O3ii0.882.022.8928 (18)171
C10—H10C···O6iii0.982.453.349 (2)152
C12—H12A···O7i0.992.563.2099 (19)123
C14—H14A···N6ii0.992.583.556 (2)168
C16—H16···O7i0.952.433.369 (2)172
C25—H25···O4iv0.952.473.365 (2)156
C31—H31C···O2v0.982.493.203 (2)129
C33—H33A···O3ii0.992.463.320 (2)145
C33—H33B···O5vi0.992.453.352 (2)151
C40—H40···O20.952.593.367 (3)139
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x1, y, z+1; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H22N4O4S
Mr426.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.6541 (1), 25.8809 (3), 18.3892 (2)
β (°) 92.208 (1)
V3)4115.68 (8)
Z8
Radiation typeCu Kα
µ (mm1)1.71
Crystal size (mm)0.14 × 0.12 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.796, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
70993, 7975, 6621
Rint0.049
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections7975
No. of parameters547
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O7i0.882.122.9511 (17)157.9
N8—H8N···O3ii0.882.022.8928 (18)171
C10—H10C···O6iii0.982.453.349 (2)152
C12—H12A···O7i0.992.563.2099 (19)123
C14—H14A···N6ii0.992.583.556 (2)168
C16—H16···O7i0.952.433.369 (2)172
C25—H25···O4iv0.952.473.365 (2)156
C31—H31C···O2v0.982.493.203 (2)129
C33—H33A···O3ii0.992.463.320 (2)145
C33—H33B···O5vi0.992.453.352 (2)151
C40—H40···O20.952.593.367 (3)139
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x1, y, z+1; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010a). J. Chem. Crystallogr. 40, 1188–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, M., Siddiqui, H. L., Gardiner, J. M., Parvez, M. & Aslam, S. (2012). Med. Chem. Res. doi:10.1007/s00044-012-0062-6.  Google Scholar
First citationAhmad, M., Siddiqui, H. L., Khattak, M. I., Ahmad, S. & Parvez, M. (2011a). Acta Cryst. E67, o216–o217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Khattak, M. I., Ahmad, S. & Parvez, M. (2011b). Acta Cryst. E67, o218–o219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010b). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255.  Web of Science CrossRef CAS Google Scholar
First citationTurck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13–16.  CrossRef PubMed Google Scholar
First citationZinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3064-o3065
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds