organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3222-o3223

Redetermination and absolute configuration of (+)-7-epiclusianone

aDepartment of Chemistry, McNeese State University, Lake Charles, LA 70609, USA, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and cLouisiana Environmental Research Center, McNeese State University, Lake Charles, LA 70609, USA
*Correspondence e-mail: ochristian@mcneese.edu

(Received 19 October 2012; accepted 22 October 2012; online 27 October 2012)

The absolute configuration of 3-benzoyl-4-hy­droxy-6,6-dimethyl-1,5,7-tris­(3-methyl­but-2-en­yl)bicyclo­[3.3.1]non-3-ene-2,9-dione, C33H42O4, isolated from Hypericum hypericoides, has been determined. The previous study [Xiao et al. (2007[Xiao, Z. Y., Mu, Q., Shiu, W. K. P., Zeng, Y. H. & Gibbons, S. (2007). J. Nat. Prod. 70, 1779-1782.]). J. Nat. Prod. 70, 1779–1782] gave only the established relative configuration. The three stereogenic centers are now established as 1R, 5R and 7S on the basis of the refinement of the Flack absolute structure parameter against Cu Kα data and correspond to a specific rotation of [α]D20 = +66°. The enol–hy­droxy group forms an intra­molecular O—H⋯O hydrogen bond to close an S(6) ring.

Related literature

For a review of polycyclic polyprenylated acyl­phloroglucinols, see: Ciochina & Grossman (2006[Ciochina, R. & Grossman, R. B. (2006). Chem. Rev. 106, 3963-3986.]). For background to Clusiaceae metabolites, see: Garnsey et al. (2011[Garnsey, M. R., Matous, J. A., Kwiek, J. J. & Coltart, D. M. (2011). Bioorg. Med. Chem. Lett. 21, 2406-2409.]); Zhang et al. (2010[Zhang, Q., Mitasev, B., Qi, J. & Proco, J. A. Jr (2010). J. Am. Chem. Soc. 132, 14212-14215.]); Christian et al. (2008[Christian, O. E., McLean, S., Reynolds, W. F. & Jacobs, H. (2008). Nat. Prod. Commun. 3, 1781-1786.]); Wu et al. (2008[Wu, C.-C., Yen, M.-Y., Yang, S.-C. & Lin, C.-N. (2008). J. Nat. Prod. 71, 1027-1031.]). For relative-configuration structure determinatons, see: Santos et al. (1998[Santos, M. H., Speziali, N. L., Nagem, T. J. & Oliveira, T. T. (1998). Acta Cryst. C54, 1990-1992.]); Xiao et al. (2007[Xiao, Z. Y., Mu, Q., Shiu, W. K. P., Zeng, Y. H. & Gibbons, S. (2007). J. Nat. Prod. 70, 1779-1782.]); Martins et al. (2009[Martins, F. T., Assis, D. M., dos Santos, M. H., Camps, I., Veloso, M. P., Juliano, M. A., Alves, L. C. & Doriguetto, A. C. (2009). Eur. J. Med. Chem. 44, 1230-1239.]). For related structures, see: McCandlish et al. (1976[McCandlish, L. E., Hanson, J. C. & Stout, G. H. (1976). Acta Cryst. B32, 1793-1801.]); Fronczek et al. (2012[Fronczek, F. R., Christian, O. & Crockett, S. (2012). ACA Annual Meeting, Boston, MA, USA. Abstract S-81.]). For optical rotation results for the title compound, see: Piccinelli et al. (2005[Piccinelli, A. L., Cuesta-Rubio, O., Chica, M. B., Mahmood, N., Pagano, B., Pavone, M., Barone, V. & Rastrelli, L. (2005). Tetrahedron, 61, 8206-8211.]) and for related compounds, see: Tanaka et al. (2004[Tanaka, N., Takaishi, Y., Shikishima, Y., Nakanishi, Y., Bastow, K., Lee, K.-H., Honda, G., Ito, M., Takeda, Y., Kodzhimatov, O. K. & Ashurmetov, O. (2004). J. Nat. Prod. 67, 1870-1875.]). For keto–enol tautomerism in related compounds, see: Martins et al. (2007[Martins, F. T., Cruz, J. W. Jr, Derogis, B. M. C., dos Santos, M. H., Veloso, M. P., Ellena, J. & Doriguetto, A. C. (2007). J. Braz. Chem. Soc. 18, 1515-1523.]). For absolute configuration based on resonant scattering from light atoms, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.])

[Scheme 1]

Experimental

Crystal data
  • C33H42O4

  • Mr = 502.67

  • Orthorhombic, P 21 21 21

  • a = 8.6177 (4) Å

  • b = 12.4157 (6) Å

  • c = 26.8632 (13) Å

  • V = 2874.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 90 K

  • 0.25 × 0.24 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.889

  • 17192 measured reflections

  • 5171 independent reflections

  • 5131 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.03

  • 5171 reflections

  • 345 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2200 Friedel pairs

  • Flack parameter: 0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4 1.014 (16) 1.477 (16) 2.4368 (12) 155.7 (15)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, there has been a resurgence of interest in the Clusiaceae family due mainly to the significant synthetic challenge presented by several compound classes isolated from this family, in particular the benzophenone-type metabolites which contain the bridged bicyclics (Garnsey et al., 2011) and tricyclic cores (Zhang et al., 2010). The simpler and stereochemically less dense bicyclononanes occur frequently in the genus Hypericum (Christian et al., 2008), plants related to St. John's Wort (Ciochina & Grossman, 2006). The Hypericum genus is one of largest in the Clusiaceae family of plants and is distributed worldwide. The phloroglucinol derived metabolites from various species within this genus have shown good potential as antioxidants (Wu et al., 2008). The hexane extract of Hypericum hypericoides collected in Lake Charles, Louisiana, yielded the title compound (I). 7-Epiclusianone (I) has previously been isolated from Rheedia gardneriana (Santos et al., 1998), H. sampsonii (Xiao et al., 2007) and from a Jamaican collection of H. hypericoides (Christian et al., 2008). The gross structure was confirmed by 1H NMR, 13C NMR and DEPT analysis displaying the diagnostic resonances for the bicyclononane core, in addition to the requisite 3JHH coupling to establish the C-7 prenyl group as axial (Piccinelli et al., 2005, Christian et al., 2008). The melting point (365–366 K) and specific rotation (+66°) of (I) was similar to that of Santos et al., (1998) (+77°), Piccinelli et al., (2005) (+62.3°) and Christian et al., (2008) (+67.5°). However, these values are in stark contrast to the H. sampsonii collection isolated by Xiao and coworkers, which gave a specific rotation of -9.65° (Xiao et al., 2007). This ambiguity in the stereochemistry and a lack of absolute structural data prompted this investigation to unequivocally determine the absolute configuration of (I) and correlate it with chiroptical data.

The structure of (I) has been reported several times, all at room temperature and yielding only relative configuration (Santos et al., 1998; Xiao et al., 2007; Martins et al., 2009). Our low-temperature Cu Kα data with 2200 Bijvoet pairs allowed unambiguous determination of the absolute configuration from the Flack (1983) parameter x=0.04 (12). The Hooft et al., (2008) analysis yielded y=0.02 (4) and P2(true)=1.000. This configuration is depicted in Fig. 1, and has the R configuration at C1 and C5, and the S configuration at C7.

Keto-enol tautomerism is a common feature in natural polyprenylated benzophenones (Martins et al., 2007), and also exists in (I). In the solid, the CC double bond is between C3 and C4, with distance 1.3932 (16) Å, and C2O1 is a ketone, with distance 1.2169 (13) Å. Hydroxy group O2 forms an intramolecular hydrogen bond to the benzophenone O4, as shown in Fig. 2.

The quite different [α]D20 value of -9.65° for 7-epiclusianone from H. sampsonii reported by Xiao et al., (2007) is of considerable interest, particularly since that structure was confirmed by crystal structure determination. It seems likely that their sample was a partial racemate. Closely related polyprenylated phloroglucinols have been found to be racemic by crystal structure determination. Clusianone from Clusia congestiflora crystallizes in racemic Pna21 (McCandlish et al., 1976). Hyperibone L from H. dolabriforme differs from (I) only by having a methyl group instead of an prenyl group at C5, and crystallizes in racemic P-1 (Fronczek et al., 2012), while it has been reported with an optical rotation of +69.5° from H. scabrum (Tanaka et al., 2004). Since no obvious means of racemization of these compounds during isolation and crystallization is apparent, the plants appear to commonly produce both enantiomers, and in unequal amounts.

Related literature top

For a review of polycyclic polyprenylated acylphloroglucinols, see: Ciochina & Grossman (2006). For background to Clusiaceae metabolites, see: Garnsey et al. (2011); Zhang et al. (2010); Christian et al. (2008); Wu et al. (2008). For relative-configuration structure determinatons, see: Santos et al. (1998); Xiao et al. (2007); Martins et al. (2009). For related structures, see: McCandlish et al. (1976); Fronczek et al. (2012). For optical rotation results for the title compound, see: Piccinelli et al. (2005) and for related compounds, see: Tanaka et al. (2004). For keto–enol tautomerism in related compounds, see: Martins et al. (2007). For absolute configuration based on resonant scattering from light atoms, see: Hooft et al. (2008)

Experimental top

Hypericum hypericoides was collected from Sam Houston Jones State Park, Calcasieu Parish, LA, (N 30 18.1246, W 93 15.5163) in June 2011. Voucher specimens are preserved in the Herbarium, Department of Biological Sciences, McNeese State University. The dried and pulverized roots of H. hypericoides (204 g) were extracted with hexane (3 x 1.5 L). The evaporation of the hexanes yielded a yellowish gum (4.3 g). The hexane extract was chromatographed over silica gel and eluted with 0 – 100% hexane/ethyl acetate mixtures to yield fifteen fractions (B1 – B15). Fraction B2 yielded 7-epiclusianone (I), and slow evaporation from methanol yielded suitable crystals. The crystals were colorless and cube-like (m.p. 365 - 366 K). The HREIMS, 1H and 13C NMR were the same as indicated in the literature (Christian et al., 2008).

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Coordinates of the OH hydrogen atom were refined. A torional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoids at the 50% level, with H atoms having arbitrary radius.
[Figure 2] Fig. 2. View of the molecule showing the intramolecular hydrogen bond; 50% ellipsoids
3-benzoyl-4-hydroxy-6,6-dimethyl-1,5,7-tris(3-methylbut-2- enyl)bicyclo[3.3.1]non-3-ene-2,9-dione top
Crystal data top
C33H42O4F(000) = 1088
Mr = 502.67Dx = 1.162 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 9866 reflections
a = 8.6177 (4) Åθ = 6.1–68.7°
b = 12.4157 (6) ŵ = 0.59 mm1
c = 26.8632 (13) ÅT = 90 K
V = 2874.2 (2) Å3Fragment, colourless
Z = 40.25 × 0.24 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
5171 independent reflections
Radiation source: IµS microfocus5131 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.029
ϕ and ω scansθmax = 69.0°, θmin = 6.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 710
Tmin = 0.824, Tmax = 0.889k = 1414
17192 measured reflectionsl = 2632
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5041P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5171 reflectionsΔρmax = 0.22 e Å3
345 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), 2200 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (12)
Crystal data top
C33H42O4V = 2874.2 (2) Å3
Mr = 502.67Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.6177 (4) ŵ = 0.59 mm1
b = 12.4157 (6) ÅT = 90 K
c = 26.8632 (13) Å0.25 × 0.24 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
5171 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5131 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.889Rint = 0.029
17192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.14 e Å3
5171 reflectionsAbsolute structure: Flack (1983), 2200 Friedel pairs
345 parametersAbsolute structure parameter: 0.04 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38204 (9)0.57722 (6)0.55937 (3)0.02174 (17)
O20.19699 (9)0.30231 (6)0.66019 (3)0.02165 (18)
H2O0.1128 (18)0.3151 (13)0.6345 (6)0.032*
O30.55907 (10)0.53739 (7)0.71815 (3)0.02443 (18)
O40.02182 (10)0.37865 (7)0.59833 (3)0.02514 (19)
C10.53797 (13)0.53245 (9)0.62906 (4)0.0180 (2)
C20.38730 (13)0.52889 (8)0.59874 (4)0.0171 (2)
C30.26005 (13)0.46092 (9)0.61697 (4)0.0180 (2)
C40.29307 (13)0.38075 (9)0.65168 (4)0.0177 (2)
C50.43928 (13)0.37919 (9)0.68338 (4)0.0190 (2)
C60.56654 (13)0.29794 (9)0.66112 (4)0.0209 (2)
C70.61814 (14)0.33294 (9)0.60776 (4)0.0204 (2)
H70.72010.29610.60260.024*
C80.65687 (13)0.45420 (9)0.60513 (4)0.0205 (2)
H8A0.66890.47420.56970.025*
H8B0.75850.46560.62150.025*
C90.51344 (13)0.49077 (9)0.68128 (4)0.0184 (2)
C100.10833 (13)0.45927 (9)0.59317 (4)0.0197 (2)
C110.04524 (13)0.55219 (10)0.56511 (4)0.0218 (2)
C120.05267 (14)0.53185 (12)0.52473 (5)0.0291 (3)
H120.07190.45990.51440.035*
C130.12146 (17)0.61707 (14)0.49996 (5)0.0397 (4)
H130.18650.60340.47210.048*
C140.09644 (17)0.72184 (14)0.51530 (6)0.0431 (4)
H140.14460.77990.49820.052*
C150.00110 (17)0.74202 (12)0.55568 (6)0.0399 (3)
H150.01500.81400.56650.048*
C160.07115 (15)0.65772 (10)0.58051 (5)0.0288 (3)
H160.13790.67200.60790.035*
C170.50800 (15)0.18136 (9)0.66151 (4)0.0245 (3)
H17A0.58390.13490.64490.037*
H17B0.40850.17730.64390.037*
H17C0.49420.15740.69600.037*
C180.71138 (14)0.30162 (11)0.69510 (5)0.0268 (3)
H18A0.68420.27450.72820.040*
H18B0.74820.37610.69780.040*
H18C0.79340.25660.68080.040*
C190.39058 (15)0.35180 (10)0.73731 (4)0.0241 (3)
H19A0.35080.27700.73840.029*
H19B0.48280.35570.75920.029*
C200.26812 (16)0.42675 (11)0.75676 (4)0.0268 (3)
H200.29180.50140.75520.032*
C210.13033 (16)0.40148 (11)0.77591 (4)0.0282 (3)
C220.02230 (18)0.48786 (12)0.79411 (6)0.0406 (3)
H22A0.06920.55870.78830.061*
H22B0.00350.47810.82980.061*
H22C0.07630.48310.77610.061*
C230.07067 (16)0.28880 (12)0.78242 (5)0.0350 (3)
H23A0.14480.23780.76800.052*
H23B0.02970.28160.76560.052*
H23C0.05790.27340.81800.052*
C240.51574 (14)0.29320 (9)0.56401 (4)0.0210 (2)
H24A0.50600.21380.56560.025*
H24B0.41050.32450.56720.025*
C250.58384 (15)0.32466 (9)0.51460 (4)0.0241 (3)
H250.69060.30820.51020.029*
C260.51463 (16)0.37244 (9)0.47629 (4)0.0251 (3)
C270.34689 (16)0.40573 (10)0.47428 (5)0.0288 (3)
H27A0.29390.38150.50460.043*
H27B0.29740.37300.44510.043*
H27C0.34010.48430.47180.043*
C280.60348 (19)0.39918 (11)0.42989 (5)0.0356 (3)
H28A0.71130.37540.43360.053*
H28B0.60100.47720.42440.053*
H28C0.55620.36240.40140.053*
C290.60306 (14)0.64717 (9)0.62838 (4)0.0211 (2)
H29A0.69480.65070.65050.025*
H29B0.63780.66470.59420.025*
C300.48630 (14)0.72998 (9)0.64493 (4)0.0213 (2)
H300.40120.70450.66410.026*
C310.48995 (14)0.83484 (9)0.63557 (4)0.0218 (2)
C320.36423 (15)0.90856 (10)0.65404 (5)0.0280 (3)
H32A0.28270.86590.67010.042*
H32B0.31990.94830.62590.042*
H32C0.40800.95950.67810.042*
C330.62042 (16)0.88899 (10)0.60776 (5)0.0275 (3)
H33A0.68570.92880.63130.041*
H33B0.57720.93890.58310.041*
H33C0.68310.83440.59080.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (4)0.0205 (4)0.0207 (4)0.0005 (3)0.0017 (3)0.0040 (3)
O20.0212 (4)0.0193 (4)0.0244 (4)0.0034 (3)0.0001 (3)0.0034 (3)
O30.0267 (4)0.0254 (4)0.0211 (4)0.0026 (3)0.0026 (3)0.0038 (3)
O40.0198 (4)0.0214 (4)0.0342 (5)0.0033 (3)0.0018 (3)0.0030 (4)
C10.0181 (5)0.0161 (5)0.0198 (5)0.0000 (4)0.0021 (4)0.0011 (4)
C20.0205 (5)0.0139 (5)0.0170 (5)0.0028 (4)0.0026 (4)0.0016 (4)
C30.0190 (5)0.0169 (5)0.0181 (5)0.0008 (4)0.0013 (4)0.0013 (4)
C40.0200 (5)0.0158 (5)0.0173 (5)0.0002 (4)0.0037 (4)0.0032 (4)
C50.0213 (5)0.0193 (5)0.0165 (5)0.0002 (5)0.0002 (4)0.0002 (4)
C60.0222 (5)0.0195 (6)0.0212 (6)0.0024 (4)0.0023 (4)0.0013 (5)
C70.0197 (5)0.0187 (5)0.0227 (6)0.0034 (5)0.0019 (5)0.0009 (4)
C80.0191 (5)0.0210 (6)0.0214 (5)0.0003 (4)0.0028 (4)0.0003 (5)
C90.0156 (5)0.0196 (5)0.0198 (5)0.0027 (4)0.0003 (4)0.0015 (4)
C100.0195 (5)0.0192 (5)0.0203 (5)0.0009 (4)0.0037 (4)0.0025 (4)
C110.0163 (5)0.0257 (6)0.0233 (5)0.0022 (4)0.0039 (4)0.0043 (5)
C120.0228 (6)0.0431 (7)0.0215 (6)0.0035 (6)0.0029 (5)0.0037 (6)
C130.0300 (7)0.0636 (10)0.0256 (6)0.0093 (7)0.0022 (6)0.0168 (7)
C140.0304 (7)0.0518 (9)0.0472 (9)0.0132 (7)0.0101 (6)0.0325 (7)
C150.0291 (7)0.0271 (7)0.0635 (10)0.0057 (5)0.0101 (7)0.0162 (7)
C160.0216 (6)0.0248 (6)0.0400 (7)0.0033 (5)0.0026 (5)0.0040 (5)
C170.0304 (6)0.0203 (6)0.0229 (6)0.0016 (5)0.0007 (5)0.0033 (5)
C180.0252 (6)0.0275 (6)0.0276 (6)0.0040 (5)0.0057 (5)0.0025 (5)
C190.0296 (6)0.0254 (6)0.0173 (5)0.0037 (5)0.0003 (5)0.0027 (4)
C200.0349 (7)0.0270 (6)0.0187 (5)0.0057 (5)0.0047 (5)0.0014 (5)
C210.0327 (7)0.0335 (7)0.0183 (5)0.0045 (6)0.0007 (5)0.0006 (5)
C220.0412 (8)0.0408 (8)0.0398 (8)0.0073 (7)0.0164 (6)0.0087 (6)
C230.0298 (7)0.0398 (8)0.0352 (7)0.0082 (6)0.0003 (6)0.0082 (6)
C240.0255 (6)0.0166 (5)0.0210 (5)0.0017 (4)0.0018 (5)0.0013 (4)
C250.0290 (6)0.0191 (6)0.0241 (6)0.0045 (5)0.0052 (5)0.0028 (5)
C260.0364 (7)0.0168 (5)0.0222 (6)0.0001 (5)0.0029 (5)0.0041 (5)
C270.0358 (7)0.0252 (6)0.0253 (6)0.0022 (5)0.0072 (5)0.0009 (5)
C280.0514 (9)0.0308 (7)0.0245 (6)0.0054 (6)0.0077 (6)0.0029 (5)
C290.0206 (6)0.0185 (6)0.0242 (6)0.0031 (4)0.0021 (5)0.0006 (4)
C300.0226 (6)0.0211 (6)0.0202 (5)0.0031 (5)0.0012 (4)0.0032 (4)
C310.0267 (6)0.0209 (5)0.0177 (5)0.0014 (5)0.0042 (5)0.0019 (4)
C320.0327 (7)0.0215 (6)0.0297 (6)0.0034 (5)0.0037 (5)0.0008 (5)
C330.0338 (7)0.0187 (6)0.0300 (6)0.0027 (5)0.0014 (5)0.0031 (5)
Geometric parameters (Å, º) top
O1—C21.2169 (13)C18—H18B0.9800
O2—C41.2986 (14)C18—H18C0.9800
O2—H2O1.014 (16)C19—C201.5009 (18)
O3—C91.2126 (14)C19—H19A0.9900
O4—C101.2558 (15)C19—H19B0.9900
O4—H2O1.477 (16)C20—C211.3316 (19)
C1—C91.5103 (15)C20—H200.9500
C1—C291.5309 (15)C21—C231.5007 (19)
C1—C21.5333 (15)C21—C221.5019 (19)
C1—C81.5515 (15)C22—H22A0.9800
C2—C31.4679 (15)C22—H22B0.9800
C3—C41.3932 (16)C22—H22C0.9800
C3—C101.4556 (16)C23—H23A0.9800
C4—C51.5208 (16)C23—H23B0.9800
C5—C91.5267 (16)C23—H23C0.9800
C5—C191.5464 (15)C24—C251.5028 (16)
C5—C61.6055 (16)C24—H24A0.9900
C6—C171.5329 (16)C24—H24B0.9900
C6—C181.5471 (16)C25—C261.3291 (18)
C6—C71.5624 (16)C25—H250.9500
C7—C81.5437 (16)C26—C281.5002 (18)
C7—C241.5504 (16)C26—C271.5044 (19)
C7—H71.0000C27—H27A0.9800
C8—H8A0.9900C27—H27B0.9800
C8—H8B0.9900C27—H27C0.9800
C10—C111.4815 (16)C28—H28A0.9800
C11—C161.3920 (18)C28—H28B0.9800
C11—C121.3972 (18)C28—H28C0.9800
C12—C131.383 (2)C29—C301.5057 (16)
C12—H120.9500C29—H29A0.9900
C13—C141.381 (3)C29—H29B0.9900
C13—H130.9500C30—C311.3264 (17)
C14—C151.384 (2)C30—H300.9500
C14—H140.9500C31—C321.5025 (17)
C15—C161.3886 (19)C31—C331.5080 (17)
C15—H150.9500C32—H32A0.9800
C16—H160.9500C32—H32B0.9800
C17—H17A0.9800C32—H32C0.9800
C17—H17B0.9800C33—H33A0.9800
C17—H17C0.9800C33—H33B0.9800
C18—H18A0.9800C33—H33C0.9800
C4—O2—H2O102.7 (9)H18A—C18—H18C109.5
C10—O4—H2O100.6 (6)H18B—C18—H18C109.5
C9—C1—C29112.40 (9)C20—C19—C5112.37 (10)
C9—C1—C2111.41 (9)C20—C19—H19A109.1
C29—C1—C2109.32 (9)C5—C19—H19A109.1
C9—C1—C8105.23 (9)C20—C19—H19B109.1
C29—C1—C8109.62 (9)C5—C19—H19B109.1
C2—C1—C8108.74 (9)H19A—C19—H19B107.9
O1—C2—C3123.07 (10)C21—C20—C19127.98 (12)
O1—C2—C1118.62 (10)C21—C20—H20116.0
C3—C2—C1118.16 (9)C19—C20—H20116.0
C4—C3—C10117.87 (10)C20—C21—C23124.76 (13)
C4—C3—C2118.78 (10)C20—C21—C22120.69 (12)
C10—C3—C2122.18 (10)C23—C21—C22114.54 (12)
O2—C4—C3121.56 (10)C21—C22—H22A109.5
O2—C4—C5114.85 (10)C21—C22—H22B109.5
C3—C4—C5123.57 (10)H22A—C22—H22B109.5
C4—C5—C9108.34 (9)C21—C22—H22C109.5
C4—C5—C19107.61 (9)H22A—C22—H22C109.5
C9—C5—C19110.34 (9)H22B—C22—H22C109.5
C4—C5—C6111.44 (9)C21—C23—H23A109.5
C9—C5—C6105.69 (9)C21—C23—H23B109.5
C19—C5—C6113.34 (9)H23A—C23—H23B109.5
C17—C6—C18106.82 (10)C21—C23—H23C109.5
C17—C6—C7111.26 (9)H23A—C23—H23C109.5
C18—C6—C7107.67 (9)H23B—C23—H23C109.5
C17—C6—C5111.47 (9)C25—C24—C7111.38 (10)
C18—C6—C5108.23 (9)C25—C24—H24A109.4
C7—C6—C5111.18 (9)C7—C24—H24A109.4
C8—C7—C24113.50 (9)C25—C24—H24B109.4
C8—C7—C6112.01 (9)C7—C24—H24B109.4
C24—C7—C6116.42 (9)H24A—C24—H24B108.0
C8—C7—H7104.5C26—C25—C24128.65 (12)
C24—C7—H7104.5C26—C25—H25115.7
C6—C7—H7104.5C24—C25—H25115.7
C7—C8—C1116.67 (9)C25—C26—C28120.87 (13)
C7—C8—H8A108.1C25—C26—C27125.57 (12)
C1—C8—H8A108.1C28—C26—C27113.56 (11)
C7—C8—H8B108.1C26—C27—H27A109.5
C1—C8—H8B108.1C26—C27—H27B109.5
H8A—C8—H8B107.3H27A—C27—H27B109.5
O3—C9—C1123.35 (10)C26—C27—H27C109.5
O3—C9—C5122.61 (10)H27A—C27—H27C109.5
C1—C9—C5113.81 (9)H27B—C27—H27C109.5
O4—C10—C3119.73 (10)C26—C28—H28A109.5
O4—C10—C11117.33 (10)C26—C28—H28B109.5
C3—C10—C11122.84 (10)H28A—C28—H28B109.5
C16—C11—C12119.85 (12)C26—C28—H28C109.5
C16—C11—C10121.52 (11)H28A—C28—H28C109.5
C12—C11—C10118.42 (11)H28B—C28—H28C109.5
C13—C12—C11119.60 (14)C30—C29—C1112.76 (9)
C13—C12—H12120.2C30—C29—H29A109.0
C11—C12—H12120.2C1—C29—H29A109.0
C14—C13—C12120.65 (14)C30—C29—H29B109.0
C14—C13—H13119.7C1—C29—H29B109.0
C12—C13—H13119.7H29A—C29—H29B107.8
C13—C14—C15119.81 (13)C31—C30—C29126.76 (11)
C13—C14—H14120.1C31—C30—H30116.6
C15—C14—H14120.1C29—C30—H30116.6
C14—C15—C16120.41 (15)C30—C31—C32121.22 (12)
C14—C15—H15119.8C30—C31—C33123.31 (11)
C16—C15—H15119.8C32—C31—C33115.44 (10)
C15—C16—C11119.66 (13)C31—C32—H32A109.5
C15—C16—H16120.2C31—C32—H32B109.5
C11—C16—H16120.2H32A—C32—H32B109.5
C6—C17—H17A109.5C31—C32—H32C109.5
C6—C17—H17B109.5H32A—C32—H32C109.5
H17A—C17—H17B109.5H32B—C32—H32C109.5
C6—C17—H17C109.5C31—C33—H33A109.5
H17A—C17—H17C109.5C31—C33—H33B109.5
H17B—C17—H17C109.5H33A—C33—H33B109.5
C6—C18—H18A109.5C31—C33—H33C109.5
C6—C18—H18B109.5H33A—C33—H33C109.5
H18A—C18—H18B109.5H33B—C33—H33C109.5
C6—C18—H18C109.5
C9—C1—C2—O1167.02 (10)C29—C1—C9—C5176.44 (9)
C29—C1—C2—O142.19 (13)C2—C1—C9—C553.35 (12)
C8—C1—C2—O177.45 (12)C8—C1—C9—C564.32 (11)
C9—C1—C2—C317.26 (14)C4—C5—C9—O3133.48 (11)
C29—C1—C2—C3142.09 (10)C19—C5—C9—O315.92 (15)
C8—C1—C2—C398.26 (11)C6—C5—C9—O3106.98 (12)
O1—C2—C3—C4157.56 (11)C4—C5—C9—C151.93 (12)
C1—C2—C3—C417.96 (15)C19—C5—C9—C1169.49 (9)
O1—C2—C3—C109.79 (17)C6—C5—C9—C167.62 (11)
C1—C2—C3—C10174.70 (9)C4—C3—C10—O410.85 (16)
C10—C3—C4—O24.87 (16)C2—C3—C10—O4156.60 (11)
C2—C3—C4—O2163.02 (10)C4—C3—C10—C11165.27 (11)
C10—C3—C4—C5173.26 (10)C2—C3—C10—C1127.28 (16)
C2—C3—C4—C518.85 (16)O4—C10—C11—C16139.12 (12)
O2—C4—C5—C9162.55 (9)C3—C10—C11—C1637.08 (17)
C3—C4—C5—C915.69 (15)O4—C10—C11—C1235.60 (16)
O2—C4—C5—C1943.25 (13)C3—C10—C11—C12148.19 (11)
C3—C4—C5—C19135.00 (11)C16—C11—C12—C130.88 (18)
O2—C4—C5—C681.58 (12)C10—C11—C12—C13175.69 (11)
C3—C4—C5—C6100.17 (12)C11—C12—C13—C141.2 (2)
C4—C5—C6—C1763.20 (12)C12—C13—C14—C150.3 (2)
C9—C5—C6—C17179.32 (9)C13—C14—C15—C160.8 (2)
C19—C5—C6—C1758.35 (12)C14—C15—C16—C111.1 (2)
C4—C5—C6—C18179.61 (10)C12—C11—C16—C150.22 (19)
C9—C5—C6—C1862.13 (11)C10—C11—C16—C15174.43 (12)
C19—C5—C6—C1858.83 (12)C4—C5—C19—C2054.58 (13)
C4—C5—C6—C761.56 (12)C9—C5—C19—C2063.43 (13)
C9—C5—C6—C755.92 (11)C6—C5—C19—C20178.26 (10)
C19—C5—C6—C7176.89 (9)C5—C19—C20—C21125.34 (13)
C17—C6—C7—C8172.43 (9)C19—C20—C21—C230.8 (2)
C18—C6—C7—C870.84 (12)C19—C20—C21—C22179.41 (13)
C5—C6—C7—C847.55 (13)C8—C7—C24—C2552.17 (12)
C17—C6—C7—C2439.50 (13)C6—C7—C24—C25175.58 (10)
C18—C6—C7—C24156.23 (10)C7—C24—C25—C26130.54 (13)
C5—C6—C7—C2485.38 (12)C24—C25—C26—C28179.04 (12)
C24—C7—C8—C187.10 (12)C24—C25—C26—C270.3 (2)
C6—C7—C8—C147.26 (13)C9—C1—C29—C3070.74 (12)
C9—C1—C8—C752.49 (12)C2—C1—C29—C3053.51 (12)
C29—C1—C8—C7173.57 (10)C8—C1—C29—C30172.61 (9)
C2—C1—C8—C766.97 (12)C1—C29—C30—C31159.64 (11)
C29—C1—C9—O39.02 (15)C29—C30—C31—C32179.38 (11)
C2—C1—C9—O3132.11 (11)C29—C30—C31—C332.82 (19)
C8—C1—C9—O3110.23 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O41.014 (16)1.477 (16)2.4368 (12)155.7 (15)

Experimental details

Crystal data
Chemical formulaC33H42O4
Mr502.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)8.6177 (4), 12.4157 (6), 26.8632 (13)
V3)2874.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.25 × 0.24 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.824, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
17192, 5171, 5131
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.03
No. of reflections5171
No. of parameters345
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.14
Absolute structureFlack (1983), 2200 Friedel pairs
Absolute structure parameter0.04 (12)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O41.014 (16)1.477 (16)2.4368 (12)155.7 (15)
 

Acknowledgements

Financial support provided by the Louisiana Environmental Research Center (LERC), Chenier Plain Sustainability Initiative Collaboration Award # 687217–10-006. Upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristian, O. E., McLean, S., Reynolds, W. F. & Jacobs, H. (2008). Nat. Prod. Commun. 3, 1781–1786.  CAS Google Scholar
First citationCiochina, R. & Grossman, R. B. (2006). Chem. Rev. 106, 3963–3986.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFronczek, F. R., Christian, O. & Crockett, S. (2012). ACA Annual Meeting, Boston, MA, USA. Abstract S-81.  Google Scholar
First citationGarnsey, M. R., Matous, J. A., Kwiek, J. J. & Coltart, D. M. (2011). Bioorg. Med. Chem. Lett. 21, 2406–2409.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartins, F. T., Assis, D. M., dos Santos, M. H., Camps, I., Veloso, M. P., Juliano, M. A., Alves, L. C. & Doriguetto, A. C. (2009). Eur. J. Med. Chem. 44, 1230–1239.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMartins, F. T., Cruz, J. W. Jr, Derogis, B. M. C., dos Santos, M. H., Veloso, M. P., Ellena, J. & Doriguetto, A. C. (2007). J. Braz. Chem. Soc. 18, 1515–1523.  Web of Science CrossRef CAS Google Scholar
First citationMcCandlish, L. E., Hanson, J. C. & Stout, G. H. (1976). Acta Cryst. B32, 1793–1801.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPiccinelli, A. L., Cuesta-Rubio, O., Chica, M. B., Mahmood, N., Pagano, B., Pavone, M., Barone, V. & Rastrelli, L. (2005). Tetrahedron, 61, 8206–8211.  Web of Science CrossRef CAS Google Scholar
First citationSantos, M. H., Speziali, N. L., Nagem, T. J. & Oliveira, T. T. (1998). Acta Cryst. C54, 1990–1992.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, N., Takaishi, Y., Shikishima, Y., Nakanishi, Y., Bastow, K., Lee, K.-H., Honda, G., Ito, M., Takeda, Y., Kodzhimatov, O. K. & Ashurmetov, O. (2004). J. Nat. Prod. 67, 1870–1875.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, C.-C., Yen, M.-Y., Yang, S.-C. & Lin, C.-N. (2008). J. Nat. Prod. 71, 1027–1031.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z. Y., Mu, Q., Shiu, W. K. P., Zeng, Y. H. & Gibbons, S. (2007). J. Nat. Prod. 70, 1779–1782.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Mitasev, B., Qi, J. & Proco, J. A. Jr (2010). J. Am. Chem. Soc. 132, 14212–14215.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3222-o3223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds