organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Oxo-3H-benzo[f]chromen-1-yl)methyl piperidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 11 October 2012; accepted 13 October 2012; online 20 October 2012)

In the title compound, C20H19N O2S2,the 3Hbenzo-chromene ring system is nearly planar, with a maximum deviation of 0.036 (2) Å, and the piperidine ring adopts a chair conformation: the bond-angle sum for its N atom is 358.7°. The dihedral angle between the 3H-benzo[f]chromene ring and the piperidine ring is 89.07 (8)°. In the crystal, C—H⋯O hydrogen bonds lead to [010] C(6) chains and weak aromatic ππ inter­actions between the fused pyran ring and fused benzene ring of benzochromene [centroid–centroid distance = 3.652 (1) Å] are also observed.

Related literature

For a related structure, background to coumarins and details of the synthesis of the title compound, see: Kumar et al. (2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO2S2

  • Mr = 369.48

  • Monoclinic, P 21 /c

  • a = 12.4508 (3) Å

  • b = 10.1924 (3) Å

  • c = 14.0188 (4) Å

  • β = 100.953 (2)°

  • V = 1746.63 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.770, Tmax = 1.000

  • 12000 measured reflections

  • 2993 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.06

  • 2993 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.56 3.308 (2) 138
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of coumarins (or 2H-chromen-2-ones) with possible biological activities (Kumar et al., 2012), we now describe the structure of the title compound, (I).

The asymmetric unit of (I) is shown in Fig. 1. The 3Hbenzo- chromene ring system (O3/C6–C18) is essentially planar, with a maximum deviation of 0.036 (2) Å for atom C15 and the piperidine ring adopts a chair conformation. The dihedral angle between the 3Hbenzo- chromene (O3/C6–C18) ring and the piperidine (N5/C21–C25) ring is 81.07 (8)°.

In the crystal structure, (Fig. 2), C11—H11···O4 hydrogen bonds and ππ interactions between the fused pyran ring (O3/C6–C10) and fused benzene(C13–C18) ring of benzo-chromene [shortest centroid–centroid distance = 3.652 (1) Å] are observed.

Related literature top

For a related structure, background to coumarins and details of the synthesis of the title compound, see: Kumar et al. (2012).

Experimental top

This compound was prepared according to the reported method (Kumar et al., 2012). Colourless needles of the title compound were grown from a mixed solution of EtOH / CHCl3(V/V = 1/1) by slow evaporation at room temperature. Yield= 85%, m.p. 455 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) foraromatic and methylene H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
(3-Oxo-3H-benzo[f]chromen-1-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C20H19NO2S2F(000) = 776
Mr = 369.48Dx = 1.405 Mg m3
Monoclinic, P21/cMelting point: 455 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.4508 (3) ÅCell parameters from 2993 reflections
b = 10.1924 (3) Åθ = 1.7–24.9°
c = 14.0188 (4) ŵ = 0.32 mm1
β = 100.953 (2)°T = 296 K
V = 1746.63 (8) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2993 independent reflections
Radiation source: fine-focus sealed tube2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 24.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.770, Tmax = 1.000k = 1210
12000 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1604P]
where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H19NO2S2V = 1746.63 (8) Å3
Mr = 369.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4508 (3) ŵ = 0.32 mm1
b = 10.1924 (3) ÅT = 296 K
c = 14.0188 (4) Å0.24 × 0.20 × 0.12 mm
β = 100.953 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2993 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2380 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.029
12000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2993 reflectionsΔρmin = 0.14 e Å3
226 parameters
Special details top

Experimental. IR (KBr): 655 cm-1(C—S), 1235 cm-1(C=S), 1007 cm-1(C—O), 877 cm-1(C—N),1137 cm-1(C—O—C), 1720 cm-1(C=O). GCMS: m/e: 369. 1H NMR (400 MHz, CDCl3, \?, p.p.m.): 1.74(s, 6H, Piperidine-CH2), 3.90(s, 2H, Piperidine-CH2), 4.32(s, 2H Piperidine-CH2), 4.85(s, 2H, Methylene-CH2), 6.67(s,1H, Ar—H), 7.64(s, 2H, Ar—H), 7.65(s, 2H, Ar—H), 7.88(m,1H, Ar—H), 8.56(m,1H, Ar—H). Elemental analysis for C20H19NO2S2: C, 64.93; H, 5.11; N, 3.68.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27800 (4)0.69065 (5)0.37375 (3)0.05055 (15)
S20.48792 (4)0.78586 (6)0.49758 (3)0.06250 (17)
O30.09397 (10)0.81457 (13)0.67448 (8)0.0520 (3)
O40.12823 (11)0.60307 (14)0.68426 (9)0.0669 (4)
N50.46698 (11)0.57768 (15)0.38149 (9)0.0502 (4)
C60.13705 (14)0.7038 (2)0.64137 (12)0.0502 (5)
C70.18621 (14)0.72190 (18)0.55883 (12)0.0469 (4)
H70.21600.64870.53400.056*
C80.19268 (12)0.83761 (17)0.51406 (11)0.0412 (4)
C90.15023 (12)0.95573 (17)0.55367 (11)0.0410 (4)
C100.10299 (13)0.93577 (18)0.63419 (11)0.0448 (4)
C110.05735 (16)1.0358 (2)0.68248 (13)0.0619 (6)
H110.02631.01680.73620.074*
C120.05917 (17)1.1592 (2)0.64997 (15)0.0691 (6)
H120.02971.22580.68240.083*
C130.10462 (15)1.19123 (19)0.56782 (14)0.0574 (5)
C140.10225 (19)1.3216 (2)0.53383 (19)0.0753 (7)
H140.07151.38650.56680.090*
C150.14331 (19)1.3548 (2)0.4550 (2)0.0779 (7)
H150.14041.44120.43330.093*
C160.18980 (18)1.2583 (2)0.40712 (19)0.0778 (7)
H160.21851.28060.35270.093*
C170.19479 (16)1.1313 (2)0.43759 (16)0.0662 (6)
H170.22791.06950.40390.079*
C180.15154 (12)1.09039 (18)0.51844 (12)0.0473 (4)
C190.24178 (14)0.84276 (18)0.42314 (12)0.0491 (4)
H19A0.30700.89680.43710.059*
H19B0.19010.88730.37310.059*
C200.42141 (14)0.67877 (17)0.41861 (11)0.0438 (4)
C210.41030 (16)0.48928 (19)0.30567 (13)0.0568 (5)
H21A0.33180.50020.29890.068*
H21B0.42820.39900.32390.068*
C220.44414 (17)0.5192 (2)0.21075 (13)0.0663 (6)
H22A0.41930.60650.18940.080*
H22B0.40980.45710.16190.080*
C230.56693 (18)0.5117 (2)0.22032 (15)0.0780 (7)
H23A0.58710.54210.16060.094*
H23B0.59030.42110.23030.094*
C240.62477 (16)0.5941 (2)0.30422 (15)0.0700 (6)
H24A0.70300.57920.31310.084*
H24B0.61120.68620.28920.084*
C250.58614 (14)0.5613 (2)0.39697 (13)0.0630 (6)
H25A0.60550.47150.41580.076*
H25B0.62120.61890.44880.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (3)0.0616 (3)0.0487 (3)0.0059 (2)0.01482 (19)0.0062 (2)
S20.0606 (3)0.0702 (4)0.0536 (3)0.0040 (3)0.0032 (2)0.0135 (2)
O30.0525 (7)0.0653 (9)0.0419 (6)0.0039 (6)0.0182 (5)0.0000 (6)
O40.0801 (9)0.0660 (10)0.0613 (8)0.0012 (8)0.0303 (7)0.0170 (8)
N50.0491 (8)0.0593 (10)0.0437 (7)0.0116 (7)0.0126 (6)0.0042 (7)
C60.0484 (10)0.0607 (14)0.0433 (9)0.0027 (9)0.0130 (8)0.0041 (9)
C70.0466 (10)0.0502 (12)0.0478 (9)0.0071 (8)0.0192 (8)0.0002 (8)
C80.0324 (8)0.0510 (12)0.0416 (8)0.0034 (8)0.0108 (7)0.0005 (8)
C90.0302 (8)0.0487 (11)0.0440 (9)0.0018 (7)0.0069 (7)0.0048 (8)
C100.0384 (9)0.0544 (12)0.0411 (9)0.0026 (8)0.0062 (7)0.0051 (8)
C110.0632 (13)0.0766 (17)0.0473 (10)0.0106 (11)0.0143 (9)0.0165 (10)
C120.0717 (14)0.0691 (17)0.0649 (13)0.0160 (12)0.0090 (11)0.0274 (12)
C130.0477 (11)0.0527 (13)0.0657 (12)0.0018 (9)0.0043 (9)0.0156 (10)
C140.0724 (15)0.0483 (14)0.0958 (17)0.0052 (11)0.0076 (13)0.0186 (12)
C150.0727 (15)0.0456 (14)0.1077 (18)0.0077 (11)0.0022 (13)0.0075 (13)
C160.0667 (14)0.0626 (16)0.1065 (17)0.0027 (12)0.0223 (13)0.0195 (13)
C170.0600 (12)0.0517 (14)0.0930 (15)0.0079 (10)0.0298 (11)0.0149 (11)
C180.0316 (9)0.0487 (12)0.0594 (10)0.0001 (8)0.0033 (7)0.0035 (9)
C190.0467 (10)0.0546 (12)0.0507 (9)0.0123 (8)0.0209 (8)0.0073 (8)
C200.0484 (10)0.0524 (12)0.0334 (8)0.0075 (8)0.0151 (7)0.0053 (7)
C210.0619 (12)0.0504 (12)0.0602 (11)0.0073 (9)0.0172 (9)0.0064 (9)
C220.0743 (14)0.0786 (16)0.0473 (10)0.0168 (11)0.0150 (9)0.0072 (10)
C230.0788 (15)0.106 (2)0.0560 (12)0.0296 (13)0.0302 (11)0.0052 (12)
C240.0554 (12)0.0809 (17)0.0787 (14)0.0189 (11)0.0252 (10)0.0102 (12)
C250.0504 (11)0.0821 (16)0.0569 (11)0.0239 (10)0.0112 (9)0.0007 (10)
Geometric parameters (Å, º) top
S1—C201.7809 (17)C14—H140.9300
S1—C191.7904 (18)C15—C161.379 (3)
S2—C201.6597 (18)C15—H150.9300
O3—C61.368 (2)C16—C171.361 (3)
O3—C101.372 (2)C16—H160.9300
O4—C61.205 (2)C17—C181.407 (3)
N5—C201.329 (2)C17—H170.9300
N5—C251.468 (2)C19—H19A0.9700
N5—C211.468 (2)C19—H19B0.9700
C6—C71.420 (2)C21—C221.501 (3)
C7—C81.346 (2)C21—H21A0.9700
C7—H70.9300C21—H21B0.9700
C8—C91.466 (2)C22—C231.511 (3)
C8—C191.516 (2)C22—H22A0.9700
C9—C101.383 (2)C22—H22B0.9700
C9—C181.460 (2)C23—C241.512 (3)
C10—C111.403 (2)C23—H23A0.9700
C11—C121.339 (3)C23—H23B0.9700
C11—H110.9300C24—C251.507 (3)
C12—C131.414 (3)C24—H24A0.9700
C12—H120.9300C24—H24B0.9700
C13—C141.410 (3)C25—H25A0.9700
C13—C181.425 (2)C25—H25B0.9700
C14—C151.346 (3)
C20—S1—C19103.40 (8)C17—C18—C9125.56 (17)
C6—O3—C10122.36 (13)C13—C18—C9118.80 (16)
C20—N5—C25121.67 (16)C8—C19—S1117.83 (12)
C20—N5—C21125.25 (15)C8—C19—H19A107.8
C25—N5—C21111.76 (14)S1—C19—H19A107.8
O4—C6—O3117.06 (16)C8—C19—H19B107.8
O4—C6—C7127.68 (18)S1—C19—H19B107.8
O3—C6—C7115.26 (16)H19A—C19—H19B107.2
C8—C7—C6124.55 (16)N5—C20—S2125.10 (13)
C8—C7—H7117.7N5—C20—S1112.86 (13)
C6—C7—H7117.7S2—C20—S1122.04 (10)
C7—C8—C9119.04 (14)N5—C21—C22109.86 (16)
C7—C8—C19119.48 (15)N5—C21—H21A109.7
C9—C8—C19121.48 (14)C22—C21—H21A109.7
C10—C9—C18116.62 (15)N5—C21—H21B109.7
C10—C9—C8115.34 (15)C22—C21—H21B109.7
C18—C9—C8128.03 (14)H21A—C21—H21B108.2
O3—C10—C9123.31 (15)C21—C22—C23111.14 (16)
O3—C10—C11112.56 (15)C21—C22—H22A109.4
C9—C10—C11124.12 (18)C23—C22—H22A109.4
C12—C11—C10118.93 (19)C21—C22—H22B109.4
C12—C11—H11120.5C23—C22—H22B109.4
C10—C11—H11120.5H22A—C22—H22B108.0
C11—C12—C13121.94 (18)C22—C23—C24111.43 (16)
C11—C12—H12119.0C22—C23—H23A109.3
C13—C12—H12119.0C24—C23—H23A109.3
C14—C13—C12120.4 (2)C22—C23—H23B109.3
C14—C13—C18120.0 (2)C24—C23—H23B109.3
C12—C13—C18119.57 (18)H23A—C23—H23B108.0
C15—C14—C13121.8 (2)C25—C24—C23111.42 (19)
C15—C14—H14119.1C25—C24—H24A109.3
C13—C14—H14119.1C23—C24—H24A109.3
C14—C15—C16118.7 (2)C25—C24—H24B109.3
C14—C15—H15120.6C23—C24—H24B109.3
C16—C15—H15120.6H24A—C24—H24B108.0
C17—C16—C15121.6 (2)N5—C25—C24109.06 (15)
C17—C16—H16119.2N5—C25—H25A109.9
C15—C16—H16119.2C24—C25—H25A109.9
C16—C17—C18122.2 (2)N5—C25—H25B109.9
C16—C17—H17118.9C24—C25—H25B109.9
C18—C17—H17118.9H25A—C25—H25B108.3
C17—C18—C13115.63 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.563.308 (2)138
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H19NO2S2
Mr369.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4508 (3), 10.1924 (3), 14.0188 (4)
β (°) 100.953 (2)
V3)1746.63 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12000, 2993, 2380
Rint0.029
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.06
No. of reflections2993
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.563.308 (2)138
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection and the GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds