organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3209-o3210

N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­­oxy­phen­yl)benzene­sulfonamide

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bPG Department of Studies in Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysore 570 025, India, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 8 October 2012; accepted 22 October 2012; online 27 October 2012)

The title compound, C22H23BrN4O3S2, crystallizes with two mol­ecules, A and B, in the asymmetric unit. In one of these, the meth­oxy group is disordered over two sets of sites in a 0.565 (9):0.435 (9) ratio. The benzene rings bridged by the sulfonamide group are tilted relative to each other by 37.4 (1) and 56.1 (1)° in mol­ecules A and B, respectively, while the dihedral angles between the sulfur-bridged pyrimidine and benzene rings are 72.4 (1) and 70.2 (1)° for A and B, respectively. The piperidine ring adopts a chair conformation in both mol­ecules. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur for both A and B; the dimers are linked into [010] chains by C—H⋯O hydrogen bonds. The crystal structure also features inversion-generated aromatic ππ stacking inter­actions between the pyrimidine rings for both mol­ecules [centroid–centroid distances = 3.412 (2) (mol­ecule A) and 3.396 (2) Å (mol­ecule B)].

Related literature

For the biological activity of sulfonamide compounds, see: Lee et al. (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Laurence (2009[Laurence, M. (2009). East Asia. Sci. Tech. Soc. 3, 257-285.]). For related structures, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.]); Akkurt et al. (2011[Akkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590-o2591.]); Kumar et al. (2012[Kumar, M., Mallesha, L., Sridhar, M. A., Kapoor, K., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o3061.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23BrN4O3S2

  • Mr = 535.47

  • Triclinic, [P \overline 1]

  • a = 13.6081 (6) Å

  • b = 14.5662 (5) Å

  • c = 14.7502 (7) Å

  • α = 74.439 (4)°

  • β = 69.077 (4)°

  • γ = 62.581 (4)°

  • V = 2405.10 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.920, Tmax = 1.000

  • 18681 measured reflections

  • 8017 independent reflections

  • 5364 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.02

  • 8017 reflections

  • 601 parameters

  • 35 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8A—H8A⋯N20Ai 0.86 2.15 2.940 (4) 152
N8B—H8B⋯N20Bii 0.78 (4) 2.28 (4) 2.974 (5) 149 (4)
C11A—H11A⋯O1Aiii 0.93 2.47 3.372 (5) 164
C10B—H10B⋯O2Biv 0.93 2.60 3.278 (6) 131
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+2; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y-1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. Sulfonamide compounds are well known as antimicrobial agents and are familiar in the literature for their anti-malarial, anti-convulsant, antineoplastic, antituberculosic, antidiabetic, antiobesity. and anti-hypertensive activities [Lee et al., 2002]. Sulfonamides commonly named as Sulfa drugs are the medicines capable of controlling the bacterial infections[Laurence, 2009]. In view of the importance of sulfonamide, the title compound (I) is prepared and its crystal structure is reported.

Bond lengths and angles in the title compound (Fig. 1) have normal values and are comparable with the similar crystal structures (Rodrigues et al., 2011; Akkurt et al., 2011; Kant et al., 2012); Kumar et al. (2012). There are no significant differences in bond lengths and angles for molecule A & B. The molecules are twisted about the S—N bonds with (C1A—S1A—N8A—C9A) and (C1B—S1B—N8B—C9B) torsion angles of 60.5 (3) and 58.9 (4)°, respectively. The piperidine ring is in chair conformation in both the molecules. The benzene rings bridged by the sulfonamide group are tilted relative to each other by 37.4 (2) and 56.1 (1)° while the dihedral angle between the sulfur bridged pyrimidine and benzene rings is 72.4 (1) and 70.2 (1)° in molecules A and B, respectively. In one of the molecules (molecule A), methoxy group is disordered over two sets of sites in a 0.57 (1): 0.43 (1) ratio. In the crystal, molecule A is forming dimer with other molecule A by N8A—H8A ···N20A and molecule B is also forming dimer with molecule B by N8B—H8B ···N20B hydrogen bonds (Fig. 2). These dimers are further connected into chains by C10B—H10B···O2B and C11A—H11A···O1A along a axis (Fig. 3). In addition to these hydrogen bonds there is one intramolecular N8B—H8B···S2B hydrogen bond in molecule B (Table 1). The crystal structure also features ππ interactions between the pyrimidine rings in both the molecules, A & B [molecule A: centroid separation = 3.412 (2) Å, interplanar spacing = 3.401 Å and centroid shift = 0.27 Å; molecule B: centroid separation = 3.396 (2) Å, interplanar spacing = 3.322 Å and centroid shift = 0.70 Å].

Related literature top

For the biological activity of sulfonamide compounds, see: Lee et al. (2002); Laurence (2009). For related structures, see: Rodrigues et al. (2011); Akkurt et al. (2011); Kant et al. (2012); Kumar et al. (2012).

Experimental top

The reaction of N-[2-(5-bromo-2-piperidin-1-yl-pyrimidin-4-yl-sulfanyl) -4-methoxy-phenyl]-benzenesulfonamide (4.87 g, 0.01 mol) and piperidine (0.86 g, 0.01 mol) were carried out in the presence of triethylamine and the reaction mixture was allowed to stir at room temperature for 6–7 h in dry dichloromethane. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and residue was extracted with ethyl acetate. The compound was purified by successive recrystallization from methanol (yield 79%, m.p. 471–473 K) to yield colourless blocks.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.97 Å and N—H distance of 0.86 with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacnent ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Dimer formation between the molecules.
[Figure 3] Fig. 3. A molecular packing view of the title compound down the a axis, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfanyl}-4- methoxyphenyl)benzenesulfonamide top
Crystal data top
C22H23BrN4O3S2Z = 4
Mr = 535.47F(000) = 1096
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.6081 (6) ÅCell parameters from 6323 reflections
b = 14.5662 (5) Åθ = 3.4–29.0°
c = 14.7502 (7) ŵ = 1.91 mm1
α = 74.439 (4)°T = 293 K
β = 69.077 (4)°Block, colourless
γ = 62.581 (4)°0.30 × 0.20 × 0.20 mm
V = 2405.10 (18) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
8017 independent reflections
Radiation source: fine-focus sealed tube5364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scanh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1717
Tmin = 0.920, Tmax = 1.000l = 1717
18681 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.8571P]
where P = (Fo2 + 2Fc2)/3
8017 reflections(Δ/σ)max = 0.001
601 parametersΔρmax = 0.34 e Å3
35 restraintsΔρmin = 0.36 e Å3
Crystal data top
C22H23BrN4O3S2γ = 62.581 (4)°
Mr = 535.47V = 2405.10 (18) Å3
Triclinic, P1Z = 4
a = 13.6081 (6) ÅMo Kα radiation
b = 14.5662 (5) ŵ = 1.91 mm1
c = 14.7502 (7) ÅT = 293 K
α = 74.439 (4)°0.30 × 0.20 × 0.20 mm
β = 69.077 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
8017 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5364 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 1.000Rint = 0.032
18681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04235 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
8017 reflectionsΔρmin = 0.36 e Å3
601 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.9685 (3)0.2480 (3)0.7938 (3)0.0560 (10)
C2A0.8683 (5)0.3377 (3)0.8080 (3)0.0820 (14)
H2A0.86380.39830.76490.098*
C3A0.7749 (5)0.3370 (4)0.8862 (4)0.0990 (17)
H3A0.70710.39700.89500.119*
C4A0.7816 (5)0.2491 (5)0.9504 (4)0.0934 (16)
H4A0.71850.24911.00310.112*
C5A0.8809 (5)0.1609 (4)0.9373 (3)0.0880 (15)
H5A0.88560.10100.98160.106*
C6A0.9744 (4)0.1602 (3)0.8585 (3)0.0675 (11)
H6A1.04160.09970.84960.081*
C9A0.9556 (3)0.2902 (3)0.5727 (3)0.0503 (9)
C10A0.9569 (4)0.3794 (3)0.5091 (3)0.0669 (11)
H10A1.02350.39150.48690.080*
C11A0.8627 (4)0.4495 (3)0.4785 (3)0.0740 (12)
H11A0.86560.50810.43470.089*
C12A0.7634 (4)0.4334 (3)0.5125 (3)0.0687 (12)
O15A0.6783 (14)0.5178 (12)0.4733 (16)0.104 (3)0.565 (9)
C16A0.5841 (8)0.5017 (8)0.5000 (8)0.110 (4)0.565 (9)
H16D0.52640.56010.47330.166*0.565 (9)
H16E0.55670.49370.57010.166*0.565 (9)
H16F0.60020.43960.47630.166*0.565 (9)
O15C0.6630 (17)0.4908 (15)0.4905 (19)0.091 (4)0.435 (9)
C16C0.6574 (12)0.5800 (10)0.4197 (10)0.121 (5)0.435 (9)
H16G0.58250.61400.40860.182*0.435 (9)
H16H0.71470.55890.35960.182*0.435 (9)
H16I0.67110.62720.44320.182*0.435 (9)
C13A0.7588 (3)0.3452 (3)0.5764 (3)0.0617 (10)
H13A0.69100.33500.59990.074*
C14A0.8561 (3)0.2725 (3)0.6048 (2)0.0516 (9)
C17A0.8532 (3)0.0872 (3)0.6017 (2)0.0447 (8)
C19A0.8363 (3)0.0788 (3)0.4561 (3)0.0523 (9)
C21A0.8764 (3)0.0689 (3)0.5619 (3)0.0517 (9)
H21A0.89220.13960.57810.062*
C22A0.8721 (3)0.0174 (3)0.6297 (2)0.0450 (8)
C24A0.8154 (4)0.0798 (3)0.2969 (3)0.0885 (15)
H24C0.87930.08060.24030.106*
H24D0.82880.00750.32220.106*
C25A0.7108 (5)0.1291 (4)0.2668 (4)0.0983 (16)
H25A0.64970.11600.31980.118*
H25B0.72200.09830.21130.118*
C26A0.6750 (5)0.2438 (4)0.2394 (4)0.117 (2)
H26C0.60040.27450.22650.140*
H26D0.73000.25750.18010.140*
C27A0.6684 (5)0.2930 (4)0.3207 (4)0.1037 (18)
H27A0.65000.36670.30000.124*
H27B0.60740.28600.37780.124*
C28A0.7793 (5)0.2426 (3)0.3468 (3)0.0872 (15)
H28C0.83870.25640.29220.105*
H28D0.77160.27150.40230.105*
N8A1.0569 (3)0.2203 (2)0.6031 (2)0.0560 (8)
H8A1.10330.16510.57520.067*
N18A0.8354 (2)0.1346 (2)0.5161 (2)0.0494 (7)
N20A0.8594 (2)0.0238 (2)0.4749 (2)0.0527 (8)
N23A0.8120 (3)0.1302 (2)0.3711 (3)0.0772 (11)
O1A1.0816 (3)0.3475 (2)0.6652 (2)0.0901 (10)
O2A1.1862 (2)0.1570 (2)0.7068 (2)0.0866 (9)
S1A1.08444 (10)0.24479 (9)0.69014 (8)0.0652 (3)
S2A0.85282 (9)0.15692 (8)0.68323 (7)0.0583 (3)
Br20.89499 (4)0.08786 (3)0.75225 (3)0.07432 (16)
C1B0.7248 (4)0.4807 (3)1.1382 (3)0.0621 (11)
C2B0.8015 (5)0.5570 (4)1.0799 (3)0.0874 (14)
H2B0.77610.58151.04440.105*
C3B0.9179 (5)0.5978 (4)1.0742 (4)0.1111 (19)
H3B0.97070.65051.03550.133*
C4B0.9542 (5)0.5608 (6)1.1251 (5)0.124 (2)
H4B1.03220.58861.12120.149*
C5B0.8804 (6)0.4850 (5)1.1809 (5)0.135 (2)
H5B0.90670.45991.21510.162*
C6B0.7642 (4)0.4440 (4)1.1872 (5)0.112 (2)
H6B0.71250.39081.22560.134*
C9B0.6003 (3)0.3267 (2)0.9702 (3)0.0482 (9)
C10B0.5698 (3)0.3699 (3)0.9165 (3)0.0599 (10)
H10B0.51610.39890.94790.072*
C11B0.6192 (4)0.3700 (3)0.8163 (3)0.0683 (12)
H11B0.59920.39990.78100.082*
C12B0.6971 (4)0.3264 (3)0.7694 (3)0.0684 (11)
C13B0.7305 (3)0.2857 (3)0.8216 (3)0.0616 (10)
H13B0.78540.25810.78970.074*
C14B0.6820 (3)0.2860 (2)0.9222 (3)0.0494 (9)
C16B0.7037 (5)0.3354 (6)0.6099 (4)0.145 (3)
H16A0.71620.40750.62080.217*
H16B0.74050.31780.54300.217*
H16C0.62260.29280.62370.217*
C17B0.6646 (3)0.0985 (3)0.9436 (2)0.0434 (8)
C19B0.5571 (3)0.0341 (3)0.8500 (3)0.0504 (9)
C21B0.6364 (3)0.0740 (3)0.9370 (3)0.0531 (9)
H21B0.64860.12270.95650.064*
C22B0.6874 (3)0.0282 (3)0.9720 (2)0.0464 (9)
C24B0.4822 (4)0.0133 (3)0.7486 (3)0.0765 (13)
H24A0.40200.00830.75260.092*
H24B0.50740.08030.78810.092*
C25B0.5520 (4)0.0234 (5)0.6457 (5)0.114 (2)
H25C0.54020.07160.62070.137*
H25D0.63290.05160.64270.137*
C26B0.5200 (6)0.0801 (6)0.5830 (4)0.136 (3)
H26A0.44210.10420.57890.164*
H26B0.57140.07260.51740.164*
C27B0.5279 (5)0.1599 (5)0.6262 (4)0.1155 (19)
H27C0.60780.14080.62120.139*
H27D0.49980.22790.58870.139*
C28B0.4593 (4)0.1662 (3)0.7312 (3)0.0725 (12)
H28A0.47170.21250.75830.087*
H28B0.37800.19430.73580.087*
N8B0.5458 (3)0.3251 (3)1.0724 (3)0.0559 (9)
N18B0.5992 (2)0.0683 (2)0.8847 (2)0.0486 (7)
N20B0.5702 (2)0.1085 (2)0.8768 (2)0.0510 (7)
N23B0.4937 (3)0.0634 (3)0.7865 (3)0.0696 (10)
O1B0.5161 (2)0.3977 (2)1.2444 (2)0.0872 (9)
O2B0.5586 (3)0.5052 (2)1.1192 (2)0.0920 (10)
O15B0.7486 (3)0.3187 (3)0.6696 (3)0.1108 (12)
S1B0.57689 (9)0.43041 (8)1.14932 (8)0.0654 (3)
S2B0.72653 (8)0.23224 (7)0.98706 (7)0.0554 (3)
Br1B0.78611 (4)0.07405 (4)1.05211 (4)0.07916 (17)
H8B0.536 (3)0.278 (3)1.095 (2)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.078 (3)0.050 (2)0.061 (2)0.029 (2)0.036 (2)0.0098 (19)
C2A0.119 (4)0.061 (3)0.065 (3)0.032 (3)0.028 (3)0.012 (2)
C3A0.108 (4)0.087 (4)0.083 (4)0.016 (3)0.018 (3)0.035 (3)
C4A0.108 (4)0.116 (5)0.071 (3)0.055 (4)0.014 (3)0.030 (3)
C5A0.132 (5)0.096 (4)0.068 (3)0.073 (4)0.039 (3)0.008 (3)
C6A0.084 (3)0.064 (3)0.073 (3)0.035 (2)0.038 (3)0.002 (2)
C9A0.061 (2)0.048 (2)0.053 (2)0.027 (2)0.0176 (19)0.0115 (17)
C10A0.073 (3)0.067 (3)0.072 (3)0.038 (2)0.027 (2)0.000 (2)
C11A0.088 (3)0.064 (3)0.077 (3)0.040 (3)0.031 (3)0.007 (2)
C12A0.071 (3)0.057 (3)0.079 (3)0.015 (2)0.034 (2)0.012 (2)
O15A0.091 (6)0.085 (8)0.151 (9)0.044 (4)0.048 (6)0.002 (6)
C16A0.115 (8)0.083 (6)0.118 (7)0.033 (7)0.022 (7)0.014 (5)
O15C0.057 (5)0.091 (9)0.143 (8)0.044 (5)0.046 (6)0.009 (6)
C16C0.127 (9)0.087 (8)0.138 (10)0.031 (7)0.088 (7)0.052 (7)
C13A0.062 (3)0.066 (3)0.071 (3)0.033 (2)0.018 (2)0.021 (2)
C14A0.065 (3)0.055 (2)0.046 (2)0.029 (2)0.0159 (19)0.0131 (17)
C17A0.0366 (19)0.054 (2)0.049 (2)0.0225 (17)0.0098 (16)0.0098 (17)
C19A0.055 (2)0.050 (2)0.058 (2)0.0187 (19)0.0240 (19)0.0098 (18)
C21A0.050 (2)0.045 (2)0.063 (2)0.0208 (18)0.0146 (19)0.0088 (19)
C22A0.042 (2)0.054 (2)0.044 (2)0.0265 (18)0.0079 (16)0.0058 (17)
C24A0.128 (4)0.069 (3)0.090 (3)0.023 (3)0.065 (3)0.024 (2)
C25A0.131 (4)0.109 (4)0.092 (4)0.067 (4)0.059 (3)0.002 (3)
C26A0.139 (5)0.092 (4)0.128 (5)0.018 (4)0.089 (4)0.010 (4)
C27A0.130 (5)0.061 (3)0.092 (4)0.010 (3)0.044 (3)0.001 (3)
C28A0.139 (4)0.062 (3)0.082 (3)0.042 (3)0.056 (3)0.004 (2)
N8A0.0604 (19)0.0581 (19)0.0576 (19)0.0255 (17)0.0184 (16)0.0138 (15)
N18A0.0554 (18)0.0496 (18)0.0542 (18)0.0231 (15)0.0221 (15)0.0100 (15)
N20A0.0557 (19)0.0482 (19)0.061 (2)0.0186 (16)0.0218 (16)0.0136 (15)
N23A0.122 (3)0.047 (2)0.082 (2)0.021 (2)0.065 (2)0.0084 (17)
O1A0.140 (3)0.088 (2)0.089 (2)0.082 (2)0.044 (2)0.0002 (17)
O2A0.0668 (19)0.102 (2)0.106 (2)0.0290 (18)0.0446 (17)0.0161 (18)
S1A0.0817 (8)0.0697 (7)0.0722 (7)0.0451 (6)0.0343 (6)0.0062 (5)
S2A0.0795 (7)0.0670 (6)0.0474 (5)0.0445 (6)0.0170 (5)0.0086 (5)
Br20.0983 (3)0.0802 (3)0.0506 (2)0.0503 (3)0.0176 (2)0.0050 (2)
C1B0.072 (3)0.049 (2)0.071 (3)0.021 (2)0.034 (2)0.002 (2)
C2B0.095 (4)0.077 (3)0.086 (3)0.028 (3)0.021 (3)0.023 (3)
C3B0.080 (4)0.096 (4)0.116 (5)0.007 (3)0.006 (3)0.031 (3)
C4B0.084 (4)0.125 (6)0.151 (6)0.025 (4)0.048 (4)0.008 (5)
C5B0.100 (5)0.136 (6)0.190 (7)0.012 (4)0.085 (5)0.058 (5)
C6B0.079 (4)0.102 (4)0.167 (6)0.004 (3)0.057 (4)0.063 (4)
C9B0.052 (2)0.0350 (19)0.063 (2)0.0157 (18)0.0234 (19)0.0076 (17)
C10B0.062 (3)0.047 (2)0.084 (3)0.024 (2)0.032 (2)0.010 (2)
C11B0.077 (3)0.060 (3)0.084 (3)0.018 (2)0.039 (3)0.028 (2)
C12B0.071 (3)0.067 (3)0.069 (3)0.019 (2)0.021 (2)0.024 (2)
C13B0.057 (2)0.059 (2)0.071 (3)0.022 (2)0.015 (2)0.019 (2)
C14B0.048 (2)0.0373 (19)0.068 (3)0.0122 (18)0.0253 (19)0.0123 (17)
C16B0.149 (6)0.198 (7)0.106 (5)0.069 (5)0.017 (4)0.073 (5)
C17B0.0405 (19)0.045 (2)0.047 (2)0.0164 (17)0.0120 (16)0.0099 (16)
C19B0.051 (2)0.054 (2)0.052 (2)0.0200 (19)0.0189 (18)0.0117 (18)
C21B0.053 (2)0.053 (2)0.066 (2)0.024 (2)0.0200 (19)0.0179 (19)
C22B0.046 (2)0.050 (2)0.053 (2)0.0206 (18)0.0168 (17)0.0153 (17)
C24B0.093 (3)0.074 (3)0.093 (3)0.037 (3)0.054 (3)0.013 (2)
C25B0.078 (3)0.153 (6)0.130 (5)0.053 (4)0.004 (4)0.080 (5)
C26B0.183 (7)0.218 (8)0.060 (3)0.142 (6)0.007 (4)0.038 (4)
C27B0.129 (5)0.151 (5)0.088 (4)0.091 (4)0.024 (4)0.008 (4)
C28B0.080 (3)0.072 (3)0.075 (3)0.029 (2)0.039 (2)0.000 (2)
N8B0.063 (2)0.044 (2)0.069 (2)0.0237 (18)0.0241 (18)0.0068 (17)
N18B0.0494 (17)0.0500 (18)0.0552 (18)0.0203 (15)0.0207 (15)0.0107 (14)
N20B0.0531 (18)0.0488 (18)0.0597 (19)0.0193 (15)0.0220 (15)0.0133 (14)
N23B0.089 (2)0.057 (2)0.085 (2)0.0271 (19)0.053 (2)0.0065 (18)
O1B0.082 (2)0.092 (2)0.068 (2)0.0320 (18)0.0142 (16)0.0052 (16)
O2B0.121 (3)0.0620 (18)0.131 (3)0.0573 (19)0.072 (2)0.0182 (17)
O15B0.116 (3)0.145 (3)0.080 (2)0.040 (2)0.025 (2)0.053 (2)
S1B0.0707 (7)0.0570 (6)0.0778 (8)0.0323 (6)0.0318 (6)0.0054 (5)
S2B0.0585 (6)0.0522 (6)0.0688 (6)0.0244 (5)0.0297 (5)0.0067 (5)
Br1B0.0961 (3)0.0770 (3)0.0988 (4)0.0401 (3)0.0633 (3)0.0036 (2)
Geometric parameters (Å, º) top
C1A—C6A1.364 (5)O1A—S1A1.427 (3)
C1A—C2A1.383 (5)O2A—S1A1.435 (3)
C1A—S1A1.753 (4)C1B—C6B1.358 (6)
C2A—C3A1.380 (6)C1B—C2B1.366 (6)
C2A—H2A0.9300C1B—S1B1.756 (4)
C3A—C4A1.360 (7)C2B—C3B1.391 (7)
C3A—H3A0.9300C2B—H2B0.9300
C4A—C5A1.364 (6)C3B—C4B1.351 (8)
C4A—H4A0.9300C3B—H3B0.9300
C5A—C6A1.381 (6)C4B—C5B1.334 (8)
C5A—H5A0.9300C4B—H4B0.9300
C6A—H6A0.9300C5B—C6B1.387 (7)
C9A—C14A1.386 (5)C5B—H5B0.9300
C9A—C10A1.387 (5)C6B—H6B0.9300
C9A—N8A1.429 (4)C9B—C14B1.382 (5)
C10A—C11A1.360 (5)C9B—C10B1.393 (5)
C10A—H10A0.9300C9B—N8B1.423 (5)
C11A—C12A1.370 (6)C10B—C11B1.388 (5)
C11A—H11A0.9300C10B—H10B0.9300
C12A—O15C1.34 (2)C11B—C12B1.367 (6)
C12A—C13A1.388 (5)C11B—H11B0.9300
C12A—O15A1.404 (17)C12B—C13B1.375 (5)
O15A—C16A1.311 (14)C12B—O15B1.385 (5)
C16A—H16D0.9600C13B—C14B1.392 (5)
C16A—H16E0.9600C13B—H13B0.9300
C16A—H16F0.9600C14B—S2B1.774 (4)
O15C—C16C1.421 (16)C16B—O15B1.358 (6)
C16C—H16G0.9600C16B—H16A0.9600
C16C—H16H0.9600C16B—H16B0.9600
C16C—H16I0.9600C16B—H16C0.9600
C13A—C14A1.385 (5)C17B—N18B1.315 (4)
C13A—H13A0.9300C17B—C22B1.391 (5)
C14A—S2A1.778 (4)C17B—S2B1.766 (3)
C17A—N18A1.313 (4)C19B—N20B1.350 (4)
C17A—C22A1.391 (5)C19B—N18B1.351 (4)
C17A—S2A1.767 (4)C19B—N23B1.353 (4)
C19A—N23A1.344 (4)C21B—N20B1.330 (4)
C19A—N18A1.346 (4)C21B—C22B1.363 (5)
C19A—N20A1.349 (4)C21B—H21B0.9300
C21A—N20A1.324 (4)C22B—Br1B1.879 (3)
C21A—C22A1.373 (5)C24B—N23B1.464 (5)
C21A—H21A0.9300C24B—C25B1.478 (6)
C22A—Br21.879 (3)C24B—H24A0.9700
C24A—C25A1.440 (6)C24B—H24B0.9700
C24A—N23A1.451 (5)C25B—C26B1.501 (8)
C24A—H24C0.9700C25B—H25C0.9700
C24A—H24D0.9700C25B—H25D0.9700
C25A—C26A1.490 (7)C26B—C27B1.526 (7)
C25A—H25A0.9700C26B—H26A0.9700
C25A—H25B0.9700C26B—H26B0.9700
C26A—C27A1.511 (7)C27B—C28B1.498 (6)
C26A—H26C0.9700C27B—H27C0.9700
C26A—H26D0.9700C27B—H27D0.9700
C27A—C28A1.485 (6)C28B—N23B1.448 (5)
C27A—H27A0.9700C28B—H28A0.9700
C27A—H27B0.9700C28B—H28B0.9700
C28A—N23A1.461 (5)N8B—S1B1.622 (3)
C28A—H28C0.9700N8B—H8B0.78 (3)
C28A—H28D0.9700O1B—S1B1.430 (3)
N8A—S1A1.621 (3)O2B—S1B1.426 (3)
N8A—H8A0.8600
C6A—C1A—C2A119.3 (4)O2A—S1A—N8A105.92 (17)
C6A—C1A—S1A120.1 (3)O1A—S1A—C1A106.80 (19)
C2A—C1A—S1A120.5 (3)O2A—S1A—C1A108.87 (19)
C3A—C2A—C1A119.9 (4)N8A—S1A—C1A105.93 (16)
C3A—C2A—H2A120.1C17A—S2A—C14A100.74 (16)
C1A—C2A—H2A120.1C6B—C1B—C2B119.3 (4)
C4A—C3A—C2A120.3 (5)C6B—C1B—S1B120.4 (4)
C4A—C3A—H3A119.8C2B—C1B—S1B120.4 (4)
C2A—C3A—H3A119.8C1B—C2B—C3B119.5 (5)
C3A—C4A—C5A119.9 (5)C1B—C2B—H2B120.3
C3A—C4A—H4A120.1C3B—C2B—H2B120.3
C5A—C4A—H4A120.1C4B—C3B—C2B119.8 (5)
C4A—C5A—C6A120.3 (5)C4B—C3B—H3B120.1
C4A—C5A—H5A119.8C2B—C3B—H3B120.1
C6A—C5A—H5A119.8C5B—C4B—C3B121.3 (6)
C1A—C6A—C5A120.2 (4)C5B—C4B—H4B119.4
C1A—C6A—H6A119.9C3B—C4B—H4B119.4
C5A—C6A—H6A119.9C4B—C5B—C6B119.3 (6)
C14A—C9A—C10A118.9 (4)C4B—C5B—H5B120.4
C14A—C9A—N8A122.5 (3)C6B—C5B—H5B120.4
C10A—C9A—N8A118.6 (4)C1B—C6B—C5B120.8 (5)
C11A—C10A—C9A121.3 (4)C1B—C6B—H6B119.6
C11A—C10A—H10A119.3C5B—C6B—H6B119.6
C9A—C10A—H10A119.3C14B—C9B—C10B118.7 (4)
C10A—C11A—C12A119.7 (4)C14B—C9B—N8B122.2 (3)
C10A—C11A—H11A120.1C10B—C9B—N8B119.1 (3)
C12A—C11A—H11A120.1C11B—C10B—C9B120.4 (4)
O15C—C12A—C11A129.2 (7)C11B—C10B—H10B119.8
O15C—C12A—C13A110.2 (7)C9B—C10B—H10B119.8
C11A—C12A—C13A120.5 (4)C12B—C11B—C10B120.1 (4)
O15C—C12A—O15A20.6 (9)C12B—C11B—H11B119.9
C11A—C12A—O15A108.8 (6)C10B—C11B—H11B119.9
C13A—C12A—O15A130.6 (6)C11B—C12B—C13B120.3 (4)
C16A—O15A—C12A110.2 (11)C11B—C12B—O15B125.1 (4)
O15A—C16A—H16D109.5C13B—C12B—O15B114.6 (4)
O15A—C16A—H16E109.5C12B—C13B—C14B119.9 (4)
H16D—C16A—H16E109.5C12B—C13B—H13B120.1
O15A—C16A—H16F109.5C14B—C13B—H13B120.1
H16D—C16A—H16F109.5C9B—C14B—C13B120.5 (3)
H16E—C16A—H16F109.5C9B—C14B—S2B120.8 (3)
C12A—O15C—C16C116.7 (13)C13B—C14B—S2B118.7 (3)
O15C—C16C—H16G109.5O15B—C16B—H16A109.5
O15C—C16C—H16H109.5O15B—C16B—H16B109.5
H16G—C16C—H16H109.5H16A—C16B—H16B109.5
O15C—C16C—H16I109.5O15B—C16B—H16C109.5
H16G—C16C—H16I109.5H16A—C16B—H16C109.5
H16H—C16C—H16I109.5H16B—C16B—H16C109.5
C14A—C13A—C12A119.4 (4)N18B—C17B—C22B121.9 (3)
C14A—C13A—H13A120.3N18B—C17B—S2B119.1 (3)
C12A—C13A—H13A120.3C22B—C17B—S2B119.0 (3)
C13A—C14A—C9A120.0 (3)N20B—C19B—N18B125.0 (3)
C13A—C14A—S2A119.9 (3)N20B—C19B—N23B118.3 (3)
C9A—C14A—S2A120.1 (3)N18B—C19B—N23B116.7 (3)
N18A—C17A—C22A121.1 (3)N20B—C21B—C22B124.1 (4)
N18A—C17A—S2A119.8 (3)N20B—C21B—H21B118.0
C22A—C17A—S2A119.2 (3)C22B—C21B—H21B118.0
N23A—C19A—N18A116.9 (3)C21B—C22B—C17B116.4 (3)
N23A—C19A—N20A117.9 (3)C21B—C22B—Br1B122.5 (3)
N18A—C19A—N20A125.1 (3)C17B—C22B—Br1B121.0 (3)
N20A—C21A—C22A123.9 (3)N23B—C24B—C25B110.5 (4)
N20A—C21A—H21A118.0N23B—C24B—H24A109.6
C22A—C21A—H21A118.0C25B—C24B—H24A109.6
C21A—C22A—C17A116.7 (3)N23B—C24B—H24B109.6
C21A—C22A—Br2120.7 (3)C25B—C24B—H24B109.6
C17A—C22A—Br2122.6 (3)H24A—C24B—H24B108.1
C25A—C24A—N23A112.9 (4)C24B—C25B—C26B111.2 (4)
C25A—C24A—H24C109.0C24B—C25B—H25C109.4
N23A—C24A—H24C109.0C26B—C25B—H25C109.4
C25A—C24A—H24D109.0C24B—C25B—H25D109.4
N23A—C24A—H24D109.0C26B—C25B—H25D109.4
H24C—C24A—H24D107.8H25C—C25B—H25D108.0
C24A—C25A—C26A112.6 (5)C25B—C26B—C27B110.3 (5)
C24A—C25A—H25A109.1C25B—C26B—H26A109.6
C26A—C25A—H25A109.1C27B—C26B—H26A109.6
C24A—C25A—H25B109.1C25B—C26B—H26B109.6
C26A—C25A—H25B109.1C27B—C26B—H26B109.6
H25A—C25A—H25B107.8H26A—C26B—H26B108.1
C25A—C26A—C27A110.5 (4)C28B—C27B—C26B111.6 (4)
C25A—C26A—H26C109.6C28B—C27B—H27C109.3
C27A—C26A—H26C109.6C26B—C27B—H27C109.3
C25A—C26A—H26D109.6C28B—C27B—H27D109.3
C27A—C26A—H26D109.6C26B—C27B—H27D109.3
H26C—C26A—H26D108.1H27C—C27B—H27D108.0
C28A—C27A—C26A110.9 (4)N23B—C28B—C27B109.9 (4)
C28A—C27A—H27A109.5N23B—C28B—H28A109.7
C26A—C27A—H27A109.5C27B—C28B—H28A109.7
C28A—C27A—H27B109.5N23B—C28B—H28B109.7
C26A—C27A—H27B109.5C27B—C28B—H28B109.7
H27A—C27A—H27B108.0H28A—C28B—H28B108.2
N23A—C28A—C27A109.9 (4)C9B—N8B—S1B121.4 (3)
N23A—C28A—H28C109.7C9B—N8B—H8B116 (3)
C27A—C28A—H28C109.7S1B—N8B—H8B111 (3)
N23A—C28A—H28D109.7C17B—N18B—C19B117.3 (3)
C27A—C28A—H28D109.7C21B—N20B—C19B115.2 (3)
H28C—C28A—H28D108.2C19B—N23B—C28B122.7 (4)
C9A—N8A—S1A120.2 (2)C19B—N23B—C24B121.5 (3)
C9A—N8A—H8A119.9C28B—N23B—C24B113.7 (3)
S1A—N8A—H8A119.9C16B—O15B—C12B118.7 (5)
C17A—N18A—C19A118.0 (3)O2B—S1B—O1B120.6 (2)
C21A—N20A—C19A115.1 (3)O2B—S1B—N8B107.80 (19)
C19A—N23A—C24A123.3 (3)O1B—S1B—N8B105.81 (19)
C19A—N23A—C28A122.0 (3)O2B—S1B—C1B106.8 (2)
C24A—N23A—C28A114.7 (3)O1B—S1B—C1B107.7 (2)
O1A—S1A—O2A120.56 (19)N8B—S1B—C1B107.61 (18)
O1A—S1A—N8A107.91 (17)C17B—S2B—C14B100.68 (16)
C6A—C1A—C2A—C3A1.1 (6)C22A—C17A—S2A—C14A168.4 (3)
S1A—C1A—C2A—C3A175.5 (4)C13A—C14A—S2A—C17A72.9 (3)
C1A—C2A—C3A—C4A1.1 (8)C9A—C14A—S2A—C17A107.4 (3)
C2A—C3A—C4A—C5A0.2 (8)C6B—C1B—C2B—C3B2.0 (7)
C3A—C4A—C5A—C6A0.6 (8)S1B—C1B—C2B—C3B178.3 (4)
C2A—C1A—C6A—C5A0.2 (6)C1B—C2B—C3B—C4B1.0 (9)
S1A—C1A—C6A—C5A176.4 (3)C2B—C3B—C4B—C5B0.3 (11)
C4A—C5A—C6A—C1A0.6 (7)C3B—C4B—C5B—C6B0.5 (11)
C14A—C9A—C10A—C11A0.4 (6)C2B—C1B—C6B—C5B1.8 (9)
N8A—C9A—C10A—C11A179.1 (4)S1B—C1B—C6B—C5B178.4 (5)
C9A—C10A—C11A—C12A1.4 (6)C4B—C5B—C6B—C1B0.6 (11)
C10A—C11A—C12A—O15C178.5 (17)C14B—C9B—C10B—C11B1.3 (5)
C10A—C11A—C12A—C13A1.2 (7)N8B—C9B—C10B—C11B178.3 (3)
C10A—C11A—C12A—O15A177.8 (11)C9B—C10B—C11B—C12B0.8 (6)
O15C—C12A—O15A—C16A4 (5)C10B—C11B—C12B—C13B2.5 (6)
C11A—C12A—O15A—C16A176.4 (14)C10B—C11B—C12B—O15B177.5 (4)
C13A—C12A—O15A—C16A5 (3)C11B—C12B—C13B—C14B2.0 (6)
C11A—C12A—O15C—C16C2 (3)O15B—C12B—C13B—C14B178.0 (3)
C13A—C12A—O15C—C16C175.4 (18)C10B—C9B—C14B—C13B1.8 (5)
O15A—C12A—O15C—C16C12 (4)N8B—C9B—C14B—C13B177.8 (3)
O15C—C12A—C13A—C14A177.0 (14)C10B—C9B—C14B—S2B178.7 (3)
C11A—C12A—C13A—C14A0.8 (6)N8B—C9B—C14B—S2B1.7 (5)
O15A—C12A—C13A—C14A179.6 (13)C12B—C13B—C14B—C9B0.1 (5)
C12A—C13A—C14A—C9A2.6 (5)C12B—C13B—C14B—S2B179.6 (3)
C12A—C13A—C14A—S2A177.8 (3)N20B—C21B—C22B—C17B1.8 (5)
C10A—C9A—C14A—C13A2.4 (5)N20B—C21B—C22B—Br1B176.9 (3)
N8A—C9A—C14A—C13A177.1 (3)N18B—C17B—C22B—C21B1.3 (5)
C10A—C9A—C14A—S2A178.0 (3)S2B—C17B—C22B—C21B179.4 (3)
N8A—C9A—C14A—S2A2.5 (5)N18B—C17B—C22B—Br1B177.4 (3)
N20A—C21A—C22A—C17A2.7 (5)S2B—C17B—C22B—Br1B1.9 (4)
N20A—C21A—C22A—Br2179.0 (3)N23B—C24B—C25B—C26B56.1 (6)
N18A—C17A—C22A—C21A3.0 (5)C24B—C25B—C26B—C27B54.2 (7)
S2A—C17A—C22A—C21A177.3 (2)C25B—C26B—C27B—C28B53.4 (7)
N18A—C17A—C22A—Br2178.7 (2)C26B—C27B—C28B—N23B54.0 (6)
S2A—C17A—C22A—Br21.0 (4)C14B—C9B—N8B—S1B107.0 (4)
N23A—C24A—C25A—C26A51.0 (6)C10B—C9B—N8B—S1B73.5 (4)
C24A—C25A—C26A—C27A53.1 (7)C22B—C17B—N18B—C19B1.9 (5)
C25A—C26A—C27A—C28A55.4 (7)S2B—C17B—N18B—C19B177.5 (2)
C26A—C27A—C28A—N23A55.0 (6)N20B—C19B—N18B—C17B5.0 (5)
C14A—C9A—N8A—S1A98.8 (4)N23B—C19B—N18B—C17B177.5 (3)
C10A—C9A—N8A—S1A80.7 (4)C22B—C21B—N20B—C19B0.9 (5)
C22A—C17A—N18A—C19A0.2 (5)N18B—C19B—N20B—C21B4.5 (5)
S2A—C17A—N18A—C19A179.9 (3)N23B—C19B—N20B—C21B178.0 (3)
N23A—C19A—N18A—C17A176.7 (3)N20B—C19B—N23B—C28B12.8 (6)
N20A—C19A—N18A—C17A3.2 (5)N18B—C19B—N23B—C28B169.5 (3)
C22A—C21A—N20A—C19A0.3 (5)N20B—C19B—N23B—C24B175.6 (3)
N23A—C19A—N20A—C21A176.4 (3)N18B—C19B—N23B—C24B6.7 (6)
N18A—C19A—N20A—C21A3.5 (5)C27B—C28B—N23B—C19B106.9 (5)
N18A—C19A—N23A—C24A176.7 (4)C27B—C28B—N23B—C24B57.1 (5)
N20A—C19A—N23A—C24A3.3 (6)C25B—C24B—N23B—C19B105.7 (5)
N18A—C19A—N23A—C28A3.6 (6)C25B—C24B—N23B—C28B58.5 (5)
N20A—C19A—N23A—C28A176.3 (4)C11B—C12B—O15B—C16B14.2 (7)
C25A—C24A—N23A—C19A127.6 (5)C13B—C12B—O15B—C16B165.9 (5)
C25A—C24A—N23A—C28A52.1 (6)C9B—N8B—S1B—O2B55.9 (4)
C27A—C28A—N23A—C19A126.0 (4)C9B—N8B—S1B—O1B173.8 (3)
C27A—C28A—N23A—C24A53.7 (6)C9B—N8B—S1B—C1B58.9 (4)
C9A—N8A—S1A—O1A53.6 (3)C6B—C1B—S1B—O2B160.6 (4)
C9A—N8A—S1A—O2A176.0 (3)C2B—C1B—S1B—O2B19.7 (4)
C9A—N8A—S1A—C1A60.5 (3)C6B—C1B—S1B—O1B29.7 (5)
C6A—C1A—S1A—O1A151.9 (3)C2B—C1B—S1B—O1B150.5 (3)
C2A—C1A—S1A—O1A31.5 (4)C6B—C1B—S1B—N8B83.9 (4)
C6A—C1A—S1A—O2A20.3 (4)C2B—C1B—S1B—N8B95.9 (4)
C2A—C1A—S1A—O2A163.2 (3)N18B—C17B—S2B—C14B4.3 (3)
C6A—C1A—S1A—N8A93.2 (3)C22B—C17B—S2B—C14B175.1 (3)
C2A—C1A—S1A—N8A83.3 (3)C9B—C14B—S2B—C17B109.7 (3)
N18A—C17A—S2A—C14A11.8 (3)C13B—C14B—S2B—C17B69.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8A—H8A···N20Ai0.862.152.940 (4)152
N8B—H8B···N20Bii0.78 (4)2.28 (4)2.974 (5)149 (4)
C11A—H11A···O1Aiii0.932.473.372 (5)164
C10B—H10B···O2Biv0.932.603.278 (6)131
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formulaC22H23BrN4O3S2
Mr535.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)13.6081 (6), 14.5662 (5), 14.7502 (7)
α, β, γ (°)74.439 (4), 69.077 (4), 62.581 (4)
V3)2405.10 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.920, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18681, 8017, 5364
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.02
No. of reflections8017
No. of parameters601
No. of restraints35
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8A—H8A···N20Ai0.862.152.940 (4)152
N8B—H8B···N20Bii0.78 (4)2.28 (4)2.974 (5)149 (4)
C11A—H11A···O1Aiii0.932.473.372 (5)164
C10B—H10B···O2Biv0.932.603.278 (6)131
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y1, z+2.
 

Acknowledgements

MK acknowledges the help of Bahubali College of Engin­eering, Shravanabelagola, for his research work. RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAkkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, M., Mallesha, L., Sridhar, M. A., Kapoor, K., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o3061.  CSD CrossRef IUCr Journals Google Scholar
First citationLaurence, M. (2009). East Asia. Sci. Tech. Soc. 3, 257–285.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3209-o3210
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds