organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano-N′-[1-(pyridin-2-yl)ethyl­­idene]acetohydrazide

aSchool of Pharmacy, Xinxiang Medical University, Xinxiang Henan 453003, People's Republic of China, bThe Hematology Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui Henan 453100, People's Republic of China, and cSchool of Basic Medical Sciences, Xinxiang Medical University, Xinxiang Henan 453003, People's Republic of China
*Correspondence e-mail: qianzhibin2012@163.com

(Received 7 October 2012; accepted 13 October 2012; online 24 October 2012)

In the title compound, C10H10N4O, the dihedral angle between the pyridine ring and the –C=O(CH2)CN group is 24.08 (12)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops.

Related literature

For the biological activity of hydrazone compounds, see: Rauf et al. (2008[Rauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448-452.]); Zhang et al. (2012[Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343-350.]). For related structures, see: Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.]); Kargar et al. (2012[Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2118-o2119.]); Rassem et al. (2012[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o2279.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O

  • Mr = 202.22

  • Monoclinic, P 21 /c

  • a = 8.192 (2) Å

  • b = 14.520 (2) Å

  • c = 8.7340 (17) Å

  • β = 98.466 (2)°

  • V = 1027.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.985, Tmax = 0.989

  • 6189 measured reflections

  • 2222 independent reflections

  • 1128 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.143

  • S = 1.03

  • 2222 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.90 (1) 2.05 (1) 2.929 (2) 167 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds bearing biological active functional groups -C(O)-NH-N=CH- are readily prepared by the condensation reactions of hydrazines with various aldehydes (e.g. Rauf et al., 2008; Zhang et al., 2012). In the present work, the title new hydrazone compound, derived from 2-acetylpyridine and cyanoacetohydrazide, is reported.

The molecule of the compound adopts a trans conformation about the C6=N2 double bond (Fig. 1). The torsion angles of C6-N2-N3-C8, N2-N3-C8-C9, and N3-C8-C9-C10 are 4.8 (3), 5.1 (3), and 6.5 (3)°, respectively. The bond lengths are comparable to those in similar compounds (Taha et al., 2012; Kargar et al., 2012; Rassem et al., 2012). The crystal structure of the compound features N—H···O hydrogen bonds (Table 1), generating dimers (Fig. 2).

Related literature top

For the biological activity of hydrazone compounds, see: Rauf et al. (2008); Zhang et al. (2012). For related structures, see: Taha et al. (2012); Kargar et al. (2012); Rassem et al. (2012).

Experimental top

2-Acetylpyridine (1.0 mmol, 0.121 g) and cyanoacetohydrazide (1.0 mmol, 0.991 g) were mixed and stirred in methanol (50 mL) at room temperature for 1 h. Colorless block-shaped single crystals were obtained after slow evaporation of the solution in air for a few days.

Refinement top

H3A attached to N3 was located in a difference Fourier map and was refined isotropically, with N—H distance of 0.90 (1) Å. The remaining hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å for aromatic and CH2 and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30% thermal ellipsoids.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines.
2-Cyano-N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide top
Crystal data top
C10H10N4OF(000) = 424
Mr = 202.22Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.192 (2) ÅCell parameters from 1009 reflections
b = 14.520 (2) Åθ = 2.7–24.5°
c = 8.7340 (17) ŵ = 0.09 mm1
β = 98.466 (2)°T = 298 K
V = 1027.6 (4) Å3Block, colorless
Z = 40.17 × 0.13 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2222 independent reflections
Radiation source: fine-focus sealed tube1128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.985, Tmax = 0.989k = 1812
6189 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0523P]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C10H10N4OV = 1027.6 (4) Å3
Mr = 202.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.192 (2) ŵ = 0.09 mm1
b = 14.520 (2) ÅT = 298 K
c = 8.7340 (17) Å0.17 × 0.13 × 0.12 mm
β = 98.466 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1128 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.040
6189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.14 e Å3
2222 reflectionsΔρmin = 0.18 e Å3
140 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3684 (2)0.07074 (13)0.3032 (2)0.0623 (6)
N20.6478 (2)0.10204 (13)0.0382 (2)0.0537 (5)
N30.7946 (2)0.06818 (13)0.0033 (2)0.0583 (5)
N40.8363 (3)0.17583 (17)0.4976 (3)0.0901 (8)
O10.97937 (19)0.06914 (12)0.16256 (18)0.0727 (5)
C10.4400 (3)0.11185 (15)0.1938 (2)0.0504 (6)
C20.3705 (3)0.18833 (17)0.1157 (3)0.0667 (7)
H20.42230.21670.04040.080*
C30.2244 (3)0.22169 (19)0.1506 (3)0.0805 (9)
H30.17640.27330.09930.097*
C40.1494 (3)0.17926 (19)0.2605 (3)0.0714 (7)
H40.04940.20060.28510.086*
C50.2256 (3)0.10466 (18)0.3330 (3)0.0686 (7)
H50.17470.07550.40820.082*
C60.5976 (3)0.07141 (15)0.1606 (2)0.0512 (6)
C70.6822 (3)0.00024 (17)0.2651 (3)0.0675 (7)
H7A0.68300.05740.20980.101*
H7B0.62460.00830.35220.101*
H7C0.79360.01870.30060.101*
C80.8458 (3)0.09339 (15)0.1295 (3)0.0554 (6)
C90.7285 (3)0.15165 (16)0.2381 (2)0.0587 (6)
H9A0.62150.12180.25700.070*
H9B0.71460.21090.19040.070*
C100.7896 (3)0.16532 (16)0.3836 (3)0.0594 (6)
H3A0.860 (2)0.0304 (13)0.066 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0625 (14)0.0709 (13)0.0578 (12)0.0094 (11)0.0226 (10)0.0093 (10)
N20.0449 (11)0.0645 (13)0.0536 (11)0.0050 (9)0.0137 (9)0.0024 (9)
N30.0490 (13)0.0724 (14)0.0548 (12)0.0110 (10)0.0125 (9)0.0116 (10)
N40.0921 (18)0.1099 (19)0.0729 (15)0.0051 (14)0.0278 (13)0.0163 (14)
O10.0543 (11)0.0962 (13)0.0717 (11)0.0180 (9)0.0226 (9)0.0185 (9)
C10.0485 (14)0.0581 (14)0.0448 (12)0.0002 (12)0.0069 (10)0.0003 (11)
C20.0622 (17)0.0784 (18)0.0631 (15)0.0105 (14)0.0215 (13)0.0169 (13)
C30.0741 (19)0.091 (2)0.0809 (19)0.0283 (16)0.0261 (16)0.0236 (16)
C40.0623 (17)0.0910 (19)0.0649 (16)0.0209 (15)0.0232 (14)0.0064 (15)
C50.0664 (17)0.0843 (19)0.0610 (15)0.0076 (15)0.0291 (13)0.0074 (14)
C60.0486 (14)0.0581 (14)0.0471 (12)0.0015 (11)0.0081 (11)0.0011 (11)
C70.0607 (17)0.0816 (17)0.0616 (15)0.0133 (14)0.0131 (12)0.0181 (13)
C80.0481 (15)0.0633 (16)0.0568 (14)0.0015 (12)0.0143 (12)0.0027 (12)
C90.0536 (15)0.0676 (16)0.0564 (13)0.0062 (12)0.0132 (11)0.0058 (12)
C100.0594 (16)0.0618 (15)0.0583 (14)0.0026 (12)0.0131 (13)0.0045 (12)
Geometric parameters (Å, º) top
N1—C51.331 (3)C3—H30.9300
N1—C11.333 (2)C4—C51.359 (3)
N2—C61.280 (2)C4—H40.9300
N2—N31.374 (2)C5—H50.9300
N3—C81.341 (3)C6—C71.486 (3)
N3—H3A0.899 (10)C7—H7A0.9600
N4—C101.128 (3)C7—H7B0.9600
O1—C81.224 (2)C7—H7C0.9600
C1—C21.382 (3)C8—C91.506 (3)
C1—C61.486 (3)C9—C101.446 (3)
C2—C31.366 (3)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.361 (3)
C5—N1—C1117.8 (2)N2—C6—C1114.9 (2)
C6—N2—N3117.41 (19)N2—C6—C7125.31 (19)
C8—N3—N2119.3 (2)C1—C6—C7119.78 (18)
C8—N3—H3A117.5 (15)C6—C7—H7A109.5
N2—N3—H3A123.2 (15)C6—C7—H7B109.5
N1—C1—C2121.4 (2)H7A—C7—H7B109.5
N1—C1—C6116.7 (2)C6—C7—H7C109.5
C2—C1—C6121.88 (19)H7A—C7—H7C109.5
C3—C2—C1119.1 (2)H7B—C7—H7C109.5
C3—C2—H2120.5O1—C8—N3122.0 (2)
C1—C2—H2120.5O1—C8—C9121.5 (2)
C4—C3—C2119.9 (2)N3—C8—C9116.48 (19)
C4—C3—H3120.1C10—C9—C8111.03 (18)
C2—C3—H3120.1C10—C9—H9A109.4
C5—C4—C3117.7 (2)C8—C9—H9A109.4
C5—C4—H4121.1C10—C9—H9B109.4
C3—C4—H4121.1C8—C9—H9B109.4
N1—C5—C4124.1 (2)H9A—C9—H9B108.0
N1—C5—H5118.0N4—C10—C9179.6 (3)
C4—C5—H5118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.90 (1)2.05 (1)2.929 (2)167 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC10H10N4O
Mr202.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.192 (2), 14.520 (2), 8.7340 (17)
β (°) 98.466 (2)
V3)1027.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6189, 2222, 1128
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 1.03
No. of reflections2222
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.899 (10)2.048 (11)2.929 (2)167 (2)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The intensity data were collected by Xiao-Lin Han under the guidance of Mr Yanglu Zhu at Dalian Institute of Technology.

References

First citationBruker (1998). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2118–o2119.  CSD CrossRef IUCr Journals Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o2279.  CSD CrossRef IUCr Journals Google Scholar
First citationRauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448-452.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds