organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-(4-fluoro­phenyl­sulfon­yl)-2,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 October 2012; accepted 21 October 2012; online 27 October 2012)

In the title compound, C16H12BrFO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 72.35 (5)° with the mean plane [r.m.s. deviation = 0.008 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked into [010] chains via two different inversion-generated pairs of C—H⋯O hydrogen bonds. The crystal structure also exhibits slipped ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.667 (2) Å and slippage = 1.341 (2) Å], and between the benzene and the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.759 (2) Å and slippage = 0.757 (2) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2049.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2143.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrFO3S

  • Mr = 383.23

  • Triclinic, [P \overline 1]

  • a = 8.0789 (1) Å

  • b = 9.2754 (2) Å

  • c = 11.3555 (2) Å

  • α = 71.283 (1)°

  • β = 72.645 (1)°

  • γ = 70.042 (1)°

  • V = 740.30 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.94 mm−1

  • T = 173 K

  • 0.29 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.527, Tmax = 0.746

  • 14090 measured reflections

  • 3680 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.02

  • 3680 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.53 3.408 (2) 154
C9—H9A⋯O2ii 0.98 2.50 3.304 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-bromo-2-methyl-1-benzofuran derivatives containing 4-fluorophenylsulfonyl (Choi et al., 2010) and 4-methylphenylsulfonyl (Choi et al., 2012) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-fluorophenyl ring and the mean plane of the benzofuran ring is 72.35 (5). In the crystal structure (Fig. 2), molecules are linked via pairs of C—H···O hydrogen bonds (Table 1), forming inversion dimers. The crystal packing (Fig. 2) also exhibits slipped ππ interactions; the first one between the benzene rings of neighbouring molecules, with a Cg1···Cg1iii distance of 3.667 (2) Å and an interplanar distance of 3.413 (2) Å resulting in a slippage of 1.341 (2) Å (Cg1 is the centroid of the C2–C7 benzene ring), and the second one between the benzene and the furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.759 (2) Å and an interplanar distance of 3.682 (2) Å resulting in a slippage of 0.757 (2) Å (Cg2 is the C1/C2/C7/O1/C8 furan ring).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012).

Experimental top

3-Chloroperoxybenzoic acid (77%, 381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-bromo-3-(4-fluorophenylsulfanyl)-2,7-dimethyl-1-benzofuran (281 mg, 0.8 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 472–473 K; Rf = 0.57 (hexane–ethyl acetate, 4:1 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y, - z + 1; (iii) - x + 2, - y, - z + 1.]
5-Bromo-3-(4-fluorophenylsulfonyl)-2,7-dimethyl-1-benzofuran top
Crystal data top
C16H12BrFO3SZ = 2
Mr = 383.23F(000) = 384
Triclinic, P1Dx = 1.719 Mg m3
Hall symbol: -P 1Melting point = 472–473 K
a = 8.0789 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2754 (2) ÅCell parameters from 6655 reflections
c = 11.3555 (2) Åθ = 2.7–28.3°
α = 71.283 (1)°µ = 2.94 mm1
β = 72.645 (1)°T = 173 K
γ = 70.042 (1)°Block, colourless
V = 740.30 (2) Å30.29 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3680 independent reflections
Radiation source: rotating anode3259 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.527, Tmax = 0.746l = 1515
14090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.237P]
where P = (Fo2 + 2Fc2)/3
3680 reflections(Δ/σ)max = 0.002
201 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C16H12BrFO3Sγ = 70.042 (1)°
Mr = 383.23V = 740.30 (2) Å3
Triclinic, P1Z = 2
a = 8.0789 (1) ÅMo Kα radiation
b = 9.2754 (2) ŵ = 2.94 mm1
c = 11.3555 (2) ÅT = 173 K
α = 71.283 (1)°0.29 × 0.21 × 0.18 mm
β = 72.645 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3259 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.746Rint = 0.031
14090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3680 reflectionsΔρmin = 0.47 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75349 (3)0.10966 (3)0.797351 (17)0.03912 (8)
S10.48725 (5)0.40486 (5)0.29104 (4)0.02342 (10)
F11.00247 (19)0.77090 (18)0.00357 (14)0.0571 (4)
O10.75109 (17)0.04433 (15)0.32764 (12)0.0274 (3)
O20.40458 (16)0.45572 (16)0.40738 (11)0.0286 (3)
O30.37705 (17)0.41993 (16)0.20642 (12)0.0315 (3)
C10.6075 (2)0.2081 (2)0.33360 (16)0.0242 (3)
C20.6733 (2)0.1303 (2)0.45008 (15)0.0227 (3)
C30.6674 (2)0.1745 (2)0.55829 (16)0.0251 (3)
H30.60780.27850.56920.030*
C40.7538 (2)0.0574 (2)0.64843 (16)0.0271 (3)
C50.8430 (2)0.0963 (2)0.63592 (17)0.0285 (4)
H50.90100.17070.70110.034*
C60.8486 (2)0.1426 (2)0.52969 (17)0.0268 (3)
C70.7611 (2)0.0248 (2)0.44028 (16)0.0243 (3)
C80.6581 (2)0.0987 (2)0.26428 (16)0.0265 (3)
C90.9424 (3)0.3065 (2)0.51205 (19)0.0331 (4)
H9A0.86120.34600.48910.050*
H9B0.97670.37610.59150.050*
H9C1.05060.30450.44400.050*
C100.6362 (3)0.1018 (3)0.13857 (18)0.0346 (4)
H10A0.57840.21030.09670.052*
H10B0.56100.03290.14990.052*
H10C0.75470.06440.08580.052*
C110.6478 (2)0.5107 (2)0.20442 (16)0.0244 (3)
C120.6821 (3)0.5500 (2)0.07255 (17)0.0321 (4)
H120.62370.51570.02950.038*
C130.8014 (3)0.6392 (3)0.00442 (19)0.0394 (5)
H130.82560.66850.08590.047*
C140.8840 (3)0.6845 (2)0.0705 (2)0.0376 (4)
C150.8550 (3)0.6459 (3)0.2007 (2)0.0370 (4)
H150.91690.67820.24270.044*
C160.7330 (2)0.5585 (2)0.26933 (17)0.0300 (4)
H160.70780.53160.35970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05355 (14)0.04150 (14)0.02493 (11)0.01030 (10)0.01583 (8)0.00744 (8)
S10.02474 (19)0.0241 (2)0.02165 (19)0.00430 (16)0.00808 (15)0.00546 (16)
F10.0558 (8)0.0497 (9)0.0620 (9)0.0322 (7)0.0040 (7)0.0026 (7)
O10.0325 (6)0.0237 (6)0.0290 (6)0.0070 (5)0.0088 (5)0.0090 (5)
O20.0296 (6)0.0290 (7)0.0250 (6)0.0048 (5)0.0041 (5)0.0089 (5)
O30.0325 (6)0.0346 (7)0.0306 (6)0.0073 (6)0.0154 (5)0.0061 (6)
C10.0276 (8)0.0232 (8)0.0228 (7)0.0067 (7)0.0077 (6)0.0049 (7)
C20.0230 (7)0.0222 (8)0.0226 (7)0.0064 (6)0.0058 (6)0.0041 (6)
C30.0285 (8)0.0234 (9)0.0237 (8)0.0065 (7)0.0063 (6)0.0059 (7)
C40.0319 (8)0.0303 (9)0.0201 (7)0.0097 (7)0.0074 (6)0.0045 (7)
C50.0305 (8)0.0260 (9)0.0265 (8)0.0090 (7)0.0089 (7)0.0009 (7)
C60.0271 (8)0.0224 (9)0.0294 (8)0.0091 (7)0.0058 (7)0.0020 (7)
C70.0262 (8)0.0226 (9)0.0253 (8)0.0075 (7)0.0055 (6)0.0061 (7)
C80.0277 (8)0.0264 (9)0.0267 (8)0.0077 (7)0.0062 (6)0.0075 (7)
C90.0357 (9)0.0217 (9)0.0397 (10)0.0056 (8)0.0106 (8)0.0047 (8)
C100.0431 (10)0.0364 (11)0.0302 (9)0.0093 (9)0.0125 (8)0.0132 (8)
C110.0267 (8)0.0208 (8)0.0235 (8)0.0034 (7)0.0072 (6)0.0041 (7)
C120.0360 (9)0.0344 (10)0.0253 (8)0.0077 (8)0.0113 (7)0.0041 (8)
C130.0435 (11)0.0415 (12)0.0254 (9)0.0122 (9)0.0071 (8)0.0027 (8)
C140.0367 (10)0.0264 (10)0.0437 (11)0.0116 (8)0.0042 (8)0.0013 (9)
C150.0387 (10)0.0345 (11)0.0445 (11)0.0135 (9)0.0100 (8)0.0135 (9)
C160.0343 (9)0.0305 (10)0.0268 (8)0.0077 (8)0.0078 (7)0.0089 (8)
Geometric parameters (Å, º) top
Br1—C41.9019 (16)C6—C91.498 (3)
S1—O21.4396 (12)C8—C101.480 (2)
S1—O31.4403 (12)C9—H9A0.9800
S1—C11.7354 (18)C9—H9B0.9800
S1—C111.7612 (17)C9—H9C0.9800
F1—C141.354 (2)C10—H10A0.9800
O1—C81.368 (2)C10—H10B0.9800
O1—C71.377 (2)C10—H10C0.9800
C1—C81.362 (2)C11—C121.387 (2)
C1—C21.448 (2)C11—C161.391 (2)
C2—C71.395 (2)C12—C131.379 (3)
C2—C31.398 (2)C12—H120.9500
C3—C41.382 (3)C13—C141.371 (3)
C3—H30.9500C13—H130.9500
C4—C51.392 (3)C14—C151.371 (3)
C5—C61.389 (2)C15—C161.385 (3)
C5—H50.9500C15—H150.9500
C6—C71.383 (2)C16—H160.9500
O2—S1—O3119.77 (8)C6—C9—H9A109.5
O2—S1—C1106.57 (8)C6—C9—H9B109.5
O3—S1—C1108.82 (8)H9A—C9—H9B109.5
O2—S1—C11107.04 (8)C6—C9—H9C109.5
O3—S1—C11107.58 (8)H9A—C9—H9C109.5
C1—S1—C11106.33 (8)H9B—C9—H9C109.5
C8—O1—C7107.04 (13)C8—C10—H10A109.5
C8—C1—C2107.36 (15)C8—C10—H10B109.5
C8—C1—S1126.67 (13)H10A—C10—H10B109.5
C2—C1—S1125.96 (13)C8—C10—H10C109.5
C7—C2—C3119.41 (15)H10A—C10—H10C109.5
C7—C2—C1104.63 (14)H10B—C10—H10C109.5
C3—C2—C1135.96 (16)C12—C11—C16121.12 (16)
C4—C3—C2115.86 (16)C12—C11—S1119.34 (13)
C4—C3—H3122.1C16—C11—S1119.49 (13)
C2—C3—H3122.1C13—C12—C11119.55 (17)
C3—C4—C5123.81 (16)C13—C12—H12120.2
C3—C4—Br1118.15 (14)C11—C12—H12120.2
C5—C4—Br1118.04 (13)C14—C13—C12118.25 (18)
C6—C5—C4121.09 (17)C14—C13—H13120.9
C6—C5—H5119.5C12—C13—H13120.9
C4—C5—H5119.5F1—C14—C13118.26 (19)
C7—C6—C5114.69 (16)F1—C14—C15118.05 (19)
C7—C6—C9122.24 (16)C13—C14—C15123.68 (18)
C5—C6—C9123.06 (17)C14—C15—C16118.15 (18)
O1—C7—C6124.43 (16)C14—C15—H15120.9
O1—C7—C2110.43 (14)C16—C15—H15120.9
C6—C7—C2125.14 (15)C15—C16—C11119.24 (17)
C1—C8—O1110.54 (15)C15—C16—H16120.4
C1—C8—C10134.51 (18)C11—C16—H16120.4
O1—C8—C10114.95 (15)
O2—S1—C1—C8157.48 (15)C1—C2—C7—O10.36 (18)
O3—S1—C1—C827.03 (18)C3—C2—C7—C61.2 (3)
C11—S1—C1—C888.59 (17)C1—C2—C7—C6178.73 (16)
O2—S1—C1—C222.76 (17)C2—C1—C8—O10.24 (19)
O3—S1—C1—C2153.21 (14)S1—C1—C8—O1179.96 (12)
C11—S1—C1—C291.18 (15)C2—C1—C8—C10179.02 (19)
C8—C1—C2—C70.08 (18)S1—C1—C8—C100.8 (3)
S1—C1—C2—C7179.73 (13)C7—O1—C8—C10.46 (19)
C8—C1—C2—C3179.94 (19)C7—O1—C8—C10178.96 (15)
S1—C1—C2—C30.1 (3)O2—S1—C11—C12147.79 (15)
C7—C2—C3—C40.8 (2)O3—S1—C11—C1217.86 (17)
C1—C2—C3—C4179.07 (18)C1—S1—C11—C1298.59 (16)
C2—C3—C4—C50.1 (3)O2—S1—C11—C1629.83 (17)
C2—C3—C4—Br1179.36 (12)O3—S1—C11—C16159.77 (14)
C3—C4—C5—C60.8 (3)C1—S1—C11—C1683.78 (16)
Br1—C4—C5—C6179.98 (13)C16—C11—C12—C130.6 (3)
C4—C5—C6—C70.5 (2)S1—C11—C12—C13176.99 (16)
C4—C5—C6—C9179.85 (16)C11—C12—C13—C140.8 (3)
C8—O1—C7—C6178.59 (16)C12—C13—C14—F1179.41 (19)
C8—O1—C7—C20.51 (18)C12—C13—C14—C150.1 (3)
C5—C6—C7—O1179.48 (15)F1—C14—C15—C16179.55 (18)
C9—C6—C7—O10.2 (3)C13—C14—C15—C161.1 (3)
C5—C6—C7—C20.5 (2)C14—C15—C16—C111.3 (3)
C9—C6—C7—C2179.19 (16)C12—C11—C16—C150.5 (3)
C3—C2—C7—O1179.75 (14)S1—C11—C16—C15178.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.533.408 (2)154
C9—H9A···O2ii0.982.503.304 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H12BrFO3S
Mr383.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0789 (1), 9.2754 (2), 11.3555 (2)
α, β, γ (°)71.283 (1), 72.645 (1), 70.042 (1)
V3)740.30 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.94
Crystal size (mm)0.29 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.527, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14090, 3680, 3259
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.02
No. of reflections3680
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.533.408 (2)154
C9—H9A···O2ii0.982.503.304 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2143.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds