organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­methyl­sulfinyl-2-nitro­benzene

aUnité de Recherche de Chimie de l'Environnement et Moléculaire, Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 13 October 2012; accepted 20 October 2012; online 27 October 2012)

In the title compound, C7H6ClNO3S, the nitro group forms a dihedral angle of 2.7 (4)° with the benzene ring. The bond-angle sum at the S atom is 303.7°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming layers lying parallel to (-101).

Related literature

For the biological and pharmacological activity of sulfoxides, see, for example: Melzig et al. (2009[Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536-3538.]); Huang et al. (2010[Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142-153.]). For related structures, see: Yan (2010[Yan, Z. (2010). Acta Cryst. E66, o3311.]); Kobayashi et al. (2003[Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035-3045.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO3S

  • Mr = 219.65

  • Monoclinic, P 21 /c

  • a = 12.2394 (5) Å

  • b = 5.5009 (2) Å

  • c = 14.5537 (11) Å

  • β = 116.631 (4)°

  • V = 875.92 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 180 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.900, Tmax = 1.000

  • 10209 measured reflections

  • 2172 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.05

  • 2172 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O12i 0.95 2.44 3.384 (2) 173
C7—H7A⋯O1ii 0.99 2.36 3.2478 (18) 149
C7—H7B⋯O1iii 0.99 2.50 3.332 (2) 142
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The use of sulfoxides as pharmaceutical has shown promise in recent years (e.g. Melzig et al., 2009 and Huang et al. 2010). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes we have synthesized and determined the crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the crystal structure of the title compound, there are two pairs of molecules enantiomers in the unit cell. In each molecule, the nitro group forms a dihedral angle of 2.7 (4)° with the phenyl ring very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.31°) (Kobayashi et al., 2003). The crystal packing is stabilized by weak C—H···O hydrogen bonds (Fig. 2) forming non-interacting layers parallel to (-101) planes.

Related literature top

For the biological and pharmacological activity of sulfoxides, see, for example: Melzig et al. (2009); Huang et al. (2010). For related structures, see: Yan (2010); Kobayashi et al. (2003).

Experimental top

O-chloronitrobenzene (1.60 g, 10 mmol) and thioacetic acid (0.80 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After few days, orange bocks were recovered, as the solvent slowly evaporated.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å and Cmethylene—Hmethylene = 0.99 Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/Cmethylene).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Drawing of asymetric unit of, (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Diagram packing of (I) viwed via b axis showing alterning layers parallel to (-101) planes.
1-Chloromethylsulfinyl-2-nitrobenzene top
Crystal data top
C7H6ClNO3SF(000) = 448
Mr = 219.65Dx = 1.666 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6334 reflections
a = 12.2394 (5) Åθ = 3.3–29.2°
b = 5.5009 (2) ŵ = 0.65 mm1
c = 14.5537 (11) ÅT = 180 K
β = 116.631 (4)°Block, orange
V = 875.92 (9) Å30.23 × 0.20 × 0.18 mm
Z = 4
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2172 independent reflections
Graphite monochromator1799 reflections with I > 2σ(I)
Detector resolution: 16.1978 pixels mm-1Rint = 0.024
ω scansθmax = 29.2°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1615
Tmin = 0.900, Tmax = 1.000k = 77
10209 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1537P]
where P = (Fo2 + 2Fc2)/3
2172 reflections(Δ/σ)max = 0.002
118 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H6ClNO3SV = 875.92 (9) Å3
Mr = 219.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2394 (5) ŵ = 0.65 mm1
b = 5.5009 (2) ÅT = 180 K
c = 14.5537 (11) Å0.23 × 0.20 × 0.18 mm
β = 116.631 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2172 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1799 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 1.000Rint = 0.024
10209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
2172 reflectionsΔρmin = 0.31 e Å3
118 parameters
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06418 (4)0.73513 (8)0.59930 (3)0.03956 (13)
S10.81710 (3)0.81595 (6)0.57165 (3)0.02049 (10)
O10.85724 (9)1.04534 (18)0.63222 (8)0.0286 (2)
O110.71137 (9)0.42553 (19)0.45234 (7)0.0271 (2)
O120.58622 (10)0.15605 (19)0.45752 (8)0.0312 (3)
N10.65255 (10)0.3330 (2)0.49290 (9)0.0204 (2)
C10.73727 (13)0.7493 (3)0.71720 (11)0.0256 (3)
H10.78290.89340.74530.031*
C20.67575 (14)0.6385 (3)0.76600 (11)0.0298 (3)
H20.68020.70650.82760.036*
C30.60801 (13)0.4300 (3)0.72587 (11)0.0290 (3)
H30.56720.3540.76040.035*
C40.59970 (12)0.3319 (3)0.63530 (11)0.0238 (3)
H40.55180.19080.60630.029*
C50.66235 (12)0.4428 (2)0.58775 (10)0.0186 (3)
C60.73266 (11)0.6514 (2)0.62775 (10)0.0188 (3)
C70.94884 (12)0.6136 (3)0.62770 (11)0.0231 (3)
H7A0.97860.60270.7030.028*
H7B0.9260.44840.59820.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0267 (2)0.0429 (3)0.0519 (3)0.00401 (16)0.02018 (18)0.00852 (19)
S10.02044 (17)0.01600 (17)0.02053 (17)0.00089 (12)0.00517 (13)0.00213 (13)
O10.0302 (5)0.0156 (5)0.0326 (5)0.0035 (4)0.0074 (5)0.0018 (4)
O110.0317 (5)0.0286 (6)0.0247 (5)0.0052 (4)0.0161 (4)0.0025 (4)
O120.0313 (6)0.0277 (6)0.0311 (6)0.0120 (4)0.0109 (5)0.0111 (5)
N10.0192 (5)0.0183 (6)0.0205 (5)0.0001 (4)0.0061 (5)0.0008 (4)
C10.0237 (7)0.0241 (7)0.0235 (7)0.0014 (6)0.0057 (6)0.0049 (6)
C20.0300 (8)0.0382 (9)0.0207 (7)0.0071 (6)0.0110 (6)0.0023 (6)
C30.0263 (7)0.0370 (9)0.0270 (7)0.0044 (6)0.0148 (6)0.0079 (7)
C40.0210 (7)0.0228 (7)0.0271 (7)0.0004 (5)0.0103 (6)0.0032 (6)
C50.0171 (6)0.0184 (6)0.0178 (6)0.0033 (5)0.0054 (5)0.0006 (5)
C60.0177 (6)0.0171 (6)0.0192 (6)0.0033 (5)0.0061 (5)0.0022 (5)
C70.0191 (6)0.0206 (6)0.0279 (7)0.0001 (5)0.0091 (5)0.0043 (6)
Geometric parameters (Å, º) top
Cl1—C71.7703 (14)C2—C31.382 (2)
S1—O11.4908 (10)C2—H20.95
S1—C61.8196 (14)C3—C41.385 (2)
S1—C71.8236 (14)C3—H30.95
O11—N11.2276 (15)C4—C51.3837 (19)
O12—N11.2234 (15)C4—H40.95
N1—C51.4618 (17)C5—C61.3953 (18)
C1—C21.386 (2)C7—H7A0.99
C1—C61.3865 (19)C7—H7B0.99
C1—H10.95
O1—S1—C6104.99 (6)C5—C4—C3118.91 (13)
O1—S1—C7105.15 (6)C5—C4—H4120.5
C6—S1—C793.53 (6)C3—C4—H4120.5
O12—N1—O11123.31 (12)C4—C5—C6122.02 (12)
O12—N1—C5118.97 (11)C4—C5—N1117.44 (12)
O11—N1—C5117.72 (11)C6—C5—N1120.53 (12)
C2—C1—C6120.49 (14)C1—C6—C5117.97 (13)
C2—C1—H1119.8C1—C6—S1115.84 (11)
C6—C1—H1119.8C5—C6—S1126.16 (10)
C3—C2—C1120.60 (13)Cl1—C7—S1107.62 (7)
C3—C2—H2119.7Cl1—C7—H7A110.2
C1—C2—H2119.7S1—C7—H7A110.2
C2—C3—C4119.97 (13)Cl1—C7—H7B110.2
C2—C3—H3120S1—C7—H7B110.2
C4—C3—H3120H7A—C7—H7B108.5
C6—C1—C2—C30.6 (2)C4—C5—C6—C10.9 (2)
C1—C2—C3—C40.9 (2)N1—C5—C6—C1179.16 (12)
C2—C3—C4—C51.5 (2)C4—C5—C6—S1179.03 (10)
C3—C4—C5—C60.6 (2)N1—C5—C6—S11.02 (18)
C3—C4—C5—N1179.38 (12)O1—S1—C6—C18.09 (12)
O12—N1—C5—C43.01 (18)C7—S1—C6—C198.62 (11)
O11—N1—C5—C4177.48 (12)O1—S1—C6—C5170.09 (11)
O12—N1—C5—C6177.04 (12)C7—S1—C6—C583.20 (12)
O11—N1—C5—C62.47 (18)O1—S1—C7—Cl167.86 (9)
C2—C1—C6—C51.4 (2)C6—S1—C7—Cl1174.44 (8)
C2—C1—C6—S1179.78 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O12i0.952.443.384 (2)173
C7—H7A···O1ii0.992.363.2478 (18)149
C7—H7B···O1iii0.992.503.332 (2)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H6ClNO3S
Mr219.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)12.2394 (5), 5.5009 (2), 14.5537 (11)
β (°) 116.631 (4)
V3)875.92 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.900, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10209, 2172, 1799
Rint0.024
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.05
No. of reflections2172
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O12i0.952.443.384 (2)173
C7—H7A···O1ii0.992.363.2478 (18)149
C7—H7B···O1iii0.992.503.332 (2)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique and ANDRU (l'Agence Nationale pour le Développement de la Recherche Universitaire) for financial support via the PNR programm.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142–153.  Web of Science CrossRef Google Scholar
First citationKobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMelzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Z. (2010). Acta Cryst. E66, o3311.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds