organic compounds
1-Chloromethylsulfinyl-2-nitrobenzene
aUnité de Recherche de Chimie de l'Environnement et Moléculaire, Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C7H6ClNO3S, the nitro group forms a dihedral angle of 2.7 (4)° with the benzene ring. The bond-angle sum at the S atom is 303.7°. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming layers lying parallel to (-101).
Related literature
For the biological and pharmacological activity of et al. (2009); Huang et al. (2010). For related structures, see: Yan (2010); Kobayashi et al. (2003).
see, for example: MelzigExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812043553/hb6974sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043553/hb6974Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812043553/hb6974Isup3.cml
O-chloronitrobenzene (1.60 g, 10 mmol) and thioacetic acid (0.80 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After few days, orange bocks were recovered, as the solvent slowly evaporated.
All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference
However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å and Cmethylene—Hmethylene = 0.99 Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/Cmethylene).Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C7H6ClNO3S | F(000) = 448 |
Mr = 219.65 | Dx = 1.666 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6334 reflections |
a = 12.2394 (5) Å | θ = 3.3–29.2° |
b = 5.5009 (2) Å | µ = 0.65 mm−1 |
c = 14.5537 (11) Å | T = 180 K |
β = 116.631 (4)° | Block, orange |
V = 875.92 (9) Å3 | 0.23 × 0.20 × 0.18 mm |
Z = 4 |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 2172 independent reflections |
Graphite monochromator | 1799 reflections with I > 2σ(I) |
Detector resolution: 16.1978 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 29.2°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −16→15 |
Tmin = 0.900, Tmax = 1.000 | k = −7→7 |
10209 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1537P] where P = (Fo2 + 2Fc2)/3 |
2172 reflections | (Δ/σ)max = 0.002 |
118 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C7H6ClNO3S | V = 875.92 (9) Å3 |
Mr = 219.65 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.2394 (5) Å | µ = 0.65 mm−1 |
b = 5.5009 (2) Å | T = 180 K |
c = 14.5537 (11) Å | 0.23 × 0.20 × 0.18 mm |
β = 116.631 (4)° |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 2172 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1799 reflections with I > 2σ(I) |
Tmin = 0.900, Tmax = 1.000 | Rint = 0.024 |
10209 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.35 e Å−3 |
2172 reflections | Δρmin = −0.31 e Å−3 |
118 parameters |
Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2011) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.06418 (4) | 0.73513 (8) | 0.59930 (3) | 0.03956 (13) | |
S1 | 0.81710 (3) | 0.81595 (6) | 0.57165 (3) | 0.02049 (10) | |
O1 | 0.85724 (9) | 1.04534 (18) | 0.63222 (8) | 0.0286 (2) | |
O11 | 0.71137 (9) | 0.42553 (19) | 0.45234 (7) | 0.0271 (2) | |
O12 | 0.58622 (10) | 0.15605 (19) | 0.45752 (8) | 0.0312 (3) | |
N1 | 0.65255 (10) | 0.3330 (2) | 0.49290 (9) | 0.0204 (2) | |
C1 | 0.73727 (13) | 0.7493 (3) | 0.71720 (11) | 0.0256 (3) | |
H1 | 0.7829 | 0.8934 | 0.7453 | 0.031* | |
C2 | 0.67575 (14) | 0.6385 (3) | 0.76600 (11) | 0.0298 (3) | |
H2 | 0.6802 | 0.7065 | 0.8276 | 0.036* | |
C3 | 0.60801 (13) | 0.4300 (3) | 0.72587 (11) | 0.0290 (3) | |
H3 | 0.5672 | 0.354 | 0.7604 | 0.035* | |
C4 | 0.59970 (12) | 0.3319 (3) | 0.63530 (11) | 0.0238 (3) | |
H4 | 0.5518 | 0.1908 | 0.6063 | 0.029* | |
C5 | 0.66235 (12) | 0.4428 (2) | 0.58775 (10) | 0.0186 (3) | |
C6 | 0.73266 (11) | 0.6514 (2) | 0.62775 (10) | 0.0188 (3) | |
C7 | 0.94884 (12) | 0.6136 (3) | 0.62770 (11) | 0.0231 (3) | |
H7A | 0.9786 | 0.6027 | 0.703 | 0.028* | |
H7B | 0.926 | 0.4484 | 0.5982 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0267 (2) | 0.0429 (3) | 0.0519 (3) | −0.00401 (16) | 0.02018 (18) | 0.00852 (19) |
S1 | 0.02044 (17) | 0.01600 (17) | 0.02053 (17) | −0.00089 (12) | 0.00517 (13) | 0.00213 (13) |
O1 | 0.0302 (5) | 0.0156 (5) | 0.0326 (5) | −0.0035 (4) | 0.0074 (5) | −0.0018 (4) |
O11 | 0.0317 (5) | 0.0286 (6) | 0.0247 (5) | −0.0052 (4) | 0.0161 (4) | −0.0025 (4) |
O12 | 0.0313 (6) | 0.0277 (6) | 0.0311 (6) | −0.0120 (4) | 0.0109 (5) | −0.0111 (5) |
N1 | 0.0192 (5) | 0.0183 (6) | 0.0205 (5) | 0.0001 (4) | 0.0061 (5) | −0.0008 (4) |
C1 | 0.0237 (7) | 0.0241 (7) | 0.0235 (7) | 0.0014 (6) | 0.0057 (6) | −0.0049 (6) |
C2 | 0.0300 (8) | 0.0382 (9) | 0.0207 (7) | 0.0071 (6) | 0.0110 (6) | −0.0023 (6) |
C3 | 0.0263 (7) | 0.0370 (9) | 0.0270 (7) | 0.0044 (6) | 0.0148 (6) | 0.0079 (7) |
C4 | 0.0210 (7) | 0.0228 (7) | 0.0271 (7) | 0.0004 (5) | 0.0103 (6) | 0.0032 (6) |
C5 | 0.0171 (6) | 0.0184 (6) | 0.0178 (6) | 0.0033 (5) | 0.0054 (5) | 0.0006 (5) |
C6 | 0.0177 (6) | 0.0171 (6) | 0.0192 (6) | 0.0033 (5) | 0.0061 (5) | 0.0022 (5) |
C7 | 0.0191 (6) | 0.0206 (6) | 0.0279 (7) | 0.0001 (5) | 0.0091 (5) | 0.0043 (6) |
Cl1—C7 | 1.7703 (14) | C2—C3 | 1.382 (2) |
S1—O1 | 1.4908 (10) | C2—H2 | 0.95 |
S1—C6 | 1.8196 (14) | C3—C4 | 1.385 (2) |
S1—C7 | 1.8236 (14) | C3—H3 | 0.95 |
O11—N1 | 1.2276 (15) | C4—C5 | 1.3837 (19) |
O12—N1 | 1.2234 (15) | C4—H4 | 0.95 |
N1—C5 | 1.4618 (17) | C5—C6 | 1.3953 (18) |
C1—C2 | 1.386 (2) | C7—H7A | 0.99 |
C1—C6 | 1.3865 (19) | C7—H7B | 0.99 |
C1—H1 | 0.95 | ||
O1—S1—C6 | 104.99 (6) | C5—C4—C3 | 118.91 (13) |
O1—S1—C7 | 105.15 (6) | C5—C4—H4 | 120.5 |
C6—S1—C7 | 93.53 (6) | C3—C4—H4 | 120.5 |
O12—N1—O11 | 123.31 (12) | C4—C5—C6 | 122.02 (12) |
O12—N1—C5 | 118.97 (11) | C4—C5—N1 | 117.44 (12) |
O11—N1—C5 | 117.72 (11) | C6—C5—N1 | 120.53 (12) |
C2—C1—C6 | 120.49 (14) | C1—C6—C5 | 117.97 (13) |
C2—C1—H1 | 119.8 | C1—C6—S1 | 115.84 (11) |
C6—C1—H1 | 119.8 | C5—C6—S1 | 126.16 (10) |
C3—C2—C1 | 120.60 (13) | Cl1—C7—S1 | 107.62 (7) |
C3—C2—H2 | 119.7 | Cl1—C7—H7A | 110.2 |
C1—C2—H2 | 119.7 | S1—C7—H7A | 110.2 |
C2—C3—C4 | 119.97 (13) | Cl1—C7—H7B | 110.2 |
C2—C3—H3 | 120 | S1—C7—H7B | 110.2 |
C4—C3—H3 | 120 | H7A—C7—H7B | 108.5 |
C6—C1—C2—C3 | −0.6 (2) | C4—C5—C6—C1 | −0.9 (2) |
C1—C2—C3—C4 | −0.9 (2) | N1—C5—C6—C1 | 179.16 (12) |
C2—C3—C4—C5 | 1.5 (2) | C4—C5—C6—S1 | −179.03 (10) |
C3—C4—C5—C6 | −0.6 (2) | N1—C5—C6—S1 | 1.02 (18) |
C3—C4—C5—N1 | 179.38 (12) | O1—S1—C6—C1 | −8.09 (12) |
O12—N1—C5—C4 | 3.01 (18) | C7—S1—C6—C1 | 98.62 (11) |
O11—N1—C5—C4 | −177.48 (12) | O1—S1—C6—C5 | 170.09 (11) |
O12—N1—C5—C6 | −177.04 (12) | C7—S1—C6—C5 | −83.20 (12) |
O11—N1—C5—C6 | 2.47 (18) | O1—S1—C7—Cl1 | −67.86 (9) |
C2—C1—C6—C5 | 1.4 (2) | C6—S1—C7—Cl1 | −174.44 (8) |
C2—C1—C6—S1 | 179.78 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O12i | 0.95 | 2.44 | 3.384 (2) | 173 |
C7—H7A···O1ii | 0.99 | 2.36 | 3.2478 (18) | 149 |
C7—H7B···O1iii | 0.99 | 2.50 | 3.332 (2) | 142 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C7H6ClNO3S |
Mr | 219.65 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 180 |
a, b, c (Å) | 12.2394 (5), 5.5009 (2), 14.5537 (11) |
β (°) | 116.631 (4) |
V (Å3) | 875.92 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.23 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini ultra) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.900, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10209, 2172, 1799 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.071, 1.05 |
No. of reflections | 2172 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.31 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O12i | 0.95 | 2.44 | 3.384 (2) | 173 |
C7—H7A···O1ii | 0.99 | 2.36 | 3.2478 (18) | 149 |
C7—H7B···O1iii | 0.99 | 2.50 | 3.332 (2) | 142 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y−1, z. |
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique and ANDRU (l'Agence Nationale pour le Développement de la Recherche Universitaire) for financial support via the PNR programm.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142–153. Web of Science CrossRef Google Scholar
Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045. Web of Science CSD CrossRef PubMed CAS Google Scholar
Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, Z. (2010). Acta Cryst. E66, o3311. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The use of sulfoxides as pharmaceutical has shown promise in recent years (e.g. Melzig et al., 2009 and Huang et al. 2010). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes we have synthesized and determined the crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the crystal structure of the title compound, there are two pairs of molecules enantiomers in the unit cell. In each molecule, the nitro group forms a dihedral angle of 2.7 (4)° with the phenyl ring very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.31°) (Kobayashi et al., 2003). The crystal packing is stabilized by weak C—H···O hydrogen bonds (Fig. 2) forming non-interacting layers parallel to (-101) planes.