organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-[2,3-Di­chloro-6-methyl-5-(tri­fluoro­meth­yl)phen­yl]-2-(1-phenyl­ethyl­­idene)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cSequent Scientific Limited, Baikampady, Karnataka, India, and dDepartment of Chemistry, Mangalore University, Mangalagangothri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 September 2012; accepted 10 October 2012; online 20 October 2012)

The title compound, C16H13Cl2F3N2, exists in an E conformation with respect to the C=N bond [1.2952 (11) Å] and the C—N—N=C torsion angle is 175.65 (8)°. The dihedral angle between the benzene rings is 42.09 (4)°. An intra­molecular C—H⋯F hydrogen bond generates an S(6) ring. In the crystal, the mol­ecules are linked into [101] chains by C—H⋯F hydrogen bonds.

Related literature

For background to the properties and applications of hydrazones, see: Barbazan et al. (2008[Barbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713-2716.]); Banerjee et al. (2009[Banerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785-2793.]); Ghavtadze et al. (2008[Ghavtadze, N., Frohlich, R. & Wurthwein, E. U. (2008). Eur. J. Org. Chem. pp. 3656-3667.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o1933.],b[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011b). Acta Cryst. E67, o1932.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13Cl2F3N2

  • Mr = 361.18

  • Monoclinic, P 21 /c

  • a = 11.2600 (16) Å

  • b = 11.4025 (17) Å

  • c = 14.8398 (16) Å

  • β = 123.773 (7)°

  • V = 1583.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEXII Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS); Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.911

  • 22269 measured reflections

  • 5714 independent reflections

  • 5043 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.090

  • S = 1.02

  • 5714 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F1i 0.95 2.39 3.1652 (14) 139
C15—H15A⋯F2 0.98 2.38 3.1018 (13) 130
Symmetry code: (i) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones are important compounds for drug design, as possible ligands for metal complexes, organocatalysis and also for the syntheses of heterocyclic compounds (e.g. Barbazan et al., 2008; Banerjee et al., 2009; Ghavtadze et al., 2008). As part of our ongoing studies in this area (Fun et al., 2011a,b), we now describe the structure of the title compound, (I).

The title compound, as shown in Fig. 1, exists in trans conformation with respect to the C7N1 bond [C7N1 = 1.2952 (11) Å]. An S(6) ring is formed via an intramolecular C15—H15A···F2 hydrogen bond (Table 1). The dihedral angle between the benzene rings (C1–C6 & C8–C13) is 42.09 (4)°.

In the crystal, Fig. 2, the molecules are linked into chains along [101] by C1—H1A···F1 hydrogen bonds (Table 1).

Related literature top

For background to the properties and applications of hydrazones, see: Barbazan et al. (2008); Banerjee et al. (2009); Ghavtadze et al. (2008). For related structures, see: Fun et al. (2011a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Equimolar amount of [2,3-dichloro-6-methyl-5-(trifluoromethyl)phenyl]hydrazine and acetophenone were dissolved in a minimum amount of ethanol, then followed by the addition of 0.5 ml concentrated sulfuric acid. The solution was refluxed for 8 h then cooled to room temperature and poured into ice cold water. The solid product was collected through filtration and then dried using a drying oven at 80°C. The product was redissolved in ethanol for recrystalliziation to give yellow blocks of (I). Melting point: 368 K.

Refinement top

N-bound H atom was located from the difference Fourier map and were refined with a riding model with Uiso(H) = 1.2 Ueq(N) [N–H = 0.8915 Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.98 Å]. A rotating group model was applied to the methyl groups. In the final refinement, two outliners (1 2 2 and 1 2 3) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the chains along [101]. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(2E)-1-[2,3-Dichloro-6-methyl-5-(trifluoromethyl)phenyl]-2- (1-phenylethylidene)hydrazine top
Crystal data top
C16H13Cl2F3N2F(000) = 736
Mr = 361.18Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9943 reflections
a = 11.2600 (16) Åθ = 2.4–32.6°
b = 11.4025 (17) ŵ = 0.44 mm1
c = 14.8398 (16) ÅT = 100 K
β = 123.773 (7)°Block, yellow
V = 1583.8 (4) Å30.32 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII Duo CCD
diffractometer
5714 independent reflections
Radiation source: fine-focus sealed tube5043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS); Bruker, 2009)
h = 1717
Tmin = 0.872, Tmax = 0.911k = 1716
22269 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.4114P]
where P = (Fo2 + 2Fc2)/3
5714 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H13Cl2F3N2V = 1583.8 (4) Å3
Mr = 361.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2600 (16) ŵ = 0.44 mm1
b = 11.4025 (17) ÅT = 100 K
c = 14.8398 (16) Å0.32 × 0.26 × 0.22 mm
β = 123.773 (7)°
Data collection top
Bruker SMART APEXII Duo CCD
diffractometer
5714 independent reflections
Absorption correction: multi-scan
(SADABS); Bruker, 2009)
5043 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.911Rint = 0.023
22269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
5714 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07133 (2)0.57463 (2)0.919947 (18)0.02243 (6)
Cl20.27412 (3)0.51560 (3)1.16881 (2)0.03137 (7)
F10.76376 (7)0.64100 (7)1.26985 (6)0.04073 (19)
F20.72355 (7)0.79611 (5)1.17471 (5)0.02773 (13)
F30.76971 (7)0.63239 (6)1.12760 (7)0.03906 (18)
N10.24945 (8)0.64196 (7)0.75151 (6)0.01758 (13)
N20.21577 (8)0.68019 (7)0.82355 (6)0.01970 (14)
H10.12310.68300.79820.024*
C10.08557 (10)0.60301 (8)0.46427 (7)0.02097 (16)
H1A0.01160.61650.43870.025*
C20.11987 (11)0.56352 (9)0.39242 (8)0.02343 (17)
H2A0.04640.55060.31840.028*
C30.26177 (11)0.54303 (8)0.42924 (8)0.02305 (17)
H3A0.28550.51600.38060.028*
C40.36909 (10)0.56246 (8)0.53808 (8)0.02125 (16)
H4A0.46600.54840.56340.026*
C50.33508 (9)0.60236 (7)0.60973 (7)0.01782 (15)
H5A0.40900.61570.68360.021*
C60.19245 (9)0.62302 (7)0.57366 (7)0.01647 (14)
C70.15569 (9)0.66423 (7)0.65008 (7)0.01714 (14)
C80.30910 (9)0.65100 (7)0.93301 (7)0.01651 (14)
C90.45661 (9)0.67664 (7)0.98943 (7)0.01764 (15)
C100.54176 (9)0.65007 (7)1.10045 (7)0.01872 (15)
C110.48613 (10)0.60149 (8)1.15569 (7)0.02078 (16)
H11A0.54680.58451.23090.025*
C120.34106 (10)0.57840 (8)1.09936 (7)0.01957 (15)
C130.25253 (9)0.60334 (8)0.98898 (7)0.01731 (14)
C140.01767 (10)0.72840 (9)0.60945 (8)0.02298 (17)
H14A0.03610.79580.65650.034*
H14B0.05030.67530.61020.034*
H14C0.02250.75580.53530.034*
C150.51547 (11)0.73642 (9)0.93086 (8)0.02373 (17)
H15A0.60010.78240.98280.036*
H15B0.44260.78850.87470.036*
H15C0.54180.67700.89720.036*
C160.69874 (10)0.67904 (8)1.16736 (8)0.02398 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01517 (9)0.02920 (11)0.02257 (11)0.00304 (7)0.01028 (8)0.00384 (7)
Cl20.02648 (12)0.04378 (15)0.02537 (12)0.00394 (10)0.01537 (10)0.00792 (10)
F10.0198 (3)0.0430 (4)0.0341 (4)0.0034 (3)0.0007 (3)0.0151 (3)
F20.0243 (3)0.0190 (3)0.0311 (3)0.0060 (2)0.0099 (2)0.0040 (2)
F30.0199 (3)0.0342 (3)0.0623 (5)0.0027 (2)0.0223 (3)0.0143 (3)
N10.0180 (3)0.0189 (3)0.0170 (3)0.0008 (2)0.0105 (3)0.0012 (2)
N20.0173 (3)0.0259 (4)0.0161 (3)0.0032 (3)0.0094 (3)0.0008 (3)
C10.0184 (4)0.0250 (4)0.0172 (4)0.0010 (3)0.0084 (3)0.0001 (3)
C20.0270 (4)0.0244 (4)0.0171 (4)0.0028 (3)0.0111 (3)0.0015 (3)
C30.0314 (5)0.0200 (4)0.0232 (4)0.0004 (3)0.0185 (4)0.0007 (3)
C40.0228 (4)0.0206 (4)0.0244 (4)0.0031 (3)0.0157 (4)0.0015 (3)
C50.0176 (3)0.0176 (3)0.0181 (3)0.0016 (3)0.0099 (3)0.0014 (3)
C60.0168 (3)0.0161 (3)0.0162 (3)0.0004 (3)0.0090 (3)0.0011 (3)
C70.0163 (3)0.0177 (3)0.0179 (3)0.0009 (3)0.0098 (3)0.0005 (3)
C80.0161 (3)0.0164 (3)0.0171 (3)0.0004 (3)0.0092 (3)0.0019 (3)
C90.0168 (3)0.0158 (3)0.0209 (4)0.0007 (3)0.0109 (3)0.0021 (3)
C100.0144 (3)0.0156 (3)0.0222 (4)0.0002 (3)0.0077 (3)0.0005 (3)
C110.0181 (4)0.0196 (4)0.0195 (4)0.0005 (3)0.0072 (3)0.0025 (3)
C120.0185 (4)0.0203 (4)0.0199 (4)0.0006 (3)0.0106 (3)0.0016 (3)
C130.0144 (3)0.0185 (3)0.0183 (4)0.0005 (3)0.0086 (3)0.0019 (3)
C140.0196 (4)0.0267 (4)0.0234 (4)0.0066 (3)0.0125 (3)0.0042 (3)
C150.0228 (4)0.0257 (4)0.0258 (4)0.0059 (3)0.0155 (4)0.0041 (3)
C160.0165 (4)0.0191 (4)0.0288 (4)0.0009 (3)0.0079 (3)0.0006 (3)
Geometric parameters (Å, º) top
Cl1—C131.7309 (9)C5—H5A0.9500
Cl2—C121.7340 (10)C6—C71.4833 (12)
F1—C161.3414 (12)C7—C141.5075 (12)
F2—C161.3558 (11)C8—C131.4069 (12)
F3—C161.3394 (13)C8—C91.4139 (12)
N1—C71.2952 (11)C9—C101.4032 (13)
N1—N21.3884 (10)C9—C151.5165 (13)
N2—C81.3985 (11)C10—C111.3936 (13)
N2—H10.8915C10—C161.5060 (13)
C1—C21.3951 (13)C11—C121.3850 (13)
C1—C61.4013 (12)C11—H11A0.9500
C1—H1A0.9500C12—C131.3936 (12)
C2—C31.3912 (15)C14—H14A0.9800
C2—H2A0.9500C14—H14B0.9800
C3—C41.3958 (14)C14—H14C0.9800
C3—H3A0.9500C15—H15A0.9800
C4—C51.3916 (12)C15—H15B0.9800
C4—H4A0.9500C15—H15C0.9800
C5—C61.4020 (12)
C7—N1—N2115.99 (7)C11—C10—C9122.64 (8)
N1—N2—C8117.97 (7)C11—C10—C16116.48 (8)
N1—N2—H1116.3C9—C10—C16120.81 (8)
C8—N2—H1116.5C12—C11—C10119.05 (8)
C2—C1—C6120.91 (8)C12—C11—H11A120.5
C2—C1—H1A119.5C10—C11—H11A120.5
C6—C1—H1A119.5C11—C12—C13120.24 (8)
C3—C2—C1119.96 (9)C11—C12—Cl2118.45 (7)
C3—C2—H2A120.0C13—C12—Cl2121.31 (7)
C1—C2—H2A120.0C12—C13—C8120.66 (8)
C2—C3—C4119.63 (9)C12—C13—Cl1119.65 (7)
C2—C3—H3A120.2C8—C13—Cl1119.69 (7)
C4—C3—H3A120.2C7—C14—H14A109.5
C5—C4—C3120.47 (9)C7—C14—H14B109.5
C5—C4—H4A119.8H14A—C14—H14B109.5
C3—C4—H4A119.8C7—C14—H14C109.5
C4—C5—C6120.44 (8)H14A—C14—H14C109.5
C4—C5—H5A119.8H14B—C14—H14C109.5
C6—C5—H5A119.8C9—C15—H15A109.5
C1—C6—C5118.60 (8)C9—C15—H15B109.5
C1—C6—C7120.82 (8)H15A—C15—H15B109.5
C5—C6—C7120.57 (7)C9—C15—H15C109.5
N1—C7—C6115.64 (7)H15A—C15—H15C109.5
N1—C7—C14123.57 (8)H15B—C15—H15C109.5
C6—C7—C14120.78 (7)F3—C16—F1106.72 (9)
N2—C8—C13118.89 (8)F3—C16—F2106.25 (8)
N2—C8—C9121.03 (8)F1—C16—F2105.61 (8)
C13—C8—C9119.91 (8)F3—C16—C10113.04 (8)
C10—C9—C8117.49 (8)F1—C16—C10112.18 (8)
C10—C9—C15122.61 (8)F2—C16—C10112.51 (8)
C8—C9—C15119.82 (8)
C7—N1—N2—C8175.65 (8)C15—C9—C10—C11176.09 (8)
C6—C1—C2—C30.26 (14)C8—C9—C10—C16177.55 (8)
C1—C2—C3—C40.15 (14)C15—C9—C10—C160.72 (13)
C2—C3—C4—C50.14 (14)C9—C10—C11—C120.09 (14)
C3—C4—C5—C60.32 (13)C16—C10—C11—C12176.85 (8)
C2—C1—C6—C50.09 (13)C10—C11—C12—C130.13 (14)
C2—C1—C6—C7179.58 (8)C10—C11—C12—Cl2178.90 (7)
C4—C5—C6—C10.21 (13)C11—C12—C13—C80.68 (13)
C4—C5—C6—C7179.29 (8)Cl2—C12—C13—C8178.05 (7)
N2—N1—C7—C6179.96 (7)C11—C12—C13—Cl1179.68 (7)
N2—N1—C7—C140.51 (13)Cl2—C12—C13—Cl11.59 (11)
C1—C6—C7—N1157.04 (8)N2—C8—C13—C12176.86 (8)
C5—C6—C7—N122.44 (12)C9—C8—C13—C121.53 (13)
C1—C6—C7—C1423.41 (12)N2—C8—C13—Cl13.50 (11)
C5—C6—C7—C14157.11 (8)C9—C8—C13—Cl1178.83 (6)
N1—N2—C8—C13131.65 (8)C11—C10—C16—F3127.38 (9)
N1—N2—C8—C953.07 (11)C9—C10—C16—F355.61 (12)
N2—C8—C9—C10176.75 (8)C11—C10—C16—F16.65 (12)
C13—C8—C9—C101.52 (12)C9—C10—C16—F1176.35 (8)
N2—C8—C9—C150.17 (12)C11—C10—C16—F2112.26 (10)
C13—C8—C9—C15175.40 (8)C9—C10—C16—F264.74 (12)
C8—C9—C10—C110.74 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F1i0.952.393.1652 (14)139
C15—H15A···F20.982.383.1018 (13)130
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H13Cl2F3N2
Mr361.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2600 (16), 11.4025 (17), 14.8398 (16)
β (°) 123.773 (7)
V3)1583.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEXII Duo CCD
diffractometer
Absorption correctionMulti-scan
(SADABS); Bruker, 2009)
Tmin, Tmax0.872, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
22269, 5714, 5043
Rint0.023
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.090, 1.02
No. of reflections5714
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F1i0.952.393.1652 (14)139
C15—H15A···F20.982.383.1018 (13)130
Symmetry code: (i) x1, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the position of Research Officer under the Research University Grant (1001/PFIZIK/811160).

References

First citationBanerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785–2793.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713–2716.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o1933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011b). Acta Cryst. E67, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhavtadze, N., Frohlich, R. & Wurthwein, E. U. (2008). Eur. J. Org. Chem. pp. 3656–3667.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds