organic compounds
Redetermination and
of (+)-7-epiclusianoneaDepartment of Chemistry, McNeese State University, Lake Charles, LA 70609, USA, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and cLouisiana Environmental Research Center, McNeese State University, Lake Charles, LA 70609, USA
*Correspondence e-mail: ochristian@mcneese.edu
The 33H42O4, isolated from Hypericum hypericoides, has been determined. The previous study [Xiao et al. (2007). J. Nat. Prod. 70, 1779–1782] gave only the established The three stereogenic centers are now established as 1R, 5R and 7S on the basis of the of the Flack parameter against Cu Kα data and correspond to a specific rotation of [α]D20 = +66°. The enol–hydroxy group forms an intramolecular O—H⋯O hydrogen bond to close an S(6) ring.
of 3-benzoyl-4-hydroxy-6,6-dimethyl-1,5,7-tris(3-methylbut-2-enyl)bicyclo[3.3.1]non-3-ene-2,9-dione, CRelated literature
For a review of polycyclic polyprenylated acylphloroglucinols, see: Ciochina & Grossman (2006). For background to Clusiaceae metabolites, see: Garnsey et al. (2011); Zhang et al. (2010); Christian et al. (2008); Wu et al. (2008). For relative-configuration structure determinatons, see: Santos et al. (1998); Xiao et al. (2007); Martins et al. (2009). For related structures, see: McCandlish et al. (1976); Fronczek et al. (2012). For results for the title compound, see: Piccinelli et al. (2005) and for related compounds, see: Tanaka et al. (2004). For keto–enol in related compounds, see: Martins et al. (2007). For based on from light atoms, see: Hooft et al. (2008)
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812043784/hb6978sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043784/hb6978Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812043784/hb6978Isup3.cml
Hypericum hypericoides was collected from Sam Houston Jones State Park, Calcasieu Parish, LA, (N 30 18.1246, W 93 15.5163) in June 2011. Voucher specimens are preserved in the Herbarium, Department of Biological Sciences, McNeese State University. The dried and pulverized roots of H. hypericoides (204 g) were extracted with hexane (3 x 1.5 L). The evaporation of the hexanes yielded a yellowish gum (4.3 g). The hexane extract was chromatographed over silica gel and eluted with 0 – 100% hexane/ethyl acetate mixtures to yield fifteen fractions (B1 – B15). Fraction B2 yielded 7-epiclusianone (I), and slow evaporation from methanol yielded suitable crystals. The crystals were colorless and cube-like (m.p. 365 - 366 K). The HREIMS, 1H and 13C NMR were the same as indicated in the literature (Christian et al., 2008).
H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Coordinates of the OH hydrogen atom were refined. A torional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Ellipsoids at the 50% level, with H atoms having arbitrary radius. | |
Fig. 2. View of the molecule showing the intramolecular hydrogen bond; 50% ellipsoids |
C33H42O4 | F(000) = 1088 |
Mr = 502.67 | Dx = 1.162 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9866 reflections |
a = 8.6177 (4) Å | θ = 6.1–68.7° |
b = 12.4157 (6) Å | µ = 0.59 mm−1 |
c = 26.8632 (13) Å | T = 90 K |
V = 2874.2 (2) Å3 | Fragment, colourless |
Z = 4 | 0.25 × 0.24 × 0.16 mm |
Bruker Kappa APEXII CCD DUO diffractometer | 5171 independent reflections |
Radiation source: IµS microfocus | 5131 reflections with I > 2σ(I) |
QUAZAR multilayer optics monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 69.0°, θmin = 6.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −7→10 |
Tmin = 0.824, Tmax = 0.889 | k = −14→14 |
17192 measured reflections | l = −26→32 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5171 reflections | Δρmax = 0.22 e Å−3 |
345 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2200 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (12) |
C33H42O4 | V = 2874.2 (2) Å3 |
Mr = 502.67 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 8.6177 (4) Å | µ = 0.59 mm−1 |
b = 12.4157 (6) Å | T = 90 K |
c = 26.8632 (13) Å | 0.25 × 0.24 × 0.16 mm |
Bruker Kappa APEXII CCD DUO diffractometer | 5171 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 5131 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 0.889 | Rint = 0.029 |
17192 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | Δρmax = 0.22 e Å−3 |
S = 1.03 | Δρmin = −0.14 e Å−3 |
5171 reflections | Absolute structure: Flack (1983), 2200 Friedel pairs |
345 parameters | Absolute structure parameter: 0.04 (12) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38204 (9) | 0.57722 (6) | 0.55937 (3) | 0.02174 (17) | |
O2 | 0.19699 (9) | 0.30231 (6) | 0.66019 (3) | 0.02165 (18) | |
H2O | 0.1128 (18) | 0.3151 (13) | 0.6345 (6) | 0.032* | |
O3 | 0.55907 (10) | 0.53739 (7) | 0.71815 (3) | 0.02443 (18) | |
O4 | 0.02182 (10) | 0.37865 (7) | 0.59833 (3) | 0.02514 (19) | |
C1 | 0.53797 (13) | 0.53245 (9) | 0.62906 (4) | 0.0180 (2) | |
C2 | 0.38730 (13) | 0.52889 (8) | 0.59874 (4) | 0.0171 (2) | |
C3 | 0.26005 (13) | 0.46092 (9) | 0.61697 (4) | 0.0180 (2) | |
C4 | 0.29307 (13) | 0.38075 (9) | 0.65168 (4) | 0.0177 (2) | |
C5 | 0.43928 (13) | 0.37919 (9) | 0.68338 (4) | 0.0190 (2) | |
C6 | 0.56654 (13) | 0.29794 (9) | 0.66112 (4) | 0.0209 (2) | |
C7 | 0.61814 (14) | 0.33294 (9) | 0.60776 (4) | 0.0204 (2) | |
H7 | 0.7201 | 0.2961 | 0.6026 | 0.024* | |
C8 | 0.65687 (13) | 0.45420 (9) | 0.60513 (4) | 0.0205 (2) | |
H8A | 0.6689 | 0.4742 | 0.5697 | 0.025* | |
H8B | 0.7585 | 0.4656 | 0.6215 | 0.025* | |
C9 | 0.51344 (13) | 0.49077 (9) | 0.68128 (4) | 0.0184 (2) | |
C10 | 0.10833 (13) | 0.45927 (9) | 0.59317 (4) | 0.0197 (2) | |
C11 | 0.04524 (13) | 0.55219 (10) | 0.56511 (4) | 0.0218 (2) | |
C12 | −0.05267 (14) | 0.53185 (12) | 0.52473 (5) | 0.0291 (3) | |
H12 | −0.0719 | 0.4599 | 0.5144 | 0.035* | |
C13 | −0.12146 (17) | 0.61707 (14) | 0.49996 (5) | 0.0397 (4) | |
H13 | −0.1865 | 0.6034 | 0.4721 | 0.048* | |
C14 | −0.09644 (17) | 0.72184 (14) | 0.51530 (6) | 0.0431 (4) | |
H14 | −0.1446 | 0.7799 | 0.4982 | 0.052* | |
C15 | −0.00110 (17) | 0.74202 (12) | 0.55568 (6) | 0.0399 (3) | |
H15 | 0.0150 | 0.8140 | 0.5665 | 0.048* | |
C16 | 0.07115 (15) | 0.65772 (10) | 0.58051 (5) | 0.0288 (3) | |
H16 | 0.1379 | 0.6720 | 0.6079 | 0.035* | |
C17 | 0.50800 (15) | 0.18136 (9) | 0.66151 (4) | 0.0245 (3) | |
H17A | 0.5839 | 0.1349 | 0.6449 | 0.037* | |
H17B | 0.4085 | 0.1773 | 0.6439 | 0.037* | |
H17C | 0.4942 | 0.1574 | 0.6960 | 0.037* | |
C18 | 0.71138 (14) | 0.30162 (11) | 0.69510 (5) | 0.0268 (3) | |
H18A | 0.6842 | 0.2745 | 0.7282 | 0.040* | |
H18B | 0.7482 | 0.3761 | 0.6978 | 0.040* | |
H18C | 0.7934 | 0.2566 | 0.6808 | 0.040* | |
C19 | 0.39058 (15) | 0.35180 (10) | 0.73731 (4) | 0.0241 (3) | |
H19A | 0.3508 | 0.2770 | 0.7384 | 0.029* | |
H19B | 0.4828 | 0.3557 | 0.7592 | 0.029* | |
C20 | 0.26812 (16) | 0.42675 (11) | 0.75676 (4) | 0.0268 (3) | |
H20 | 0.2918 | 0.5014 | 0.7552 | 0.032* | |
C21 | 0.13033 (16) | 0.40148 (11) | 0.77591 (4) | 0.0282 (3) | |
C22 | 0.02230 (18) | 0.48786 (12) | 0.79411 (6) | 0.0406 (3) | |
H22A | 0.0692 | 0.5587 | 0.7883 | 0.061* | |
H22B | 0.0035 | 0.4781 | 0.8298 | 0.061* | |
H22C | −0.0763 | 0.4831 | 0.7761 | 0.061* | |
C23 | 0.07067 (16) | 0.28880 (12) | 0.78242 (5) | 0.0350 (3) | |
H23A | 0.1448 | 0.2378 | 0.7680 | 0.052* | |
H23B | −0.0297 | 0.2816 | 0.7656 | 0.052* | |
H23C | 0.0579 | 0.2734 | 0.8180 | 0.052* | |
C24 | 0.51574 (14) | 0.29320 (9) | 0.56401 (4) | 0.0210 (2) | |
H24A | 0.5060 | 0.2138 | 0.5656 | 0.025* | |
H24B | 0.4105 | 0.3245 | 0.5672 | 0.025* | |
C25 | 0.58384 (15) | 0.32466 (9) | 0.51460 (4) | 0.0241 (3) | |
H25 | 0.6906 | 0.3082 | 0.5102 | 0.029* | |
C26 | 0.51463 (16) | 0.37244 (9) | 0.47629 (4) | 0.0251 (3) | |
C27 | 0.34689 (16) | 0.40573 (10) | 0.47428 (5) | 0.0288 (3) | |
H27A | 0.2939 | 0.3815 | 0.5046 | 0.043* | |
H27B | 0.2974 | 0.3730 | 0.4451 | 0.043* | |
H27C | 0.3401 | 0.4843 | 0.4718 | 0.043* | |
C28 | 0.60348 (19) | 0.39918 (11) | 0.42989 (5) | 0.0356 (3) | |
H28A | 0.7113 | 0.3754 | 0.4336 | 0.053* | |
H28B | 0.6010 | 0.4772 | 0.4244 | 0.053* | |
H28C | 0.5562 | 0.3624 | 0.4014 | 0.053* | |
C29 | 0.60306 (14) | 0.64717 (9) | 0.62838 (4) | 0.0211 (2) | |
H29A | 0.6948 | 0.6507 | 0.6505 | 0.025* | |
H29B | 0.6378 | 0.6647 | 0.5942 | 0.025* | |
C30 | 0.48630 (14) | 0.72998 (9) | 0.64493 (4) | 0.0213 (2) | |
H30 | 0.4012 | 0.7045 | 0.6641 | 0.026* | |
C31 | 0.48995 (14) | 0.83484 (9) | 0.63557 (4) | 0.0218 (2) | |
C32 | 0.36423 (15) | 0.90856 (10) | 0.65404 (5) | 0.0280 (3) | |
H32A | 0.2827 | 0.8659 | 0.6701 | 0.042* | |
H32B | 0.3199 | 0.9483 | 0.6259 | 0.042* | |
H32C | 0.4080 | 0.9595 | 0.6781 | 0.042* | |
C33 | 0.62042 (16) | 0.88899 (10) | 0.60776 (5) | 0.0275 (3) | |
H33A | 0.6857 | 0.9288 | 0.6313 | 0.041* | |
H33B | 0.5772 | 0.9389 | 0.5831 | 0.041* | |
H33C | 0.6831 | 0.8344 | 0.5908 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0240 (4) | 0.0205 (4) | 0.0207 (4) | −0.0005 (3) | 0.0017 (3) | 0.0040 (3) |
O2 | 0.0212 (4) | 0.0193 (4) | 0.0244 (4) | −0.0034 (3) | 0.0001 (3) | 0.0034 (3) |
O3 | 0.0267 (4) | 0.0254 (4) | 0.0211 (4) | −0.0026 (3) | −0.0026 (3) | −0.0038 (3) |
O4 | 0.0198 (4) | 0.0214 (4) | 0.0342 (5) | −0.0033 (3) | −0.0018 (3) | 0.0030 (4) |
C1 | 0.0181 (5) | 0.0161 (5) | 0.0198 (5) | 0.0000 (4) | 0.0021 (4) | −0.0011 (4) |
C2 | 0.0205 (5) | 0.0139 (5) | 0.0170 (5) | 0.0028 (4) | 0.0026 (4) | −0.0016 (4) |
C3 | 0.0190 (5) | 0.0169 (5) | 0.0181 (5) | 0.0008 (4) | 0.0013 (4) | −0.0013 (4) |
C4 | 0.0200 (5) | 0.0158 (5) | 0.0173 (5) | 0.0002 (4) | 0.0037 (4) | −0.0032 (4) |
C5 | 0.0213 (5) | 0.0193 (5) | 0.0165 (5) | 0.0002 (5) | −0.0002 (4) | 0.0002 (4) |
C6 | 0.0222 (5) | 0.0195 (6) | 0.0212 (6) | 0.0024 (4) | −0.0023 (4) | 0.0013 (5) |
C7 | 0.0197 (5) | 0.0187 (5) | 0.0227 (6) | 0.0034 (5) | 0.0019 (5) | −0.0009 (4) |
C8 | 0.0191 (5) | 0.0210 (6) | 0.0214 (5) | −0.0003 (4) | 0.0028 (4) | −0.0003 (5) |
C9 | 0.0156 (5) | 0.0196 (5) | 0.0198 (5) | 0.0027 (4) | 0.0003 (4) | −0.0015 (4) |
C10 | 0.0195 (5) | 0.0192 (5) | 0.0203 (5) | 0.0009 (4) | 0.0037 (4) | −0.0025 (4) |
C11 | 0.0163 (5) | 0.0257 (6) | 0.0233 (5) | 0.0022 (4) | 0.0039 (4) | 0.0043 (5) |
C12 | 0.0228 (6) | 0.0431 (7) | 0.0215 (6) | 0.0035 (6) | 0.0029 (5) | 0.0037 (6) |
C13 | 0.0300 (7) | 0.0636 (10) | 0.0256 (6) | 0.0093 (7) | 0.0022 (6) | 0.0168 (7) |
C14 | 0.0304 (7) | 0.0518 (9) | 0.0472 (9) | 0.0132 (7) | 0.0101 (6) | 0.0325 (7) |
C15 | 0.0291 (7) | 0.0271 (7) | 0.0635 (10) | 0.0057 (5) | 0.0101 (7) | 0.0162 (7) |
C16 | 0.0216 (6) | 0.0248 (6) | 0.0400 (7) | 0.0033 (5) | 0.0026 (5) | 0.0040 (5) |
C17 | 0.0304 (6) | 0.0203 (6) | 0.0229 (6) | 0.0016 (5) | −0.0007 (5) | 0.0033 (5) |
C18 | 0.0252 (6) | 0.0275 (6) | 0.0276 (6) | 0.0040 (5) | −0.0057 (5) | 0.0025 (5) |
C19 | 0.0296 (6) | 0.0254 (6) | 0.0173 (5) | −0.0037 (5) | −0.0003 (5) | 0.0027 (4) |
C20 | 0.0349 (7) | 0.0270 (6) | 0.0187 (5) | −0.0057 (5) | 0.0047 (5) | −0.0014 (5) |
C21 | 0.0327 (7) | 0.0335 (7) | 0.0183 (5) | −0.0045 (6) | 0.0007 (5) | −0.0006 (5) |
C22 | 0.0412 (8) | 0.0408 (8) | 0.0398 (8) | −0.0073 (7) | 0.0164 (6) | −0.0087 (6) |
C23 | 0.0298 (7) | 0.0398 (8) | 0.0352 (7) | −0.0082 (6) | 0.0003 (6) | 0.0082 (6) |
C24 | 0.0255 (6) | 0.0166 (5) | 0.0210 (5) | 0.0017 (4) | 0.0018 (5) | −0.0013 (4) |
C25 | 0.0290 (6) | 0.0191 (6) | 0.0241 (6) | 0.0045 (5) | 0.0052 (5) | −0.0028 (5) |
C26 | 0.0364 (7) | 0.0168 (5) | 0.0222 (6) | −0.0001 (5) | 0.0029 (5) | −0.0041 (5) |
C27 | 0.0358 (7) | 0.0252 (6) | 0.0253 (6) | −0.0022 (5) | −0.0072 (5) | −0.0009 (5) |
C28 | 0.0514 (9) | 0.0308 (7) | 0.0245 (6) | 0.0054 (6) | 0.0077 (6) | 0.0029 (5) |
C29 | 0.0206 (6) | 0.0185 (6) | 0.0242 (6) | −0.0031 (4) | 0.0021 (5) | −0.0006 (4) |
C30 | 0.0226 (6) | 0.0211 (6) | 0.0202 (5) | −0.0031 (5) | 0.0012 (4) | −0.0032 (4) |
C31 | 0.0267 (6) | 0.0209 (5) | 0.0177 (5) | −0.0014 (5) | −0.0042 (5) | −0.0019 (4) |
C32 | 0.0327 (7) | 0.0215 (6) | 0.0297 (6) | 0.0034 (5) | −0.0037 (5) | −0.0008 (5) |
C33 | 0.0338 (7) | 0.0187 (6) | 0.0300 (6) | −0.0027 (5) | −0.0014 (5) | 0.0031 (5) |
O1—C2 | 1.2169 (13) | C18—H18B | 0.9800 |
O2—C4 | 1.2986 (14) | C18—H18C | 0.9800 |
O2—H2O | 1.014 (16) | C19—C20 | 1.5009 (18) |
O3—C9 | 1.2126 (14) | C19—H19A | 0.9900 |
O4—C10 | 1.2558 (15) | C19—H19B | 0.9900 |
O4—H2O | 1.477 (16) | C20—C21 | 1.3316 (19) |
C1—C9 | 1.5103 (15) | C20—H20 | 0.9500 |
C1—C29 | 1.5309 (15) | C21—C23 | 1.5007 (19) |
C1—C2 | 1.5333 (15) | C21—C22 | 1.5019 (19) |
C1—C8 | 1.5515 (15) | C22—H22A | 0.9800 |
C2—C3 | 1.4679 (15) | C22—H22B | 0.9800 |
C3—C4 | 1.3932 (16) | C22—H22C | 0.9800 |
C3—C10 | 1.4556 (16) | C23—H23A | 0.9800 |
C4—C5 | 1.5208 (16) | C23—H23B | 0.9800 |
C5—C9 | 1.5267 (16) | C23—H23C | 0.9800 |
C5—C19 | 1.5464 (15) | C24—C25 | 1.5028 (16) |
C5—C6 | 1.6055 (16) | C24—H24A | 0.9900 |
C6—C17 | 1.5329 (16) | C24—H24B | 0.9900 |
C6—C18 | 1.5471 (16) | C25—C26 | 1.3291 (18) |
C6—C7 | 1.5624 (16) | C25—H25 | 0.9500 |
C7—C8 | 1.5437 (16) | C26—C28 | 1.5002 (18) |
C7—C24 | 1.5504 (16) | C26—C27 | 1.5044 (19) |
C7—H7 | 1.0000 | C27—H27A | 0.9800 |
C8—H8A | 0.9900 | C27—H27B | 0.9800 |
C8—H8B | 0.9900 | C27—H27C | 0.9800 |
C10—C11 | 1.4815 (16) | C28—H28A | 0.9800 |
C11—C16 | 1.3920 (18) | C28—H28B | 0.9800 |
C11—C12 | 1.3972 (18) | C28—H28C | 0.9800 |
C12—C13 | 1.383 (2) | C29—C30 | 1.5057 (16) |
C12—H12 | 0.9500 | C29—H29A | 0.9900 |
C13—C14 | 1.381 (3) | C29—H29B | 0.9900 |
C13—H13 | 0.9500 | C30—C31 | 1.3264 (17) |
C14—C15 | 1.384 (2) | C30—H30 | 0.9500 |
C14—H14 | 0.9500 | C31—C32 | 1.5025 (17) |
C15—C16 | 1.3886 (19) | C31—C33 | 1.5080 (17) |
C15—H15 | 0.9500 | C32—H32A | 0.9800 |
C16—H16 | 0.9500 | C32—H32B | 0.9800 |
C17—H17A | 0.9800 | C32—H32C | 0.9800 |
C17—H17B | 0.9800 | C33—H33A | 0.9800 |
C17—H17C | 0.9800 | C33—H33B | 0.9800 |
C18—H18A | 0.9800 | C33—H33C | 0.9800 |
C4—O2—H2O | 102.7 (9) | H18A—C18—H18C | 109.5 |
C10—O4—H2O | 100.6 (6) | H18B—C18—H18C | 109.5 |
C9—C1—C29 | 112.40 (9) | C20—C19—C5 | 112.37 (10) |
C9—C1—C2 | 111.41 (9) | C20—C19—H19A | 109.1 |
C29—C1—C2 | 109.32 (9) | C5—C19—H19A | 109.1 |
C9—C1—C8 | 105.23 (9) | C20—C19—H19B | 109.1 |
C29—C1—C8 | 109.62 (9) | C5—C19—H19B | 109.1 |
C2—C1—C8 | 108.74 (9) | H19A—C19—H19B | 107.9 |
O1—C2—C3 | 123.07 (10) | C21—C20—C19 | 127.98 (12) |
O1—C2—C1 | 118.62 (10) | C21—C20—H20 | 116.0 |
C3—C2—C1 | 118.16 (9) | C19—C20—H20 | 116.0 |
C4—C3—C10 | 117.87 (10) | C20—C21—C23 | 124.76 (13) |
C4—C3—C2 | 118.78 (10) | C20—C21—C22 | 120.69 (12) |
C10—C3—C2 | 122.18 (10) | C23—C21—C22 | 114.54 (12) |
O2—C4—C3 | 121.56 (10) | C21—C22—H22A | 109.5 |
O2—C4—C5 | 114.85 (10) | C21—C22—H22B | 109.5 |
C3—C4—C5 | 123.57 (10) | H22A—C22—H22B | 109.5 |
C4—C5—C9 | 108.34 (9) | C21—C22—H22C | 109.5 |
C4—C5—C19 | 107.61 (9) | H22A—C22—H22C | 109.5 |
C9—C5—C19 | 110.34 (9) | H22B—C22—H22C | 109.5 |
C4—C5—C6 | 111.44 (9) | C21—C23—H23A | 109.5 |
C9—C5—C6 | 105.69 (9) | C21—C23—H23B | 109.5 |
C19—C5—C6 | 113.34 (9) | H23A—C23—H23B | 109.5 |
C17—C6—C18 | 106.82 (10) | C21—C23—H23C | 109.5 |
C17—C6—C7 | 111.26 (9) | H23A—C23—H23C | 109.5 |
C18—C6—C7 | 107.67 (9) | H23B—C23—H23C | 109.5 |
C17—C6—C5 | 111.47 (9) | C25—C24—C7 | 111.38 (10) |
C18—C6—C5 | 108.23 (9) | C25—C24—H24A | 109.4 |
C7—C6—C5 | 111.18 (9) | C7—C24—H24A | 109.4 |
C8—C7—C24 | 113.50 (9) | C25—C24—H24B | 109.4 |
C8—C7—C6 | 112.01 (9) | C7—C24—H24B | 109.4 |
C24—C7—C6 | 116.42 (9) | H24A—C24—H24B | 108.0 |
C8—C7—H7 | 104.5 | C26—C25—C24 | 128.65 (12) |
C24—C7—H7 | 104.5 | C26—C25—H25 | 115.7 |
C6—C7—H7 | 104.5 | C24—C25—H25 | 115.7 |
C7—C8—C1 | 116.67 (9) | C25—C26—C28 | 120.87 (13) |
C7—C8—H8A | 108.1 | C25—C26—C27 | 125.57 (12) |
C1—C8—H8A | 108.1 | C28—C26—C27 | 113.56 (11) |
C7—C8—H8B | 108.1 | C26—C27—H27A | 109.5 |
C1—C8—H8B | 108.1 | C26—C27—H27B | 109.5 |
H8A—C8—H8B | 107.3 | H27A—C27—H27B | 109.5 |
O3—C9—C1 | 123.35 (10) | C26—C27—H27C | 109.5 |
O3—C9—C5 | 122.61 (10) | H27A—C27—H27C | 109.5 |
C1—C9—C5 | 113.81 (9) | H27B—C27—H27C | 109.5 |
O4—C10—C3 | 119.73 (10) | C26—C28—H28A | 109.5 |
O4—C10—C11 | 117.33 (10) | C26—C28—H28B | 109.5 |
C3—C10—C11 | 122.84 (10) | H28A—C28—H28B | 109.5 |
C16—C11—C12 | 119.85 (12) | C26—C28—H28C | 109.5 |
C16—C11—C10 | 121.52 (11) | H28A—C28—H28C | 109.5 |
C12—C11—C10 | 118.42 (11) | H28B—C28—H28C | 109.5 |
C13—C12—C11 | 119.60 (14) | C30—C29—C1 | 112.76 (9) |
C13—C12—H12 | 120.2 | C30—C29—H29A | 109.0 |
C11—C12—H12 | 120.2 | C1—C29—H29A | 109.0 |
C14—C13—C12 | 120.65 (14) | C30—C29—H29B | 109.0 |
C14—C13—H13 | 119.7 | C1—C29—H29B | 109.0 |
C12—C13—H13 | 119.7 | H29A—C29—H29B | 107.8 |
C13—C14—C15 | 119.81 (13) | C31—C30—C29 | 126.76 (11) |
C13—C14—H14 | 120.1 | C31—C30—H30 | 116.6 |
C15—C14—H14 | 120.1 | C29—C30—H30 | 116.6 |
C14—C15—C16 | 120.41 (15) | C30—C31—C32 | 121.22 (12) |
C14—C15—H15 | 119.8 | C30—C31—C33 | 123.31 (11) |
C16—C15—H15 | 119.8 | C32—C31—C33 | 115.44 (10) |
C15—C16—C11 | 119.66 (13) | C31—C32—H32A | 109.5 |
C15—C16—H16 | 120.2 | C31—C32—H32B | 109.5 |
C11—C16—H16 | 120.2 | H32A—C32—H32B | 109.5 |
C6—C17—H17A | 109.5 | C31—C32—H32C | 109.5 |
C6—C17—H17B | 109.5 | H32A—C32—H32C | 109.5 |
H17A—C17—H17B | 109.5 | H32B—C32—H32C | 109.5 |
C6—C17—H17C | 109.5 | C31—C33—H33A | 109.5 |
H17A—C17—H17C | 109.5 | C31—C33—H33B | 109.5 |
H17B—C17—H17C | 109.5 | H33A—C33—H33B | 109.5 |
C6—C18—H18A | 109.5 | C31—C33—H33C | 109.5 |
C6—C18—H18B | 109.5 | H33A—C33—H33C | 109.5 |
H18A—C18—H18B | 109.5 | H33B—C33—H33C | 109.5 |
C6—C18—H18C | 109.5 | ||
C9—C1—C2—O1 | 167.02 (10) | C29—C1—C9—C5 | 176.44 (9) |
C29—C1—C2—O1 | 42.19 (13) | C2—C1—C9—C5 | 53.35 (12) |
C8—C1—C2—O1 | −77.45 (12) | C8—C1—C9—C5 | −64.32 (11) |
C9—C1—C2—C3 | −17.26 (14) | C4—C5—C9—O3 | 133.48 (11) |
C29—C1—C2—C3 | −142.09 (10) | C19—C5—C9—O3 | 15.92 (15) |
C8—C1—C2—C3 | 98.26 (11) | C6—C5—C9—O3 | −106.98 (12) |
O1—C2—C3—C4 | 157.56 (11) | C4—C5—C9—C1 | −51.93 (12) |
C1—C2—C3—C4 | −17.96 (15) | C19—C5—C9—C1 | −169.49 (9) |
O1—C2—C3—C10 | −9.79 (17) | C6—C5—C9—C1 | 67.62 (11) |
C1—C2—C3—C10 | 174.70 (9) | C4—C3—C10—O4 | −10.85 (16) |
C10—C3—C4—O2 | 4.87 (16) | C2—C3—C10—O4 | 156.60 (11) |
C2—C3—C4—O2 | −163.02 (10) | C4—C3—C10—C11 | 165.27 (11) |
C10—C3—C4—C5 | −173.26 (10) | C2—C3—C10—C11 | −27.28 (16) |
C2—C3—C4—C5 | 18.85 (16) | O4—C10—C11—C16 | 139.12 (12) |
O2—C4—C5—C9 | −162.55 (9) | C3—C10—C11—C16 | −37.08 (17) |
C3—C4—C5—C9 | 15.69 (15) | O4—C10—C11—C12 | −35.60 (16) |
O2—C4—C5—C19 | −43.25 (13) | C3—C10—C11—C12 | 148.19 (11) |
C3—C4—C5—C19 | 135.00 (11) | C16—C11—C12—C13 | 0.88 (18) |
O2—C4—C5—C6 | 81.58 (12) | C10—C11—C12—C13 | 175.69 (11) |
C3—C4—C5—C6 | −100.17 (12) | C11—C12—C13—C14 | −1.2 (2) |
C4—C5—C6—C17 | −63.20 (12) | C12—C13—C14—C15 | 0.3 (2) |
C9—C5—C6—C17 | 179.32 (9) | C13—C14—C15—C16 | 0.8 (2) |
C19—C5—C6—C17 | 58.35 (12) | C14—C15—C16—C11 | −1.1 (2) |
C4—C5—C6—C18 | 179.61 (10) | C12—C11—C16—C15 | 0.22 (19) |
C9—C5—C6—C18 | 62.13 (11) | C10—C11—C16—C15 | −174.43 (12) |
C19—C5—C6—C18 | −58.83 (12) | C4—C5—C19—C20 | −54.58 (13) |
C4—C5—C6—C7 | 61.56 (12) | C9—C5—C19—C20 | 63.43 (13) |
C9—C5—C6—C7 | −55.92 (11) | C6—C5—C19—C20 | −178.26 (10) |
C19—C5—C6—C7 | −176.89 (9) | C5—C19—C20—C21 | 125.34 (13) |
C17—C6—C7—C8 | 172.43 (9) | C19—C20—C21—C23 | 0.8 (2) |
C18—C6—C7—C8 | −70.84 (12) | C19—C20—C21—C22 | 179.41 (13) |
C5—C6—C7—C8 | 47.55 (13) | C8—C7—C24—C25 | 52.17 (12) |
C17—C6—C7—C24 | 39.50 (13) | C6—C7—C24—C25 | −175.58 (10) |
C18—C6—C7—C24 | 156.23 (10) | C7—C24—C25—C26 | −130.54 (13) |
C5—C6—C7—C24 | −85.38 (12) | C24—C25—C26—C28 | 179.04 (12) |
C24—C7—C8—C1 | 87.10 (12) | C24—C25—C26—C27 | −0.3 (2) |
C6—C7—C8—C1 | −47.26 (13) | C9—C1—C29—C30 | −70.74 (12) |
C9—C1—C8—C7 | 52.49 (12) | C2—C1—C29—C30 | 53.51 (12) |
C29—C1—C8—C7 | 173.57 (10) | C8—C1—C29—C30 | 172.61 (9) |
C2—C1—C8—C7 | −66.97 (12) | C1—C29—C30—C31 | −159.64 (11) |
C29—C1—C9—O3 | −9.02 (15) | C29—C30—C31—C32 | 179.38 (11) |
C2—C1—C9—O3 | −132.11 (11) | C29—C30—C31—C33 | −2.82 (19) |
C8—C1—C9—O3 | 110.23 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O4 | 1.014 (16) | 1.477 (16) | 2.4368 (12) | 155.7 (15) |
Experimental details
Crystal data | |
Chemical formula | C33H42O4 |
Mr | 502.67 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 90 |
a, b, c (Å) | 8.6177 (4), 12.4157 (6), 26.8632 (13) |
V (Å3) | 2874.2 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.25 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD DUO diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.824, 0.889 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17192, 5171, 5131 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.074, 1.03 |
No. of reflections | 5171 |
No. of parameters | 345 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.14 |
Absolute structure | Flack (1983), 2200 Friedel pairs |
Absolute structure parameter | 0.04 (12) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O4 | 1.014 (16) | 1.477 (16) | 2.4368 (12) | 155.7 (15) |
Acknowledgements
Financial support provided by the Louisiana Environmental Research Center (LERC), Chenier Plain Sustainability Initiative Collaboration Award
687217–10-006. Upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.References
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christian, O. E., McLean, S., Reynolds, W. F. & Jacobs, H. (2008). Nat. Prod. Commun. 3, 1781–1786. CAS Google Scholar
Ciochina, R. & Grossman, R. B. (2006). Chem. Rev. 106, 3963–3986. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fronczek, F. R., Christian, O. & Crockett, S. (2012). ACA Annual Meeting, Boston, MA, USA. Abstract S-81. Google Scholar
Garnsey, M. R., Matous, J. A., Kwiek, J. J. & Coltart, D. M. (2011). Bioorg. Med. Chem. Lett. 21, 2406–2409. Web of Science CrossRef CAS PubMed Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martins, F. T., Assis, D. M., dos Santos, M. H., Camps, I., Veloso, M. P., Juliano, M. A., Alves, L. C. & Doriguetto, A. C. (2009). Eur. J. Med. Chem. 44, 1230–1239. Web of Science CSD CrossRef PubMed CAS Google Scholar
Martins, F. T., Cruz, J. W. Jr, Derogis, B. M. C., dos Santos, M. H., Veloso, M. P., Ellena, J. & Doriguetto, A. C. (2007). J. Braz. Chem. Soc. 18, 1515–1523. Web of Science CrossRef CAS Google Scholar
McCandlish, L. E., Hanson, J. C. & Stout, G. H. (1976). Acta Cryst. B32, 1793–1801. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Piccinelli, A. L., Cuesta-Rubio, O., Chica, M. B., Mahmood, N., Pagano, B., Pavone, M., Barone, V. & Rastrelli, L. (2005). Tetrahedron, 61, 8206–8211. Web of Science CrossRef CAS Google Scholar
Santos, M. H., Speziali, N. L., Nagem, T. J. & Oliveira, T. T. (1998). Acta Cryst. C54, 1990–1992. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, N., Takaishi, Y., Shikishima, Y., Nakanishi, Y., Bastow, K., Lee, K.-H., Honda, G., Ito, M., Takeda, Y., Kodzhimatov, O. K. & Ashurmetov, O. (2004). J. Nat. Prod. 67, 1870–1875. Web of Science CrossRef PubMed CAS Google Scholar
Wu, C.-C., Yen, M.-Y., Yang, S.-C. & Lin, C.-N. (2008). J. Nat. Prod. 71, 1027–1031. Web of Science CrossRef PubMed CAS Google Scholar
Xiao, Z. Y., Mu, Q., Shiu, W. K. P., Zeng, Y. H. & Gibbons, S. (2007). J. Nat. Prod. 70, 1779–1782. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, Q., Mitasev, B., Qi, J. & Proco, J. A. Jr (2010). J. Am. Chem. Soc. 132, 14212–14215. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, there has been a resurgence of interest in the Clusiaceae family due mainly to the significant synthetic challenge presented by several compound classes isolated from this family, in particular the benzophenone-type metabolites which contain the bridged bicyclics (Garnsey et al., 2011) and tricyclic cores (Zhang et al., 2010). The simpler and stereochemically less dense bicyclononanes occur frequently in the genus Hypericum (Christian et al., 2008), plants related to St. John's Wort (Ciochina & Grossman, 2006). The Hypericum genus is one of largest in the Clusiaceae family of plants and is distributed worldwide. The phloroglucinol derived metabolites from various species within this genus have shown good potential as antioxidants (Wu et al., 2008). The hexane extract of Hypericum hypericoides collected in Lake Charles, Louisiana, yielded the title compound (I). 7-Epiclusianone (I) has previously been isolated from Rheedia gardneriana (Santos et al., 1998), H. sampsonii (Xiao et al., 2007) and from a Jamaican collection of H. hypericoides (Christian et al., 2008). The gross structure was confirmed by 1H NMR, 13C NMR and DEPT analysis displaying the diagnostic resonances for the bicyclononane core, in addition to the requisite 3JHH coupling to establish the C-7 prenyl group as axial (Piccinelli et al., 2005, Christian et al., 2008). The melting point (365–366 K) and specific rotation (+66°) of (I) was similar to that of Santos et al., (1998) (+77°), Piccinelli et al., (2005) (+62.3°) and Christian et al., (2008) (+67.5°). However, these values are in stark contrast to the H. sampsonii collection isolated by Xiao and coworkers, which gave a specific rotation of -9.65° (Xiao et al., 2007). This ambiguity in the stereochemistry and a lack of absolute structural data prompted this investigation to unequivocally determine the absolute configuration of (I) and correlate it with chiroptical data.
The structure of (I) has been reported several times, all at room temperature and yielding only relative configuration (Santos et al., 1998; Xiao et al., 2007; Martins et al., 2009). Our low-temperature Cu Kα data with 2200 Bijvoet pairs allowed unambiguous determination of the absolute configuration from the Flack (1983) parameter x=0.04 (12). The Hooft et al., (2008) analysis yielded y=0.02 (4) and P2(true)=1.000. This configuration is depicted in Fig. 1, and has the R configuration at C1 and C5, and the S configuration at C7.
Keto-enol tautomerism is a common feature in natural polyprenylated benzophenones (Martins et al., 2007), and also exists in (I). In the solid, the C═C double bond is between C3 and C4, with distance 1.3932 (16) Å, and C2═O1 is a ketone, with distance 1.2169 (13) Å. Hydroxy group O2 forms an intramolecular hydrogen bond to the benzophenone O4, as shown in Fig. 2.
The quite different [α]D20 value of -9.65° for 7-epiclusianone from H. sampsonii reported by Xiao et al., (2007) is of considerable interest, particularly since that structure was confirmed by crystal structure determination. It seems likely that their sample was a partial racemate. Closely related polyprenylated phloroglucinols have been found to be racemic by crystal structure determination. Clusianone from Clusia congestiflora crystallizes in racemic Pna21 (McCandlish et al., 1976). Hyperibone L from H. dolabriforme differs from (I) only by having a methyl group instead of an prenyl group at C5, and crystallizes in racemic P-1 (Fronczek et al., 2012), while it has been reported with an optical rotation of +69.5° from H. scabrum (Tanaka et al., 2004). Since no obvious means of racemization of these compounds during isolation and crystallization is apparent, the plants appear to commonly produce both enantiomers, and in unequal amounts.